3-D printer for small molecules opens access to customized chemistry
Bob Lawrence (VE1RLL)
Posts: 1,720
Scientists led by Martin Burke, an HHMI early career scientist at the University of Illinois at Urbana-Champaign, used a single automated process to synthesize 14 distinct classes of small molecules from a common set of <a href="http://phys.org/tags/building+blocks/ Burke's team envisions expanding the approach to enable the production of thousands of potentially useful molecules with a single machine, which they describe as a "3D printer" for small molecules. Their work is described in the March 13, 2015, issue of the journal
According to Burke, the highly customized approach that chemists have long relied on to synthesize small molecules is time consuming and inaccessible to most researchers. "A lot of great medicines have not been discovered yet because of this synthesis bottleneck," he says. With his new technology, Burke aims to change that. "The vision is that anybody could go to a website, pick the building blocks they want, instruct their assembly through the web, and the small molecules would get synthesized and shipped," Burke says. "We're not there yet, but we now have an actionable roadmap toward on-demand small-molecule synthesis for non-specialists.
Nature produces an abundance of small molecules, and scientists have already adapted many of them for practical applications. The vast majority of drugs are considered small molecules, as are many important biological research tools. A wide-range of technologies, including LEDs, diagnostic tools, and solar cells also rely on small molecules. "Small molecules have already had a big impact on the world," says Burke. "But we've barely touched the surface of what they're capable of achieving. In large part, that's because there's a major synthesis bottleneck that precludes accessing all of their functional potential.
Burke explains that chemists almost always develop a customized approach for manufacturing small molecules, designing a series of chemical reactions that, when applied to the right starting materials, yield the desired product. "Every time you make a molecule you have to develop a unique strategy. That customization is slow," he says. Furthermore, it requires expertise. "Currently you have to have a high degree of training in synthesis to make small molecules," Burke says.
Complete Article:
http://phys.org/news/2015-03-d-printer-small-molecules-access.html
According to Burke, the highly customized approach that chemists have long relied on to synthesize small molecules is time consuming and inaccessible to most researchers. "A lot of great medicines have not been discovered yet because of this synthesis bottleneck," he says. With his new technology, Burke aims to change that. "The vision is that anybody could go to a website, pick the building blocks they want, instruct their assembly through the web, and the small molecules would get synthesized and shipped," Burke says. "We're not there yet, but we now have an actionable roadmap toward on-demand small-molecule synthesis for non-specialists.
Nature produces an abundance of small molecules, and scientists have already adapted many of them for practical applications. The vast majority of drugs are considered small molecules, as are many important biological research tools. A wide-range of technologies, including LEDs, diagnostic tools, and solar cells also rely on small molecules. "Small molecules have already had a big impact on the world," says Burke. "But we've barely touched the surface of what they're capable of achieving. In large part, that's because there's a major synthesis bottleneck that precludes accessing all of their functional potential.
Burke explains that chemists almost always develop a customized approach for manufacturing small molecules, designing a series of chemical reactions that, when applied to the right starting materials, yield the desired product. "Every time you make a molecule you have to develop a unique strategy. That customization is slow," he says. Furthermore, it requires expertise. "Currently you have to have a high degree of training in synthesis to make small molecules," Burke says.
Complete Article:
http://phys.org/news/2015-03-d-printer-small-molecules-access.html
Comments
That would be much louder than 3d printed gun....