Need help modifying Rotary Enc Object
T Chap
Posts: 4,223
DAT org 0 Update test Pin, #$20 wc 'Test for upper or lower port muxc :PinSrc, #%1 'Adjust :PinSrc instruction for proper port mov IPosAddr, #IntPos 'Clear all internal encoder position values movd :IClear, IPosAddr ' set starting internal pointer mov Idx, TotEnc ' for all encoders... :IClear mov 0, #0 ' clear internal memory add IPosAddr, #1 ' increment pointer movd :IClear, IPosAddr djnz Idx, #:IClear ' loop for each encoder mov St2, ina 'Take first sample of encoder pins shr St2, Pin :Sample mov IPosAddr, #IntPos 'Reset encoder position buffer addresses movd :IPos+0, IPosAddr movd :IPos+1, IPosAddr mov MPosAddr, PAR mov St1, St2 'Calc 2-bit signed offsets (St1 = B1:A1) mov T1, St2 ' T1 = B1:A1 shl T1, #1 ' T1 = A1:x :PinSrc mov St2, inb ' Sample encoders (St2 = B2:A2 left shifted by first encoder offset) shr St2, Pin ' Adj for first encoder (St2 = B2:A2) xor St1, St2 ' St1 = B1^B2:A1^A2 xor T1, St2 ' T1 = A1^B2:x and T1, BMask ' T1 = A1^B2:0 or T1, AMask ' T1 = A1^B2:1 mov T2, St1 ' T2 = B1^B2:A1^A2 and T2, AMask ' T2 = 0:A1^A2 and St1, BMask ' St1 = B1^B2:0 shr St1, #1 ' St1 = 0:B1^B2 xor T2, St1 ' T2 = 0:A1^A2^B1^B2 mov St1, T2 ' St1 = 0:A1^B2^B1^A2 shl St1, #1 ' St1 = A1^B2^B1^A2:0 or St1, T2 ' St1 = A1^B2^B1^A2:A1^B2^B1^A2 and St1, T1 ' St1 = A1^B2^B1^A2&A1^B2:A1^B2^B1^A2 mov Idx, TotEnc 'For all encoders... :UpdatePos ror St1, #2 'Rotate current bit pair into 31:30 mov Diff, St1 'Convert 2-bit signed to 32-bit signed Diff sar Diff, #30 :IPos add 0, Diff 'Add to encoder position value wrlong 0, MPosAddr 'Write new position to main memory add IPosAddr, #1 'Increment encoder position addresses movd :IPos+0, IPosAddr movd :IPos+1, IPosAddr add MPosAddr, #4 :Next djnz Idx, #:UpdatePos 'Loop for each encoder jmp #:Sample 'Loop forever 'Define Encoder Reading Cog's constants/variables AMask long $55555555 'A bit mask BMask long $AAAAAAAA 'B bit mask MSB long $80000000 'MSB mask for current bit pair Pin long 0 'First pin connected to first encoder TotEnc long 0 'Total number of encoders Idx res 1 'Encoder index St1 res 1 'Previous state St2 res 1 'Current state T1 res 1 'Temp 1 T2 res 1 'Temp 2 Diff res 1 'Difference, ie: -1, 0 or +1 IPosAddr res 1 'Address of current encoder position counter (Internal Memory) MPosAddr res 1 'Address of current encoder position counter (Main Memory) IntPos res 16 'Internal encoder position counter buffer
I want to modify the rotary object to allow the start pin and second pin of the inputs to be swapped if needed. It would be OK just to write the code above with the pins reversed and I can just save it as Reversed Direction version. The object works by setting PIN in it's main method, then the code above used PIN + 1 as the second pin of the pair. There is only ever a single rotary encoder. I cannot tell from the code where the second pin is being calculated by PIN + 1, else it could just be changed to PIN - 1, then use for the first pin in the start method the result of PIN + 1, effectively reversing the inputs.
Comments
so after every of these instructions in the original code: add an instruction so that you get: This will reverse the 2 lowest bits in St2 and swap therefore A and B of the first (single) encoder.
Andy
Andy