Calculating Odds from Lookup Tables
·· I'm trying to calculate odds for a slot machine game I posted in the Completed Projects section a few weeks ago.··My program randomly selects one value from each lookup table:
· LOOKUP rnd1,[noparse][[/noparse]0,0,0,0,0,1,1,1,2,2,2,2,3,3,3,3],rnd1
· LOOKUP rnd2,[noparse][[/noparse]0,0,0,0,1,1,1,2,2,2,2,2,2,3,3,3],rnd2
· LOOKUP rnd3,[noparse][[/noparse]0,0,0,0,1,1,1,1,1,2,2,2,2,2,3,3],rnd3
· What I'm trying to determine is the odds of 3-of -a -kind combinations and also pairs and singles of "0". A formula to work with would be appreciated.· Also what is the total number of possible combinations·?
· 16 +16(squared) +16(cubed)·?· Thanks for any help you can provide.
· LOOKUP rnd1,[noparse][[/noparse]0,0,0,0,0,1,1,1,2,2,2,2,3,3,3,3],rnd1
· LOOKUP rnd2,[noparse][[/noparse]0,0,0,0,1,1,1,2,2,2,2,2,2,3,3,3],rnd2
· LOOKUP rnd3,[noparse][[/noparse]0,0,0,0,1,1,1,1,1,2,2,2,2,2,3,3],rnd3
· What I'm trying to determine is the odds of 3-of -a -kind combinations and also pairs and singles of "0". A formula to work with would be appreciated.· Also what is the total number of possible combinations·?
· 16 +16(squared) +16(cubed)·?· Thanks for any help you can provide.
Comments
the number of combinations is less than the number of
permutaions.
permutations = 16*16*16 (because there are 16 items in each set)
combinations = 4*4*4 (because there are 4 diferent values in each set)
If you denote the sets as A, B and C then
A0 = 5/16 (because there are 5 0's in set A)
A1 = 3/16
A2 = 4/16
A3 = 4/16
B0 = 4/16
B1 = 3/16
B2 = 6/16
B3 = 3/16
C0 = 4/16
C1 = 5/16
C2 = 5/16
C3 = 2/16
Total odds = Ax * Bx * Cx
Using integer math, leaving out the denominators
the odd is an integer value relative to 16*16*16
The highest odd = 5*6*5 = 150
The lowest odd = 3*3*2 = 18
Edit:
if you say that 0,0,x is identical to 0,x,0 and x,0,0 (where x<>0, for pair of 0's)
you must add the odds to find the odds for a pair of 0's.
Due to the few possibilities I suggest you write out the tables
and calculate those odds by hand. Then simply put them in a table.
Edit2:
Using formula's
A0 = 5
A1 = 3
A2 = 4
A3 = 4
B0 = 4
B1 = 3
B2 = 6
B3 = 3
C0 = 4
C1 = 5
C2 = 5
C3 = 2
A0B0C0 = A0*B0*C0
A0B0C1 = A0*B0*C1
A0B0C2 = A0*B0*C2
A0B0C3 = A0*B0*C3
A0B1C0 = A0*B1*C0
A0B1C1 = A0*B1*C1
A0B1C2 = A0*B1*C2
A0B1C3 = A0*B1*C3
A0B2C0 = A0*B2*C0
A0B2C1 = A0*B2*C1
A0B2C2 = A0*B2*C2
A0B2C3 = A0*B2*C3
A0B3C0 = A0*B3*C0
A0B3C1 = A0*B3*C1
A0B3C2 = A0*B3*C2
A0B3C3 = A0*B3*C3
A1B0C0 = A1*B0*C0
A1B0C1 = A1*B0*C1
A1B0C2 = A1*B0*C2
A1B0C3 = A1*B0*C3
A1B1C0 = A1*B1*C0
A1B1C1 = A1*B1*C1
A1B1C2 = A1*B1*C2
A1B1C3 = A1*B1*C3
A1B2C0 = A1*B2*C0
A1B2C1 = A1*B2*C1
A1B2C2 = A1*B2*C2
A1B2C3 = A1*B2*C3
A1B3C0 = A1*B3*C0
A1B3C1 = A1*B3*C1
A1B3C2 = A1*B3*C2
A1B3C3 = A1*B3*C3
A2B0C0 = A2*B0*C0
A2B0C1 = A2*B0*C1
A2B0C2 = A2*B0*C2
A2B0C3 = A2*B0*C3
A2B1C0 = A2*B1*C0
A2B1C1 = A2*B1*C1
A2B1C2 = A2*B1*C2
A2B1C3 = A2*B1*C3
A2B2C0 = A2*B2*C0
A2B2C1 = A2*B2*C1
A2B2C2 = A2*B2*C2
A2B2C3 = A2*B2*C3
A2B3C0 = A2*B3*C0
A2B3C1 = A2*B3*C1
A2B3C2 = A2*B3*C2
A2B3C3 = A2*B3*C3
A3B0C0 = A3*B0*C0
A3B0C1 = A3*B0*C1
A3B0C2 = A3*B0*C2
A3B0C3 = A3*B0*C3
A3B1C0 = A3*B1*C0
A3B1C1 = A3*B1*C1
A3B1C2 = A3*B1*C2
A3B1C3 = A3*B1*C3
A3B2C0 = A3*B2*C0
A3B2C1 = A3*B2*C1
A3B2C2 = A3*B2*C2
A3B2C3 = A3*B2*C3
A3B3C0 = A3*B3*C0
A3B3C1 = A3*B3*C1
A3B3C2 = A3*B3*C2
A3B3C3 = A3*B3*C3
Pair0 = A0B0C1 + A0B0C2 + A0B0C3 + A0B1C0 + A0B2C0 + A0B3C0 + A1B0C0 + A2B0C0 + A3B0C0
Pair1 = A1B1C0 + A1B1C2 + A1B1C3 + A1B0C1 + A1B2C1 + A1B3C1 + A0B1C1 + A2B1C1 + A3B1C1
Pair2 = A2B2C0 + A2B2C1 + A2B2C3 + A2B0C2 + A2B1C2 + A2B3C2 + A0B2C2 + A1B2C2 + A3B2C2
Pair3 = A3B3C0 + A3B3C1 + A3B3C2 + A3B0C3 + A3B1C3 + A3B2C3 + A0B3C3 + A1B3C3 + A2B3C3
Three0 = A0B0C0
Three1 = A1B1C1
Three2 = A2B2C2
Three3 = A3B3C3
regards peter
Post Edited (Peter Verkaik) : 10/17/2008 8:18:03 AM GMT