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Introduction

Welcome to the binary world!  Computers, despite appearing far more complex, really do 
only two things:

-add numbers together, or perform logic operations on them  (operate)

,and 

-copy them around.

Additionally, the only numbers computers really understand are 1 and 0.  These are known 
as on and off, set and reset, high and low, etc...  Something is either happening, or it isn't.

That's it!  (Well mostly it.  There are the bit logic operators:  AND, OR, NOT, XOR, etc... we 
will get into those later on.)

The reality is most computers do these things very fast and in combination.  The computer 
you are using right now is more than just cool hardware.  It's contains lots of code–specific 
combinations of ones and zeros, chained together to perform the many tasks we normally 
take for granted.  This code, is the sum of many man years of thought applied to what 
appear to be the simplest of problems.  Most of these problems are simple actually.  It is 
the combinations that are hard.

Assembly language is the art of working right at the computers level.  It's just one step up 
from entering in ones and zeros to get stuff done.  Ultimately, everything your computer 
does, boils down to assembly language instructions.  It's computing in the raw.  It's also 
where all the real fun is at, for those in the know.

I'm writing this because I want to share some of the fun that comes with learning computing 
at this level.  I'm also writing it because it's not all that easy to find anymore.  

Computing today happens at the higher levels.  We have languages, programs, means and 
methods of doing things, that translate down to assembly language and this is good.  But, 
where does it all come from?  How does one just build a computer from the ground up? 
Why are some computers slow, some fast?  What makes the graphics appear on the screen, 
or that sound come out of the speaker?

To someone, who has not yet looked at computing at this assembly level, it all seems to be 
a bit of voodoo.  You do stuff and other stuff happens.

Reading this guide will change all of that.  Ideally, you will come to appreciate what 
computers do in a way that's just not so common anymore.  Assembly is becoming 
something of a black art, forgotten, ignored in lieu of higher level things that appear to 
work just fine.
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This guide is aimed at the Parallax Propeller Micro controller.  Before you ask, I'll just get 
“what is a micro controller?” out of the way right now.  The Propeller is a little computer 
on a single chip.  There are other books, some with that exact title, that answer the 
question better than I will. For the purposes of this guide, single chip computer will serve 
just fine.

Single chip computers have a number of advantages over their bigger and far more complex 
siblings; namely, personal computers.  Where assembly language programming is concerned, 
the primary advantage is there being absolutely nothing between you and the computer. 
This means it's going to do exactly what you tell it to, every time you ask it to.

More complex computers are following instructions that come from many sources.  The 
Operating System is a set of instructions, as is the system firmware, the programs you run 
and use, along with the driver software that connects the various devices to the Operating 
System to form a whole.

By the time you, the user, get to doing anything, the computer has already been very busy!

Sometimes these instructions from others are conflicting, incomplete, or maybe just don't 
do exactly what you are looking for.  Many people will look for new instructions (programs), 
or maybe start to learn to program in any number of “programming languages”, which 
really are more instructions that help you write your own instructions.

Assembly is nothing like any of that.  In assembly language, it's you and the CPU.  Actually, 
on the Propeller, it's you and 8 CPU's, also known as COG's.  Most micro-controllers are a 
single CPU affair.  (Propeller specific terminology and core concepts are covered just a bit 
farther into the document!)

There is another implication here as well.  In assembly language, the computer does 
exactly what you tell it to.  This means, if your program does not work, it's your fault!

The Propeller, like most any computer, comes with some instructions that help to make 
programming easier.  This is the SPIN language you may already be working with.  Soon the 
Propeller will get a real C complier, which takes higher level programs and auto-generates 
assembly instructions for you.

If you are reading this, you are looking to get the most from your Propeller.  That means 
you need to be able to work at the assembly level for one and only one reason:

you can't afford to have anything get between you and the Propeller.  

With computers, making things easier often takes time.  Specifically, computer time –
cycles, potential to get work done, etc...

Programming in assembly language is as fast as it gets.  Ask the computer to do something, 
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and it does it right then, no delays.  Send your Propeller a SPIN program and it will do all 
sorts of things before it actually does anything you want it to do.  None of this is bad.  It is 
however, a trade off worth noting.

This document is now complete, with one basic assembly language program fully detailed. 
The related concepts, instructions, and terminology are explained in a detailed and 
conversational fashion.  Updates will happen, from time to time as well.

The reader will be left with a solid foundation understanding of the elements of assembly 
language programming good enough to consume more advanced texts and progress from 
there, just as the author is doing!

Enjoy the ride!
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Core Concepts

Before we get to doing any real assembly language programming, we've got to get some 
ground covered first.  Computer math is like ordinary math, for the most part.  Most of the 
trouble comes from having to learn different number representations, along with some 
terminology.  

We also need to cover the basic math computers do.  It is this basic math we use to do 
higher level things, in a fashion not unlike how LEGO toys combine together to form larger 
structures.

Let's jump right in!

Number Representations

The reality is we share the same numbers computers do.  The big difference is in how we 
represent them!  Skip this section, if you understand number representation basics.  The 
take away here is that binary 1 (%), octal, or base 8 (%%1), decimal 1, and hexadecimal $1 
are all the same value; namely, one!  

Our representation of choice is base 10.  One character, for each finger, arranged in digits, 
each representing greater powers of ten, building to the left thus:

1234 = (1 x 103) + (2 x 102) + (3 x 101) + (4 x 100)

We depend on the powers of 10, for this representation to work.  These are:

100 = 1
101 = 10
102 = 100
103 = 1000

Two very common numerical representations we use to interact with computers are:

Binary  (base 2   1 – 0)  --  '%'

%1101  =  (1 x 23) + (1 x 22) + (0 x 21) + (1 x 20)  = 13

Binary depends on the powers of 2, just as base 10 depends on the powers of 10.  Each 
binary digit is known as a “bit”.

20 = 1
21 = 2
22 = 4
23 = 8
24 = 16
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25 = 32
26 = 64
27 = 128

Hexadecimal (base 16  FEDCBA9876543210)  -- “$”

Each hex digit can hold 16 values, instead of just two or 10.  They are represented by the 
characters 0 – F, noted above, where A = 10 and F = 15, with the other digits in sequence.  

$F0E4 = ( F x 163) + (0 x 162) + (E x 161) + (4 x 160) = 61668

Like binary, hexadecimal depends on a different base set of powers:

160 = 1
161 = 16
162 = 256
163 = 4096

The hexadecimal number above can be broken down thus:

(15 x 1096) + (0 x 256) + (14 x 16) + (4 x 1)

These numerical representations are an essential part of assembly language programming, 
and for understanding how computers do things, why some numbers are faster than others, 
etc...

It is an extremely good idea to memorize the first 16 powers of two.  They double, so it's 
not a hard task.  With these, one can easily visualize binary numbers in decimal terms, and 
convert from binary to hexadecimal, by hand, if necessary.

Knowing the first 8 powers of 16 is a nice bonus!

There are other numerical representations, such as octal (base 8), not covered here.  

The important thing to remember is a given value, may be represented many different 
ways, yet it is the same value.  If we were to count up to the number 5, we would count:

1,2,3,4,5

In binary, this is:

1, 10, 11, 100, 101

In both cases, we are at the value represented by 5 or %101.  

Before we move onto sizes and other core math elements, it is important to note that 
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computers deal with values the same way we do.  However, when counting or indexing 
things, computers start with zero, where we start with one.  This will be explained in 

more detail later.

Computer number sizes

Computers handle specific sized numbers.  Unlike us, they cannot just add a digit, or take 
one away for clarity or convenience.  They are, after all machines, and machines work in 
specific and logical ways.

The most common number sizes are:  (in binary form)

Bit

%0  -  This is a single binary digit, or bit.  It's value is either one or zero.

Nibble

%0000  -  Nibbles are half a byte, or four binary bits.  Their value ranges from 0 to 15.  Also 
known as one hexadecimal digit.  Eg:  $A

Byte

%11110000 – Bytes consist of 8 bits or two hexadecimal digits.  They range from 0 to 255

The byte above is $F0 in hexadecimal.

Word

%1111111100000000  -  Words are two bytes, 16 bits, 4 hexadecimal digits.

The word above is $FF00

Long

%11111111000000001111111100000000 – Longs are two words.

The long above is:  $FF00FF00

From now on, the notations for hexadecimal and binary “$ %” will be used, along with the 
number size notation.  Now we get to talk bits, bytes, nibbles, hexadecimal and binary.  We 
are now ready to begin learning about the computer, having learned something about it's 
language.
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Common computer numerical units

Kilobyte (Kb) = 1024 bytes = 29 = %1000000000

Megabyte (Mb = 1024 Kilobytes

There are some new units being introduced that are based off of 1000, not 1024.  They are 
kib and mib, for kilobyte and megabyte.  I don't think these make a lot of sense, largely 
because they do not leverage the powers of two, found everywhere in computers.  I'm 
putting them here because you may bump into them, not because they have any real 

value.

Pages

A page refers to a discrete unit of size, generally based on one of the core powers of two, 
and or number size.  A page of memory, for example, might be defined as being 256 bytes –
just the exact amount one byte can differentiate.  Pages can be anything though.  16 bytes, 
65536 bytes (64Kbytes, or 64K), etc...

In modern computers, a page is generally much larger than that.  For now, just know a page 
refers to a chunk of sequential memory addresses, almost always keyed to a power of two.

Personification

For a lot of reasons, it's easier to personify the computer.  Treating it like a partner, instead 
of just some arbitrary thing, helps both with writing and to facilitate communication.  This 
text will follow that convention, so don't be alarmed when you see it, instead of “the 
computer” all the time.

Personification, in general is a useful tool.  Our brains are wired to relate to other people 
better than anything else.  When we think in terms of people, often difficult concepts 
become easier to grasp in a manner similar to how difficult social situations are more easily 
grasped when one role plays, or identifies with one or more participants.

It's a learning tool, nothing more.

Computer Concepts -- “What is it?  How does it work?  What are the parts of it?”

CPU

The core of any computer is it's Central Processing Unit, or CPU.  This is where the work 
gets done.  Instructions and data come in, different data and instructions come out.  It's all 
just ones and zeros.  It all happens very fast however, and that's where the power is.

Think of the CPU like a big calculator.  In fact, it's helpful to imagine you being the CPU, 
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and your calculator being one part of what a CPU does.  For a computer, the CPU is the 
brain.  It can make decisions, follow directions, read and write data and do math 
computations.

RAM

Brains and CPU's need memory.  Memory is where instructions are stored, along with results 
and other data.  Most CPU's are connected to a quantity of Random Access Memory, or RAM. 
The RAM is addressed, in sequence from the first storage location “0” to the last one, say 
$7FFF in the case of the Propeller.  

Given the above units and terminology, we then can say the Propeller has 32kb of RAM. 
This is 32 * 1024 bytes = 32768 = $7fff

You might have noticed that $7fff does not equal 32768!  It's really 32767, so why is that?

This is the first example of where a quantity differs from an address or index.  Remember, 
computers count from zero.  So the first element of anything is zero, not one like we are 
accustomed to.

When talking about the amount of ram, we use a quantity.  That's the 32768 number.  When 
talking about addresses, and in this case specifically, which addresses address the RAM for 
us, we then start from 0 and arrive at 32767, or $7FFF. 

In the Propeller, we have what is called 16 bit address space.  This gives us addresses that 
lie between $0000 and $FFFF.  Half of that address space is RAM, ending at $7FFF.  The 
other half, starting from $8000 and ending at $FFFF is ROM.

ROM

Read only memory is memory that is addressed just like RAM is, but it does not store 
anything new.  One cannot put anything into ROM, only read from it.  Of course, the 
question comes up, “what good is that?”.  

Computers power up each time knowing nothing.  In fact, their RAM is often filled with 
whatever numbers happen to result from everything powering up.  ROM then is stable 
memory that contains instructions for the computer to follow before doing anything else.

In the case of the Propeller, it needs to get started looking for programs to run, clean up it's 
RAM, and do some other basic things for us.  The ROM holds those instructions, plus some 
handy data, like characters, conversion tables and other goodies we might find handy to 
use in our own programs.

The ROM also contains the interpreter for the SPIN language you were likely using before 
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deciding to try assembly language.

I/O

On the propeller, it gets its input and sends it's output to and from the outside world, via 
it's 32 I/O pins.  Each of these pins can be in a binary state, or depending on how you 
instruct the computer.  There are other states too, like those used for the video, but those 
are beyond the scope of this document.

For now, this is enough to continue to learn about how assembly language works.  Later we 
will explore the Propeller and it's 8 CPU's (COGs), the HUB and other on-chip capabilities.

Flags

CPUs note things while they are computing.  If an operation results in a zero, or perhaps 
has a bit to carry over, these things are stored in the flags.  Think of it like this.  You are 
the CPU, and you are operating on numbers with your calculator.

So you read the number, that's like reading from RAM or ROM memory.  You input it to the 
calculator, then you input another number and perform the addition.  If that result ended 
up being zero, you would make a mental note of that.  If that operation ended up being 
bigger than your calculator can handle, you note the overflow and carry that bit over to 
another addition maybe.

That's what the status flags are all about.

On the Propeller, we've got a zero flag and a carry flag.

There is also another context for the term 'flag', and that is all about preserving transient 
states that may need to be acted upon later, after the state has come and gone.  In this 
context, a flag then is set, or reset to note an event or result for processing later on.

Anything can be a flag.  Pin states, values –in fact any values, not just true or false, but just 
values, such as:  $50, %00010101, or $FFFF.  A flag, used in this context, is compared to a 
known flag state, then decisions are made based on the result.

Take video as an example.  Video displays happen scan line by scan line.  If there was a 
counter, ticking off the scan lines as they are drawn, it can act like a flag!  All the 
programmer needs to do is instruct the computer to watch that scan line counter and make 
a decision when it's state matches a known one.  Eg:  branch, if scan line counter = $50
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Opcodes (Instructions)

Each assembly language instruction is associated with a number.  For sanity, we use an 
assembler to associate those numbers with mnemonics, such as MOV  ($101000).  This 
instruction example moves a number from one place to another.  There is a list of all the 
Propeller opcodes, along with verbose descriptions of their behavior in the Assembly 
Reference section of the Propeller Manual.  Opcodes definitions will not be repeated here, 
other than for clarity.

At some level, everything we do with a computer is mathematical.  Computers are number 
manipulation machines.  This means we need to get good at representing things with 
numbers, so we can instruct the computer to manipulate them in useful ways.  Having 
covered enough core concepts, it's time to talk some math.
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Computer Math

As discussed before, computers really only add.  They do lots of additions on lots of 
numbers very quickly to perform the tasks we require of them.  If you are reading this on a 
computer, or near a computer, that computer is likely performing billions of adds per 
second, if not more.

On a side note, back when I first started computing, we were talking millions of adds every 
second.  The progression of computer speed is staggering, given the short time we have 
been actually computing.

The Propeller chip does millions of adds per second.  This is one of the things that 
differentiate it from a full on Personal Computer.  Don't worry though.  Millions of adds per 
second is still fast enough to do amazing things!

Be patient please!  We've covered a fair amount of ground.  It's almost time to begin writing 
some assembly language programs!  Soon after that, we will be running them on the actual 
Propeller chip and my purpose here will have been accomplished.  It's easy to skip the core 
basics and just start doing stuff.  It's also harder to go back and figure out what went wrong 
that way too.

If you just have to skip forward and do stuff, do it!  Then come back and continue with the 
core stuff here.

Addition  (ADD)

This is the core operation.  For our general sanity, typical CPU's provide a number of 
operations, such as:  subtract, shift, and if you are lucky an multiply.  All of these depend 
on addition, so it makes sense to cover that first.

Binary addition is just like ordinary addition, but for the fact we've really only got two 
digits!  This makes things really easy actually.  For any column of bits to be added, the 
result will either be 0, 1, 10 or 11 (0,1,2,3) with two and three needing a carry to over to 
the next column thus:

   1         1      <---- Carry
   23        010
  +49      + 011
   --        ---
   72        101    <----- Sum

Let's take a close look at the example above.  On the left, we have ordinary decimal 
addition, just like we've all done on paper at one time or another.  To get to the solution, 
we start with the right hand column, add the 3 and the 9 and get 12.  That's two digits! 
More than will fit in that column, right?

So, we carry the 1, note the 2 in the sum, then continue working on the next column. 
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That's a 2 plus 4, plus the 1, carried over, for a total of 7.  We then can read the sum as 
being 72.

The binary example is no different!  It's actually a lot easier because we've only got 0, 1, 10 
or 11 to worry about.  That's only four possibilities.

Working from the right then, we've got 0 plus 1, for a 1 in the sum.  The next column over is 
1 plus 1, so that's 10 –a carry.  Carry the 1 to the third column, note the 0 in the sum, 
and add the last column 0 plus 0 plus 1, equals a 1, which goes in the last sum column, for 
a total of 101.

What did we add?  Let's take a quick look at converting binary to decimal with the powers 
of two:

   010  =  2                   011  =  3                    101  =  5
   |||                         |||                          ||| 
   |||... ( 0 x 1) = 0         |||... ( 1 x 1) = 1          |||... ( 1 x 1) = 1
   ||                          ||                           ||                  
   || ....( 1 x 2) = 2   +     ||.... ( 1 x 2) = 2    =     ||.... ( 0 x 2) = 0
   |                           |                            |          
   |......( 0 x 4) = 0         |..... ( 0 x 4) = 0          |..... ( 1 x 4) = 4 

Essentially, all you need to do is take the powers of two, check to see if there is a one in 
their column, then add them all up.  Either that power of two is represented in the number 
or it isn't!  This is the beauty of binary.   In the example above, we added 2 + 3 = 5.

One more example:

%10010011

Let's say the bits are numbered 0 to 7, starting at the right most bit.  The conversion then 
looks like this:

1 + 2 + 0 + 0 + 16 + 0 + 0 + 128 = 147

We number bits, from right to left, according to the power of two, they represent.  The 
right most bit is called least significant digit and the left most is called most significant 
digit.  (LSD & MSD)  Significance is all about the value any one digit represents.  The 
farther left you go, the more significant it is.

Most personal computers have a calculator program that will do these 
number conversions for you.  Use it, but only after you have worked through 
some addition and conversion on paper to understand what the digits mean, 
remember your powers of two and when to carry.  These things are important 
going forward.

A great exercise is to take some common numbers, convert them to binary, 
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then convert them to hexadecimal, then back to decimal.  

On a Microsoft Windows computer, you choose view, scientific from the 
program menu.

More on addition (The carry)
What happens when the result exceeds the number of columns in an addition?  For us 
people, we just add another column and finish out the operation thus:

  11        11      <---- Carry
   23        110
 + 99      + 111
   --        ---
  122       1101    <----- Sum

When working on paper, we can do the same for binary numbers.  Computers work a bit 
differently however.  Computers work with fixed number sizes.  If we are adding bytes, we 
are really adding numbers that range from 0 to 255.  If the result is bigger than that, an 
extra digit, or carry is required.  This can easily happen and has some interesting effects 
that will lead us to subtraction and modulo operations.

Let's start with a byte addition example:

   %11001110
 + %01100001
   ---------
 1  00101111

In this case, we've got a result that is bigger than one byte can hold, so where does the 
extra digit go?

Depending on what you've asked the computer to do, that extra digit might end up in a 
special location, called a flag, for use in a subsequent addition operation, or decision 
(branch) operation, or it is just ignored!  

Both of these cases are meaningful and useful.  Let's take the example where the extra 
digit is stored in the carry flag.  On the Propeller, the CPU maintains two flags, to be 
discussed in more detail later.  For now, all we need to know is that the carry flag will hold 
that overflow digit for us, if we want to.  

In the example above, we are gonna need two bytes to hold the result.  That looks like this:

                  1 <------
          %00000000                     %11001110
          %00000000      Carry Flag   + %01100001
          ---------                     ---------

16



          %00000001          1 <-----   %00101111

In this example, the next byte to be added is zero.  The carry then just “carries” over to 
the least significant digit, and the addition begins again.  The result of our addition then is 
a two byte number:  %00000001_00101111

Delimiters

The underscore is a thing called a delimiter.  It's ignored by the Propeller programming tool, 
and exists for clarity.  Big computer numbers are hard for us to process.  Actually, big 
numbers in general are hard for us to process.  

Over time, it has been found that an ordinary person feels good about 3 – 5 digits.  Past 
that, they've got to look the number over a few times and may get confused.  That's what 
the delimiter is for.

The number of digits problem is why hexadecimal is so handy.  Each digit is powers of 16, so 
we can represent very large numbers with few digits.  

We would use the comma “,” like we do ordinary decimal numbers, but that character 
symbol sees a lot of use in computer programming.  For a lot of reasons, it's just easier to 
use something else.  The Propeller tool actually lets you pick.  In this document, the 
underscore will be used.  It's also the most common seen in the wild.

Back to the math...

The carry example above opens the door to adding really big numbers.  The Propeller can 
handle up to long sized binary numbers.  That's 32 bits, or a range of:  0 to 4294967296!

For most tasks, a 32 bit number is just fine.  It's range is plenty for computation, indexing, 
etc...

However, there will come times when it's just not big enough, so we need to briefly expand 
on the carry example and add two discretely sized numbers together.  For clarity, bytes will 
be used.  It all works the same however, no matter what sizes are actually in play.  Adding a 
one byte number to a two byte one looks like this:

                  1   1111
          %00110000_11001110
      +            %10010011
          ------------------
          %00110001_01100001

Note the carry over to the most significant byte above.  

If the computer were only able to work with byte sized numbers, two adds would be 
required, and that looks familiar:
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                  1 <---    
          %00110000                     %11001110
          %00000000      Carry Flag   + %10010011
          ---------                     ---------
          %00110001          1 <-----   %01100001

Another important concept comes into play here, and that is extending a number.  In the 
case of adding one byte, to a two byte number, we really perform two adds, and that 
means having two operands for the addition.  

Picture it like this:

                  1   1111
          %00110000_11001110
      +   %00000000_10010011
          ------------------
          %00110001_01100001

Adding two byte numbers is really no different, because we extend the smaller one anyway. 
In the example above, we really could just put some ones in there and be adding two bytes.

It is important to note that adding same sized numbers (byte to byte – word 
to word), will result in an overflow –that extra carry digit.  This is always 
true, no matter what size is worked with.

Anytime you are adding numbers, you need to decide what you want to do 
with the carry bit.  Either ignore it, make a decision based on it, or add it to 
the remainder of the addition being performed.

That brings us back to case number two above, where we ignore the carry.  What happens 
then?

Modulo (or wraparound)

This is a very important assembly language concept.  When you perform an operation, 
whose result is larger than the number size being worked with, that over flow goes into the 
carry flag, or is ignored.

This causes numbers to wraparound and start again at zero!  Let's say we are working with 
nibbles, which are half a byte.

Nibbles hold the numbers 0 through 15.  If we add one to a full nibble, we end up with an 
empty one back at 0!  It wraps around.
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Another way to look at it is when counting, the least significant digits go through a regular 
pattern.  They do their thing over and over.  In decimal, a great example is the odometer 
on your car.  Most cars have two of these.  One very large one to record total miles and one 
smaller one to note smaller distances.  

If both of these are set to zero, and the smaller one holds three digits, it will wraparound 
back to zero, when the larger one continues on to note 1000.  Computer numbers work the 
same way, wrapping around when all their bits are set to one.

0000 + 1 = 0001 1110 + 1 = 1111
0001 + 1 = 0010 1111 + 1 = 0000  (carry a 1)
That's how modulo works.  

Computer numbers then, because of their discrete sizes are all modulo numbers.  This is 
not a bug, but a feature!  A useful one too.

This leads us to....

Subtraction

On paper, subtraction works just like addition does, only we've got a borrow instead of a 
carry.  There is a short cut however and that shortcut takes advantage of the modulo / 
wraparound concept discussed above.

Really, we subtract by adding.  This involves changing one of the operands so that when it is 
added to the other one, the result wraps around to end up correct, just as if we actually 
subtracted in the ordinary way.  This is called complimenting a number and should be 
discussed briefly in the context of subtraction.

Complements

First, let's try it with decimal.  Let's say we are working with a single digit:

   4               4
  -2              +8 <----  8 is the compliment of 2
   -               -
   2            (1)2

The key here is to ignore the carry and only look at the modulo / wraparound result.  In this 
simple example, 8 is the compliment of two, because when added it does the same thing as 
subtracting a two would do.

Now let's look at some binary:

   %1001          %1001
 - %0110        + %1010
    ----          -----
    0011        (1)0011
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Both of these give the same result, if we ignore the carry.  Subtraction then can be done 
through addition.  For bytes, one could add $ff to subtract 1, by way of another example.

The Propeller has a subtract instruction, so we really can just offer it two numbers, ask it 
to subtract and move on.  Compliments do crop up all over the place however.  For now, 
just know you can express any subtraction as an addition, and understand how that ties in 
with the modulo and wraparound concepts.

Multiplication

Like addition, multiplication works the same way addition does.  The manual steps work the 
same as they do for decimal multiplication.  Here is a quick example:

Note:  0*0 = 0     1 * 0 = 0    1 * 1 =  1  (that's it!)

   %101
 x % 11
   ----
    101
 + 101
  -----
   1111

Where decimal multiplication makes multiply by 10 really easy, binary works the same way, 
but for multiplying by 2.  Just tack a zero on the end, and you've multiplied by two!

Division

Here is a quick division example.

       10001
      ________
   11)110011
     -11
      --
       000
     - 000
       ---
         011
         011
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Decimal to Binary conversions

Remember those powers of two?  They come in extremely handy for this task.  Basically you 
need to find the greatest power of two, that can be subtracted from the decimal number 
and start from there, repeatedly subtracting powers of two, keeping track of those you've 
subtracted up along the way.  When there is no more subtraction being done, you have your 
binary number.

Here is an example:

27 = 

32 is the 6th binary digit, but it's too big.  16 is the next largest power of two, and it's less 
than 27, so we start there.

27 – 16 = 11

Now the process repeats.  8 is the next largest power of two that works, so we subtract 
that.

11 – 8 = 3

4 is too big, so we subtract two.

3 – 2 = 1

That leaves 1, and we subtract that as well.

1 – 1 = 0

All done!  Now we tally up the powers of two we subtracted and arrive at our binary 
number:

Each power of two is a digit.  Where we didn't use one, we place a zero, where we did, we 
place a 1.

% 0  1  1  0  1  1    ---->   %011011

  |  |  |  |  |  | 

  32 16 8  4  2  1  

The leading zero can be left off, leaving us with %11011
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Negative or signed numbers

So far, all we've worked with is positive integers.  It's time now to discuss signed numbers. 
Essentially, we've got to encode the sign into whatever bits we've got to work with.  This 
breaks down a few ways:

Signed magnitude

This is where we use the upper most bit as a sign indicator.  A zero is positive and a one is 
negative.  If our number size is byte, then we've got 8 bits, with the left most bit being the 
sign thus:

%00000101  (+5)        becomes    %10000101  (-5)

We trade the highest number represented (255) for having a sign (+127 – 128)

One's compliment

Basically, you just flip all the bits!  This leaves the upper most bit as the sign, just as in the 
example above.  This is just a different representation.

%00000101  (+5)        becomes    %11111010  (-5) 

Two's compliment

Start with ones compliment, then just add one.

%00000101  (+5)        becomes    %11111011  (-5)

It's important to note which representation was used.  Without this, one 
cannot know what the original value was.

Most computers today operate directly on Two's compliment signed numbers.  This includes 
the Propeller. 
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Example math operations  

If this is your first pass through this document, you can skip this section, then come back 
after having worked through the program example.  Sometimes one needs to know 
something, along with something else, for a concept to become clear.  Too much at the 
wrong time can cause trouble and confusion.

Having started to read this section, you may experience this.  Feel free to move on to the 
other foundation concepts and return later!  These example bits of code are not meant to 
be run directly.  They do perform their function, but are really intended to be consumed 
then used in the context of a greater program.  

Adding two unsigned 32 bit numbers:

DAT
                        ORG 0          'Begin at Cog RAM addr 0
                        add NUM2, NUM1
                        
NUM1       long %0001000_00000111_11111111_00000000
NUM2       long %1111000_00110110_11100011_00000001

NUM2  long %0000000_00111110_11100010_00000001  (Carry set)

After the add instruction executes, NUM2 will contain the second result shown, and the 
carry flag will be set, as the result is larger than 32 bits can hold.

The key here, to remember is the Destination contains the result of the math operation.

Set flag states (Zero and Carry flags)

Some operations require a known flag state to work properly.  There are no instructions in 
the Propeller to directly manipulate the flag states.  The easiest way to accomplish this is 
to simply perform an operation with a known result.  Here are some known operations that 
will set or clear the carry and zero flags.  They depend on two COG memory locations being 
defined as all ones or all zeros.  

              ORG 0                   'Begin at Cog RAM addr 0

Carry       xor _TRUE, #0  nr, wc     'Clear Carry, Even Parity = 0
            xor _TRUE, #1  nr, wc     'Set Carry, Odd Parity = 1

Zero        xor _TRUE, _TRUE nr, wz   'Set Zero, Result = 0
            xor _TRUE, _FALSE nr, wz  'Clear Zero, Result = not zero
              

_TRUE       long $FFFFFFFF  'all ones
_FALSE      long $00000000  'all zeros
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The instructions have two effects specified.  The 'nr' effect says, “do the operation, but 
don't write it to COG memory.”  The 'wz' or 'wc' effect says, “apply the result to the flag”. 
These two combined result in only the flag state changed, nothing else.

Adding with carry to represent larger numbers of different size, unsigned

in the example above, the result is larger than 32 bits.  Here is an unsigned addition of a 32 
bit number to a 64 bit one, to fully capture that result:

              ORG 0             'Begin at Cog RAM addr 0
Start         add   NUM2, NUM1  'add NUM1 to NUM2, carry
              addx  NUM2a, #0   'add the carry to NUM2a

NUM1       long %0001000_00000111_11111111_00000000 '32 bit source
NUM2       long %1111000_00110110_11100011_00000001 'lower 32 bits
NUM2a      long %0000000_00000000_00000000_00000000 'upper 32 bits 

_TRUE       long $FFFFFFFF  'all ones
_FALSE      long $00000000  'all zeros

We start with the add instruction, because it will ignore the state of the carry, perform the 
add, then set the carry state in preparation for subsequent addx instructions.  In the second 
addition, the #0 is used to represent the empty upper 32 bits of NUM1, to complete the 
addition.  This is like the extension discussed in the addition section earlier.

Add 64 bit number to 64 bit number, unsigned

              ORG 0                'Begin at Cog RAM addr 0
Start         add   NUM2, NUM1     'add NUM1 to NUM2, set carry
              addx  NUM2a, NUM1a   'add the carry to NUM2a

NUM1       long %0001000_00000111_11111111_00000000 'lower 32 bits
NUM1a      long %0001000_00000001_00000000_00000000 'upper 32 bits 
NUM2       long %1111000_00110110_11100011_00000001 'lower 32 bits
NUM2a      long %0000000_00000000_00000000_00000000 'upper 32 bits

This is really no different than doing the 32 bit to 64 bit.  Since both numbers are the same 
size, the '#0' is replaced with 'NUM1a' indicating the upper 32 bits of NUM1 are to be added.

The 64 bit result ends up in NUM2 and NUM2a.

24



Propeller Specific Core Concepts

Having covered the elementary math and terminology necessary, it's time now to start 
working on the actual instructions, memory, flags and how they all interact.  

It's getting time to start thinking about the Propeller specific things we are going to need in 
order to build assembly language programs.  This is perhaps the biggest difference between 
assembly language and other means and methods of interacting with the computer. 
Understanding both the hardware and the logic is necessary.

The propeller is an interesting design, in that it actually has 8 CPU's, known as COGs, 
working together.  For the sake of simplicity, that will be ignored for this section, so that 
instructions and memory can be discussed.  

There are some new concepts and terms to learn in this section.  Please refer to the 
Propeller Block Diagram , figure 1, found in the Propeller™ P8X32A Preliminary 
Datasheet, available from http://www.parallax.com

Clock

The Propeller runs from a system clock, common to all the COGs and the HUB.  The speed 
of this clock depends on the attached oscillator and whether or not the Internal clock, or 
an external reference is used.   See the data sheet or Propeller Manual for more detail.

The reference clock implementation is 80Mhz.

System Counter (CNT)

The system counter is a global, read only counter, that increments once every system clock 
cycle.

HUB

The HUB has a 16 bit address space that is divided into RAM and ROM, discussed earlier.  All 
cogs share this memory space and must coordinate their activities in this space.  ($0000 - 
$7fff)  The HUB ROM contains the instructions necessary to get the Propeller started 
running your programs.  Programs can come from an attached EEPROM memory, directly or 
loaded into HUB Ram via the Propeller Tool IDE.

HUB memory is addressable on a byte, word or long basis.  

The HUB does not execute anything.  It is a data and communications facility only.  This 
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means there is no central processor.  All COGs perform identically.  COG 0 does have some 
significance, in that it is the first COG started with your programs, after that a COG is just 
a COG and an I/O pin is just an I/O pin.

Moving information to and from the HUB takes some time that depends on where the COG 
doing the work is in the round-robin access sequence.  Average access is ~15 cycles.  This 
translates into 4 instructions worth of time for a hub access.

Data alignment

As discussed, computer number sizes are bytes, words and longs on the Propeller.  When 
these number sizes are stored in HUB memory, the issue of alignment comes into play.  It 
works like this:

The least significant two bits (bits 0 and 1) of an address determines an alignment.  For 
bytes, both digits are significant.  In other words, bytes can just be anywhere in the HUB 
memory.  Either digit can be a zero or one, allowing for any address.

For words, the last digit is always set to zero.  

For longs, the last two digits are set to zero.

Eg:  Let's say we are looking at the address $1003.  Where are properly aligned addresses?

byte $fe --->        $1003 (no alignment issue)

word $eedd ---->  $1002 (least significant binary digit a zero)

long $FFFF0000 ---->  $1000  (least two significant digits are zero)

COG

The 8 COGs are all connected to the central HUB and get access to it in round-robin 
fashion.  All of the COGs are identical and feature their own counters, video generator and 
RAM memory space.  Additionally, all COG share access to the 32 I/O pins.  COGs execute 
their instructions in parallel.  Only the access to the HUB is round-robin.

COG memory is only addressable on a long basis.  The 2kb of COG memory divides into 512 
longs, addressed from $0 to $1ff

COG memory addressing is a frequent source of confusion.  Going forward, pay special 
attention to where you are working with data to mitigate this difference.

When a COG is started with the COGNEW instruction, it's memory space is copied from HUB 
memory, prior to executing whatever instructions are contained therein.
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COG memory is not associative to HUB memory.  Once loaded from the HUB, the HUB 
memory it came from may be changed without affecting the program and data on the 
running COG.  This makes it possible to get the most use out of the 32KB of shared HUB 
memory.

COG 0

COG 0 is somewhat different from the other COGs, because it is the startup COG.  When 
the Propeller chip starts, COG 0 runs the Boot Loader program.  Your programs start from a 
small bit of SPIN language code, at a minimum, executed by the SPIN language interpreter, 
after the Boot Loader completes it's tasks.

For more detail please refer to the Propeller Manual, or Data sheet.  Some of this material 
will be reproduced here for clarity or context.  Going forward, it is assumed you have one 
or both of the Propeller Manual and Data Sheet.

For a significant portion of this guide going forward, the discussion will focus on a single 
COG, or perhaps two COG's.  One that will run a SPIN program, and another running an 
assembly program.

Instructions

All propeller assembly language instructions are one Long in size.  They have binary bit 
fields in the form:

100000 001i 1111 ddddddddd sssssssss

Instruction ZCRi Condition Destination (d) Source (s)

● Instruction = The actual binary opcode associated with the mnemonic

● ZCRI = Effects  (Instruction modifiers)
● Z = Write Zero Flag (wz)
● C = Write Carry Flag (wc)
● R = Write result (wr)  (Destination Register Modified) 

● 1 = Modified (wr)
● 0 = Not Modified (NR)

● i = Immediate addressing 
Operative value is in the instruction itself, rather than in the COG memory 
location normally associated with the value in the Source (s) field.

● Conditions
These are conditional execution bits that can be added to most any 
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instruction.  Whether or not the instruction executes, then depends on the 
states of the two flags.  Typical conditions are:

● if_z   -  If the Zero Flag = 1, then execute the instruction
● if_nc -  If the Carry Flag = 0, then execute the instruction

Propeller assembly instructions normally consume 4 system clock cycles.  Branches take 
either 4 or 8, depending on if they are taken or not.  Hub memory access takes more cycles 
and the exact amount is determined by where the COG happens to be in the round robin 
access scheme.  

To keep things simple right now, instructions are 4 cycles.  With an 80Mhz clock, this means 
20 million instructions per second, per COG.

A instruction that interacts with the hub, consumes the equivalent of 4 COG only 
instructions, for a quick rule of thumb reference.

Little Endian

The Propeller is a little endian design.  This is what you need to know: 

Values and Indexes

Numbers are stored according to their Most Significant Byte (MSB), in sequence to their 
Least Significant Byte (LSB).  

Here is an example:

$1A_2B_3C_4D $1000 - $4D
$1001 - $3C
$1002 - $2B
$1003 - $1A

The MSB is stored lower in memory than the LSB.

The rule here is if you are operating on the data, you can store it however you want to 
store it.  If you are asking the Propeller to operate on the data, then the endian design 
matters.  

Instructions in RAM

Say an instruction assembles into the following binary long: 

%101010_001i_1111_ddddddddd_sssssssss 

It ends up stored in memory like this:  
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%ssssssss_ddddddds_1i1111dd_10101000

There is little need to directly manipulate instructions in memory, but you may find this 
useful if you are looking directly at HUB memory with another program or process for 
debugging.

Data (Strings, lookup tables, etc...)

You are completely free to organize data however you want to.  Endian issues only apply to 
values directly manipulated by the Propeller.  Eg:

DAT   Byte   $3D, $4E, $5F $1F00 - $3D
$1F01 - $4E
$1F02 - $5F

Program Counter

Each COG has a program counter that keeps track of where in memory it is.  The Program 
Counter works upward through RAM as instructions are completed.  Branch and Jump 
instructions essentially load the Program Counter with a new target address, allowing for 
program control.  The Program Counter always counts up.

SPIN

Spin is the higher level, interpreted language, native to the Propeller.  All propeller 
programs contain at least the bare minimum SPIN program required to start the Propeller 
running, and hand control off to an assembly language program.

In this guide, we will work with simple assembly language programs that operate as a sub-
program to a main SPIN program, followed by assembly language programs that only need 
SPIN to get started.

It's easy to work with assembly in small bits, then build up as understanding grows.  It won't 
be necessary to fully understand how the SPIN programs presented work, in order to 
understand the assembly language portions.

There is an excellent introduction to SPIN in the Propeller Manual.

What is a Register?

On a lot of CPU's there are these memory storage areas defined inside the CPU itself.  If the 
CPU goes to do something with an element of memory, it loads that into a register, then 
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proceeds to operate on it.  Let's pretend for a moment that you are the CPU and you are 
going to add two numbers in your head.  So, you acquire both numbers, then operate on 
them, holding the sum in your head also.

This is what registers do.

Now that sum really isn't any good, unless recorded somewhere.  Of course it might also be 
an intermediate value as well.  If you write the number down somewhere, that's like a 
memory storage operation.  If you just keep the sum in your head, perhaps to be added to 
something else, that's like keeping the value in a register.

CPU's that have registers only have so many of them.  Additionally, they operate on their 
registers, which requires them to fetch data, better known as operands, from memory, as 
well as write them back to memory when operations are complete.  Like us, CPU's can only 
keep track of so many things at any given time.  That's why we have memory storage. 
Memory is there for when things get too complex for registers alone.

Long ago, on the 6502, I worked with it's registers.  They were called the Accumulator, X 
index Register and Y index register.  There were others too.  

The take away here is that registers are differentiated largely by how they are addressed, 
and that they are part of operations.  On many CPU's registers are memory locations that 

are not addressed like RAM or ROM storage is.  They have names, like accumulator, 
program counter, etc...

On your typical CPU then, we've got memory (RAM or ROM) and registers as places where 
numbers may be copied to, from and operated on.  On CPU's with well defined registers, 
their purpose is often sharply defined as well, meaning one has to worry about what 
register is being used for what, and when and how.  Considerable time and effort is 
required to make best use of the limited registers.

On the Propeller, memory locations are the registers, where operations are concerned!  It is 
not necessary to load an operand into a register, operate on it, then store it again, as with 
many CPUs.  This all happens within the operation instruction, which works directly to and 
from memory.

This has lead to somewhat confusing nomenclature as memory will be referred to as a 
register, when it's a part of an operation and memory when it's holding values.  In my 
opinion, this classification is not all that correct, but it's out there, so I'm including it  

here, so that you may understand what people are referring to when they use 'register' in 
this fashion.

The Propeller does have internal registers, in the sense of the word expressed above.  The 
program counter is one such register.  As discussed before, it's job is to maintain a 
reference to the next instruction to be executed.  There are other internal registers that 
perform operations, shifting, etc...  These are not directly addressable in most cases 
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however.

Another use of the term register refers to specific CPU functionality being exposed as 
memory address space.  This is called a memory mapped register.  Instead of being just 
RAM or ROM, it's an active memory location.  If one writes values to, or reads values from a 
memory mapped register, one is communicating to and from other internal parts of the 
Propeller, not just making use of storage.  The special COG memory registers are a good 
example of this behavior.

Assembly language programs run in COGs.  The COG memory is addressed as 512 longs. 
Each COG long can be an instruction, memory storage location, or register for use in an 
operation.  What you call them is more about the context of what you happen to be doing, 
than it is anything else.

I refer to the Propeller as a memory to memory design.  This is because it really does 
operate to and from memory instead of from memory to a register, operate, then from 

register back to memory, in terms of the instructions we give it.  It's a simpler way to go, 
and very efficient as well  I've no real idea if that is an official term.  It's just how I choose 

to differentiate CPUs.

Pre-Defined Constants

These are labels that point to the addresses of things.  They work a lot like an instruction 
mnemonic does.   CNT = $1f1, for example.  Here is a table of some constants that identify 
COG memory registers.  These are presented for context only, you really only need to 
know what each constant does for you, going forward.  

PAR $1f0 Read-Only Boot Parameter
CNT $1f1 Read-Only System Counter
INA $1f2 Read-Only Input States for P31 - P0
INB $1f3 Read-Only Input States for P63- P321
OUTA $1f4 Read/Write Output States for P31 - P0
OUTB $1f5 Read/Write Output States for P63 – P321
DIRA $1f6 Read/Write Direction States for P31 - P0
DIRB $1f7 Read/Write Direction States for P63 - P321
CTRA $1f8 Read/Write Counter A Control
CTRB $1f9 Read/Write Counter B Control
FRQA $1fA Read/Write Counter A Frequency
FRQB $1fB Read/Write Counter B Frequency
PHSA $1fC Read/Write Counter A Phase
PHSB $1fD Read/Write Counter B Phase
VCFG $1fE Read/Write Video Configuration
VSCL $1ff Read/Write Video Scale
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Software Setup

It's time to load some software.  GEAR will be used for some explanations presented here. 
Other examples will do real things that can be seen on running Propeller hardware.

Propeller Hardware Setups Differ!

This is both a good and bad thing.  Flexibility is good, and the Propeller really excels at 
this.  It is possible to have a Propeller, up and running, on just a breadboard, battery and 
small number of discrete components.  I happen to be running a HYDRA right now, meaning 
the code will be setup for a HYDRA system.  Other setups range from complex custom 
boards to the Parallax Reference hardware.  

This does not mean you can't work through this stuff, only that you may have to make a few 
edits to some examples, in order to get them working properly on whatever hardware you 
may have.  Depending on what ends up being a part of this introduction to Assembly 
Language, some conversion hints may be warranted.

Conversions between propeller setups largely involve changes to pin specifications, clock 
speed parameters and other similar things.  Core code changes normally are not required, 
given both setups have the same hardware components attached.  The examples in this 
guide will stick to more or less standard things.

The assumption is made that you understand some basic electronics.  If this is not the case, 
I highly recommend obtaining an already assembled Propeller system.  

GEAR (The Propeller Debugger / Emulator)

You may or may not have a working Propeller environment.  GEAR is an excellent learning 
tool, that can be used together with the Propeller IDE to run many Propeller programs. 
GEAR is a simulation that runs on your NET 2.0 capable PC.  It's speed is nowhere near that 
of a real Propeller, but does offer memory views, TV and VGA screen emulation, etc...

Working environment or no, I highly recommend downloading this tool.  Setup is really easy. 
Just unpack GEAR into a directory of your choosing, and run the executable from there.  I 
like to put GEAR into one of my Parallax Tool sub folders and work that way.

GEAR can be found at: 
 http://soft.java-virtual-machine.net/virtual-machines/gear-parallax-propeller-debugger.html

You want the executable package, unless you plan on modifications to GEAR itself:
Gear-1.11.0.0.zip 

GEAR output will be used in portions of this guide, and will continue to serve as a debug 
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environment going forward as well.

Build your Setup

It is a good idea to verify your hardware setup is working properly.  Trouble shooting this is 
beyond the scope of this guide.  I refer you to the friendly and helpful and active group of 
Propeller users and enthusiasts found at http://forums.parallax.com  Register for an 
account, ask some questions, and get your setup running.  Ideally, make a few friends along 
the way.  Should you get up and running, consider returning the favor in the future.

Here is a quick software setup sanity check, using some of the example code that comes 
with the Propeller IDE.

1. Download the Installer packages for both the Propeller IDE and GEAR.  The Propeller 
IDE comes with the Propeller Manual and it contains an excellent tutorial.  GEAR has 
no such reference document, so I'll go through some basics here, as warranted.

The Propeller IDE can be found at:
http://www.parallax.com/propeller/downloads.asp

2. Install the Propeller Tool, taking the defaults.  The only reason for not doing this, 
would be lack of disk space on your system disk (normally C:), or a preference for 
where programs are stored.  This guide will assume the defaults, so translate 
accordingly, should you make other choices!

Propeller Tool Default Information:
The main, or root, program directory is:
C:\Program Files\Parallax Inc\Propeller Tool v1.05.5

I like to place new project folders under here in the 'Examples' directory.
...\Examples\Your Project Folder
...\Examples\Gear

3. Create the GEAR folder in the Examples directory as shown above

4. Open the compressed GEAR file.  Therein, you will find a release folder.  Copy / 
extract the contents of this folder into the GEAR folder created in step 3 above.

5. Run the Propeller Tool
It should come up with a blank program work area tab active, 'Untitled1' that 
occupies the right hand portion of the Propeller Tool window.
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6. Run GEAR by double clicking on Gear.exe
(This takes a moment to start)
You should see an empty window titled, “GEAR: Parallax Propeller Emulator”

Verify your Setup

1. Start the Propeller Tool

2. Using the file tree on the left, navigate to the ...\examples\Library directory and 
double click on VGA_Demo.spin program file you find there.

You should see the program load into the main window.

3. Hit the F8 key

This will compile the program and present you with a stats dialog. 
 

4. On that dialog, select the 'show hex' button to arrive at the screen shown below:

5. Select 'Save EEPROM File' and navigate to where you put the GEAR executable 
files and hit the save button, modify the file name if you want, then complete the 
save.

6. Run GEAR

7. From the upper most program menu, choose file, open and select the file you just 
saved.
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The file should open inside the GEAR window, showing you some code in the main 
window, the picture of the HUB and some menu and tab options.

8. From the program window menu, not the main GEAR menus or buttons, select 
“Open Plugin” and load vgamonitor.xml

9. A new tab will appear, titled “VGA Monitor”  Select it, then hit “Run” from the 
program window.

Graphics should appear, eventually rendering a screen that looks like the one shown 
below:

All of these things can happen with or without an actual Propeller chip being connected to 
your computer, leaving you free to accomplish that however makes best sense for you.

If you have a working setup, feel free to use it!  This information is provided in the spirit of 
speaking to the very beginner.
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Once you get the Propeller Tool and GEAR up and running, feel free to run some of the 
demos provided.  You can start, stop and step the propeller, examine memory, see states of 
locks, where HUB access is currently at, etc...  Spend a little time with the GEAR tool to 
understand what it does.

The EEPROM file is a binary that equals what would be in the Propeller RAM, had it been 
loaded by the Boot Loader.  GEAR simulates the Propeller very well from there.  GEAR has a 
few bugs, none of which should significantly impact the material presented here.  Many 
have used GEAR to simulate complex Propeller programs.  One shortcoming, in the current 
version of GEAR, is the inability to set breakpoints.  When stepping through instructions, 
there is a lot of steps to go through when a new COG starts.  At times, it may be necessary 
to just run something in GEAR, then look at the end result.

Gear acts like a running Propeller in software.  It's speed is less than 1/10 that of a real 
Propeller, running at 80Mhz.  

The slow build of the graphics is actually a look at what the monitor does, line by line.  This 
is why you won't see a full image at first.  It takes some time for a few frames to draw, thus 
completing the image.

On my system, this takes a quarter of a minute.

36



Dissecting some Assembly Language Code

This really is a mixture of SPIN code and Assembly language code.  The SPIN discussion will 
be kept light, but is necessary as all assembly language programs will have a small SPIN 
component.  This example has the minimum amount of SPIN language required to get an 
assembly language program up and running.  

The example code, shown below, toggles a specific pin on and off, endlessly, with a specific 
amount of time between toggles.  The parameters given below, assume the reader will be 
using GEAR to watch the output.  If real hardware is being used, longer delay times might 
make better sense.  Try 6_000_000 for a delay, if you are using a blinking LED, for example. 

The page break here is just for the sample program to appear in one, unbroken segment for 
clarity.
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And now, the code:  (finally!)

{{ AssemblyToggle.spin }}

'From Page 340 of the Propeller Manual
'With some small edits, for this purpose!
'opengeek@gmail.com

CON
  _clkmode = xtal1 + pll16x
  _xinfreq = 5_000_000

  
PUB Main
{Launch cog to toggle P16 endlessly}

  cognew(@Toggle, 0) 'Launch new cog

  
DAT
{Toggle P16}

                   ORG 0 'Begin at Cog RAM addr 0
Toggle             mov dira, Pin 'Set Pin to output
                   mov Time, cnt 'Calculate delay time
                   add Time, #$f 'Set initial delay here
:loop              waitcnt Time, Delay 'Wait
                   xor outa, Pin 'Toggle Pin
                   jmp #:loop 'Loop endlessly

                        
Pin     long |< 16 'Pin number
Delay   long 600 'Clock cycles to delay

Time    res 1 'System Counter Workspace

Getting the code into the Propeller Tool

Before anything else is discussed, it's a good idea to make sure this code is running properly. 
To do this, you can type it into the Propeller Tool.  I highly recommend doing this, as you 
will get familiar with both the Propeller Tool and formatting at the same time.  It's also 
good for exercising your memory.  

Most adults learn best with a multi-sensory approach.  This means read it, say it, write it, 
type it, watch it.  That's old school, but I know it works.  My day job involves adult learning 
on a regular basis.  

The other alternative is to cut and paste the code above into the propeller tool.
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Either way is fine, just get it in there.  You can check your work, if typing, by using the F8 
key.  This will cause the Propeller Tool to evaluate the code, and try and build a working 
binary image of it.

If you see a screen like the one shown at 
right, everything is looking good for the 
GEAR simulation to follow.

If not, review what you have input, and try 
again.

This info screen tells you the size of your 
program, relative to the Propeller resources.

Only 12 longs are used for this program! 
That's a mere 48 bytes!  Assembly language 
programs typically are very small compared 
to programs written in other forms.

Remember to hit the “Show_Hex” button 
and save your EEPROM file for use in GEAR.

If you are running real hardware, you can 
edit the pin number, make sure your LED, or 
other device is connected to that pin, and 
hit F10 to run the program directly from the 
Propeller RAM.

Gear Simulation

It is necessary to make sure this program is running properly before any further discussions, 
changes, additions happen.

Again, hit F8 to arrive at the Info screen.  This will catch any gross errors in formatting and 
syntax.  Select the “Show Hex” button, followed by the “Save EEPROM File” button to save 
the memory image GEAR needs.  It's not a bad idea to just do all of this in the GEAR folder 
to avoid having to re-select directories.

Run Gear and open the EEPROM image you just created.

Select “Run”, from the window that appears, then select the logic view tab to see the pin 
toggle in the simulation.  Your screen should look something like the one below:
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As shown pin 16 is colored red, for output.  At the left, you can also see the pin state 
registers and the state of pin 16 there too.  

Hit the stop button, to freeze the output, run to continue and step instruction to go 
through it one instruction at a time.  There is also step clock.  Comparing these two is 
useful.  Step instruction directs GEAR to just simulate what it takes to get to the next 
instruction state.  Step clock means just advance the simulation one clock at a time.

Stepping through this with the clock is a lot of clicks!  We have a delay of 600 clocks per pin 
toggle.  That's actually not very long at 80Mhz, but seems very long, one clock at a time.

Another solution for this dilemma is a called a breakpoint.  It's a pre-defined place in the 
program where it can stop running, while being examined.  GEAR does not have this facility, 
which will limit some of the discussion examples.

Program Sections

The Propeller IDE highlights the different program sections in color.  Each section has a 
specific purpose, detailed below:

40



AN IDE stands for “Integrated Development Environment”  This is a short way of referring 
to the software tool, designed to work with the Propeller.

Formatting

The first thing we see is lots of formatting elements.  Truth is, the Propeller IDE and the 
computer itself does not care about any of this stuff.  It's for us humans, who need lots of 
context, if anything is to make any real sense.  

It is a really good idea to get in the habit of formatting your code you write.  Might seem 
like an extra hassle right now, but soon it will become habit and you will thank yourself 
when going back to look at code you wrote years ago.  Others will thank you too.

I've colored the first example in a fashion similar to what the Propeller Tool does.  Going 
forward, plain text will be used.

(unlabeled) Pre-program comment area

Some people refer to this as the Program Header.  If you have a particular program license 
in mind, want to express credit for other contributors code, or maybe just want to explain 
what the program does, it's inputs, outputs, etc...  this is where you do it.  Comments can 
take many forms.  A few are detailed here in this section.

{{ AssemblyToggle.spin }}
'From Page 340 of the Propeller Manual
'With some small edits, for this purpose!
'opengeek@gmail.com

Comments

Single quote comments  “ ' ”

This one is quick and easy.  Essentially, anything to the right of the single quote character 
“'” is then considered a comment.

Comments are explanatory in nature.  They will not be considered as part of the program at 
all.  Comments are used by programmers to communicate intent, so that it is not forgotten 
over time, or must be re-parsed.  

Comments may appear as part of program lines.  Look at the DAT section below this one, 
for some examples of that.

Bracket comments “ {  } “
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Large comments may be defined with the open bracket “{“ and close bracket “}” 
characters thus:

{
If a comment is substantial, perhaps contains a table, 

etc...  the bracket method is a far better option.  Here 
is an example table:

parameter_array[0] – Address of something
parameter_array[2] – Address of something else

Finally, we end the large comment with a close bracket!

}

Bracket comments are also a quick way to exclude segments of code from the program.

CON  (Constants)

CON
  _clkmode = xtal1 + pll16x
  _xinfreq = 5_000_000

You can define constants here.  A constant is a value assigned to a text label.  Eg:  PI = 
3.14159  This is done to make life easy.  Instead of repeating the value every where it is 
needed, one just repeats the label.  Additionally, changing the label definition, then makes 
that change global –meaning everywhere that label appears.  This is powerful in that 
making lots of manual changes gets considerably easier when constants are used.

Constants do not consume program space in and of themselves.  They are for you to 
communicate meaning to the Propeller Tool, or other assembler program.  

Constants do take program space when specified in the main program.  They take the same 
amount of space just putting the value there would.  There are three program lines in this 
section.  

Constants are operated on by the Propeller tool.  They are not run time program elements. 
While it is possible to perform math operations with constants, the end result is a static 
value to be used by the running program.  When used this way, the idea is to make pre-
calculating some values needed by the program available to it as results only.

These constants define the clock mode, source and frequency the system clock is derived 
from.  More detail on this can be found in the Propeller Manual, starting on Page 180.

PUB (Public)
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PUB Main
{Launch cog to toggle P16 endlessly}

  cognew(@Toggle, 0) 'Launch new cog

SPIN programs are broken down into small components, called procedures.  Any such 
procedures in the PUB area, are exposed to other SPIN programs.  (There is also a PRI, 
meaning private, area not shown in this example.  Those procedures would not be shared.) 
In this case, the procedure name is Main, and is the only procedure.  Even though it is 
small, there is a lot to understand here.

Procedure Main only has one SPIN instruction!  That's the cognew command, shown in bold 
above.  This line tells the Propeller to load and start running another COG with the 
assembly language program, located in HUB memory by the label Toggle.  The '@” operator 
means “pointer to”, and will be discussed in more detail shortly.  For now, “@Toggle” 
means the location in HUB memory where the assembly program begins.

Cognew has two arguments being supplied here.  One is the HUB memory location of the 
program to be loaded into the COG.  The other is a single value, to be passed to the 
program running inside the COG.  That's the “, 0” portion.  This particular program does not 
require a passed value, so anything actually works here, but a 0 is typically used when 
nothing needs to be passed to the COG.  

It is worth noting that COG 0 is actually running the SPIN procedure main.  Another COG will 
end up running the assembly language program, to be started by COG 0.  This is a 
significant point to understand!  

So, how does this all flow together anyway?

When the Propeller Tool sees this program example, it parses the program (with parse 
meaning: “To break down to core elements of meaning”) to build up all the binary 
instruction code, interpreted SPIN code, data and other program elements, such as memory 
arrays, initialized values, etc...

It then builds up a HUB memory image containing all of these things, fit together in an 
organized way.  That HUB memory image contains all of the executable program code in 
this example.  That's the 48 bytes seen on the F8 screen above.

When the Propeller starts, it looks for a program image to fill it's RAM with.  That's actually 
identical to the EEPROM images we've created to run with GEAR.  Having filled up the RAM, 
it then loads the SPIN interpreter, from it's internal ROM, into COG 0, which then gets 
started running the SPIN program it finds in HUB memory.  That's how Main is eventually 
executed.

The SPIN interpreter sees the cognew instruction, in the procedure Main, and also knows 
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the address associated with the label “Toggle”.  It takes that address and directs the 
Propeller to start up a new COG, in this case COG 1.  

At this point, the assembly language program gets copied from the HUB, to COG 1.  Really, 
there are two copies of the assembly language program.  One is the HUB, and is necessary 
to get a COG up and running.  The other is actually in the COG, running!

COG's need to fill their program space with whatever it is they are going to 
be doing, before they actually run anything.  That's 2Kb of RAM, 512 Longs, 
per COG.  This happens even if the actual assembly language is very small.

At this point, COG 0 is essentially done.  The only task it was given was to load up COG 1, 
and that's it.

The assembly program then exists in COG 1, and begins to run.  That's the next program 
section!

DAT (Data)

This is where the assembly program lives.  Lots of things can go into this section, but I'm 
going to focus on the assembly language program for now. 

DAT

The first line, the DAT line, defines the start of a DAT section.  Unlike the Highlander, there 
can be more than one!  (That is to say, you may have more than one instance of the 
program section types.)

{Toggle P16}

This is a comment line, detailing the idea that we are toggling pin number 16.

                       ORG 0 'Begin at Cog RAM addr 0

ORG 0 essentially means, “Start of COG Memory”, which is location 0.  This helps the 
Propeller Tool see we are telling it about an assembly language program and not some other 
data.  The Propeller tool then can lay out this program in terms of HUB memory for loading 
it into the Propeller, while also encoding the instructions for execution in the COG memory, 
when that time comes.

If there was another assembly language program to be run in another COG, another ORG 0 
statement and another label, like “Toggle” would be all that is needed to set that program 
up.

Toggle then has two meanings!

In the HUB, it's some memory location in the HUB memory space $0000 to 
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$7fff, such as $002E.  (That's not the real location, just an example of low 
HUB memory.)  That meaning is necessary to insure the COG is loaded with 

the right program data residing in the HUB.

In the COG, it's actually address 0, or the beginning of COG memory. 
Remember, all COG memory is addressed as longs.  For assembly language 

this makes things really easy.

The first instruction, in this case, is location 0.  The second one will be location 1, and so 
on...  [shown below]

Toggle       [0]        mov dira, Pin 'Set Pin to output
             [1]        mov Time, cnt 'Calculate delay time
             [2]        add Time, #$f 'Set minimum delay here
:loop        [3]        waitcnt Time, Delay 'Wait
             [4]        xor outa, Pin 'Toggle Pin
             [5]        jmp #:loop 'Loop endlessly

                        
Pin     [6] long |< 16 'Pin number
Delay   [7] long 600 'Clock cycles to delay

Time    [8] res 1 'System Counter Workspace

A two COG example

Let's say we wanted to toggle two pins, instead of just one.  There are 8 COGs in the 
Propeller, why not just fire up another COG?  Right now, we know almost enough to do just 
that.

Here's the example code for two COG's.  Get it into the Propeller Tool, and simulate it in 
GEAR.  The different program elements are shown in bold.  

CON
  _clkmode = xtal1 + pll16x
  _xinfreq = 5_000_000

  
PUB Main
{Launch cog to toggle P16 endlessly}

  cognew(@Toggle, 0) 'Launch new cog
  cognew(@Toggle1, 0) 'Launch another new cog
  
DAT
{Toggle P16}
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                  ORG 0 'Begin at Cog RAM addr 0
Toggle            mov dira, Pin 'Set Pin to output
                  mov Time, cnt 'Calculate delay time
                  add Time, #$f 'Set minimum delay here
:loop             waitcnt Time, Delay 'Wait
                  xor outa, Pin 'Toggle Pin
                  jmp #:loop 'Loop endlessly

                        
Pin     long |< 16 'Pin number
Delay   long 600 'Clock cycles to delay

Time    res 1 'System Counter Workspace

{Toggle P17 ---------------------------------------------------}

                   ORG 0 'Begin at Cog RAM addr 0
Toggle1            mov dira, Pin 'Set Pin to output
                   mov Time, cnt 'Calculate delay time
                   add Time, #$f 'Set minimum delay here
:loop              waitcnt Time1, Delay1 'Wait
                   xor outa, Pin1  'Toggle Pin
                   jmp #:loop 'Loop endlessly

                        
Pin1     long |< 17 'Pin number
Delay1   long 400 'Clock cycles to delay

Time1    res 1 'System Counter Workspace

There are two ways to do this.  The better way is to write a smart enough assembly 
language program, so that one copy of it can be in the HUB memory.  This is done with 
passed parameters (arguments, pointers...), such that each time it is started up on a COG, 
it knows to look for some information that differentiates what it is doing from what it's 
other instances are doing on their COGs.

Then there is the easy way, shown here.  Really all that happened was a cut 'n paste of the 
original assembly language program.  From there, new labels were created by adding a 1 
onto all of the existing ones, finally some comments were changed, along with the pin and 
delay values.

Back up in Main, another cognew command starts up COG 2 with the second assembly 
language program.

The only real new piece of information is that labels must be unique!  That's why the 
ones were added onto the ends of the labels.  The Propeller Tool must look through all the 
code, parse it and organize it.  If it sees two of a label, it has no way to differentiate them 
like we do.  
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There are additional rules for labels, well covered in the Propeller Manual.  

Hopefully, this example reinforces HUB memory and COG memory, labels, and such...

From here, it's onto parsing the assembly code.

Assembly Program Detail

I've reproduced the assembly program here again for clarity.  For now, it's back to the single 
COG example.  The instruction addresses are in brackets.  One thing to remember is that 
each instruction is a long, so is a register, or memory storage location.  It's all longs, 
addressed one long at a time.  Really, any given COG memory address is what you say it is. 
As long as you are clear and consistent with your purpose, for each location, you will not 
have problems with this.

2Kbytes of COG memory then breaks down into 512 – 16 special purpose registers, of 
addressable COG memory.  ($000 - $1EF)

This section will focus on the instructions used.  Many of the instructions have a lot of 
variations that will be ignored, in the hopes that just detailing how they are used in this 
particular program ends up being helpful.  Having learned about specific uses, one can then 
more easily explore other options!  It is not a bad idea to crack open the Propeller Manual 
and read about the different instruction options, once you have their purpose, presented 
here, clear in your mind.

Discussion

Program 

The first 6 COG memory locations hold the program.  In the context of the, “What is a 
register?” discussion earlier, these memory locations are just storage right now.  They hold 
program instructions, to be differentiated from the data consumed / manipulated by the 
program.  They are not really 'registers' in the most often used sense of the word.  

That's really the only differentiator between software (programs) and data.  It can get 
somewhat bizarre with programs consuming other programs, or a program changing itself. 
However, if you are there asking those questions, you've progressed past needing this guide! 
Congratulations.

The point to remember here is that any COG memory location can play any of these roles. 
How a memory storage location is used really is up to the programmer, with the rest just 
being semantics.

Data
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The last three then are data 'registers', in that they hold values to be used by the program, 
and one of them [8], defines a workspace used by the program.  

There are two differentiators here:

Initialized data

These are values that are loaded with the program.  Think of them as givens, from which a 
greater solution or task may be completed.

Uninitialized 

Essentially, working memory locations.  The program will use these for in-process storage. 
Working data, in other words.  Their starting value is not important.

Again, these are not hard and fast rules.  For example, one could define a memory location 
with some starter data, then decide to use it for temporary storage later, once the need for 
the initial data has passed.  Again, semantics.  The key to this stuff is to follow the intent 
of the program.  From there, these differences will wash out, leaving you knowing what is 
actually happening in the memory.  From there, call it what you want to call it!

Toggle       [0]        mov dira, Pin 'Set Pin to output
             [1]        mov Time, cnt 'Calculate delay time
             [2]        add Time, #$f 'Set minimum delay here
:loop        [3]        waitcnt Time, Delay 'Wait
             [4]        xor outa, Pin 'Toggle Pin
             [5]        jmp #:loop 'Loop endlessly

                        
Pin     [6] long |< 16 'Pin number
Delay   [7] long 600 'Clock cycles to delay

Time    [8] res 1 'System Counter Workspace

Instruction [0]  mov  [destination COG address], [source COG address]

Toggle       [0]        mov dira, Pin

The mov instruction copies the contents of one COG memory location to another one.  The 
end result of a mov will be two memory locations having the same content.  That's it! 
Pretty easy overall.  It's ok to think of mov as actually being copy, because that is exactly 
what it does.

So, which locations are being moved and why?  
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That's what the labels are for.  In this case, we've got the 'Pin' label referring to COG 
memory location number 6.  That memory location is initialized with the value necessary to 
identify pin 16 for some operation.  (That will get detailed under that instruction header)

All we need to know, at this stage, is that whatever is contained in memory location [6] will 
do the job of identifying pin 16.

The pre-defined label dira, refers to one of the special COG memory registers.  These are 
active memory locations, whose contents impact the behavior of the Propeller itself.  The 
dira register defines the input / output direction for the first 32 i/o pins.  In simple terms, 
each pin needs a direction.  When more than one COG is working with a pin, it gets more 
complex than that however.

(See the Propeller Manual, page 23 for more on the matter of pin states.)

In this example, we've got one COG, working with one PIN, so a zero means that pin is an 
input pin to be read by running programs.  A one means that pin is an output pin, whose 
state is changed by running programs.

To toggle the pin, we need to change it's state, so it's gotta be set to output.

That is exactly what this first mov instruction does.  It sets the direction of pin numbered 
16 to be in the output direction.

Instruction [1] mov [destination COG address], [source COG address]

             [1]        mov Time, cnt

Another mov instruction, with the same form as the first one.  We know something is 
getting copied, but what?  Again, the labels tell the story here.

Predefined label cnt refers to the active COG memory register that refers to the global 
system counter, shared by all the COGs.  Global means literally, “everywhere”, and shared 
means “readable by everything”.

The label Time, is the working register.  It's purpose is to provide a place for computations, 
intermediate results, etc...  Whatever the counter value is, at the time this instruction is 
executed, will be copied into the COG memory location the label Time refers to.

This instruction then notes the value of the system counter, for use later.

Instruction [2]  add [ destination operand COG address], [#immediate source value 
operand to be added]

             [2]        add Time, #$f
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Here we've got both a new instruction, and a new addressing form!  (That's the pound sign! 
“ # “)  The new instruction is an add instruction.  It works like this:

The unsigned sum of both operands will end up in the COG memory register specified as the 
destination.  

The source value is interesting because it is contained in the instruction itself, not a COG 
memory location!  This deserves some explanation, before we move on.

Time = Time + $f

Immediate, or literal addressing

An immediate address is essentially one where the instruction itself has the operand, or 
data to be operated on, within it, and not contained somewhere else in the COG memory. 
Propeller instructions have two 9 bit fields, called the destination and source fields. 
Normally, these refer to any of the 512 longs in the COG.  

As an option, the programmer can just choose to put a value into the instruction, thus 
saving a COG memory location for something else.  Immediate addressing is only available 
for the source field (the second one), not the destination field. 

That's what is happening here.  Small values (0 - $1ff) can be immediate values, where it 
makes sense.  Larger ones won't fit into instructions and must be addressed in the usual 
way; namely, by reference to their COG memory address, as in the mov instruction above.

What we have here then is the contents of the COG memory location, referred to by the 
label Time, gets added to the immediate value $F, with the result being stored back to the 
COG memory the label Time points to.  In this case, that happens to be memory location 
number [8].

This instruction then adds a short amount of additional time to the system count.  This is  
just enough time to get through the rest of the initial instructions, without missing the 
counter!  More instructions = more initial delay time.  Not enough delay time and the 

program has to wait for the counter to wraparound.  On an 80 mhz system, this takes a 
little under one full minute.  

Instruction [3]  waitcnt  [cog memory location containing counter value to watch for] 
[cog memory location containing delay to be added in preparation for next watch]

:loop        [3]        waitcnt Time, Delay

This instruction also has a label, “:loop”.   The label means we are going to be coming back 
to this instruction later on.  Rather than calculate the COG memory address to return to, 
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it's a whole lot easier to just slap a label on the return point and refer to it later.  This is 
what “:loop” is all about here.  It is a destination label for a jump instruction somewhere 
else in the program.  The two together form a program loop.
 
The waitcnt instruction pauses the COG program, until the system counter value matches 
the COG memory location specified in the first part of the instruction.  In this case, that's 
the one pointed to by the label Time.  So we've got:

Pause until cnt = Time

Additionally, every instruction takes some time to execute.  At 80 Mhz, this is 50ns of time 
actually.  This is why a small value was added to Time in the instruction above.  It is 
necessary to account for instruction execution time when setting up a waitcnt.

If this is not done properly, the waitcnt instruction is executed after the counter and COG 
memory values happen to match up.  The program then will pause for some 53 seconds, 
with an 80Mhz clock, waiting for the counter to wraparound and then match up a second 
time.

This is a propeller red flag, BTW.  If you've got a program that takes about a minute to do 
anything, you've hosed up a waitcnt for sure.

That's not all for this instruction though.  Really, this is like two instructions!  The first one 
is all about waiting until the counter matches some COG memory location.  Once that 
match has occurred, the second part of the instruction comes into play.

Now, the COG memory location referred to by the label Delta, gets added to the contents 
of COG memory location Time.  

Time = Time + Delta

Two instructions in one!  The cog stops and waits for the system counter to reach a known 
value, then adds some other value to the value being watched for, then continues on.

Instruction [4]   xor  [destination COG memory address] [source COG memory address]

             [4]        xor outa, Pin 'Toggle Pin

Now it's time to take a digression.  To understand what this instruction does, we've got to 
explore the bit operators.  These are logical operations that can be applied to numbers the 
same way math operations are applied. 

The xor instruction works like the add instruction does.  The source will be operated on 
together with the destination, with the result of the operation being written to the 
destination.  In this case, the source is COG memory associated with the label Pin.  The 
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destination is another pre-defined label that points to the register controlling the Pin 
states.  Since pin 16 is defined as an output pin, this instruction then affects it's state, high 
or low, depending on the logic contained in the bit operator, which is xor (exclusive or).

If you don't know what bit logic operators are, consider reading that section below; 
otherwise it's on to the last program instruction.

Instruction [5]   jmp  [#immediate COG memory location to jump to]

             [5]        jmp  #:loop

This one is really simple.  It's a lot like the mov instruction in that some values get copied 
around.  The immediate addressing mode is used, so everything about this instruction is 
contained in the instruction.  Additionally, there is only one data field specified!

The jmp instruction copies a number into the Propeller program counter!  That's it.  Once 
the Program Counter has been changed, program execution continues at the new location.

Here we see the label loop being used in an immediate mode.   We know that loop resolves 
to the COG memory location #3.  So, a jmp #3 would work here nicely.  Having the label is 
handy however.  If additional instructions were placed before the :loop label, it's absolute 
memory location would change, and that would mean changing the jmp too.

Nobody wants to worry about that, so the Propeller Tool evaluates loop, then puts that 
value into the jmp, at the time the program is prepared for loading onto the Propeller.

Note:  If the pound sign is missing, then the contents of COG memory address #3 would 
then contain the value to be loaded into the Program Counter!  That would not have the 
desired effect at all, since location number 3 is an instruction, it's going to point the 
Program Counter somewhere other than where we want it to be.  

In this case, that would be outside the program, meaning we've lost control of the COG!  It's 
going to just continue executing whatever it finds in it's memory oblivious to anything we 
intend for it to do.

I call this “Happy Fun Memory Land”!

If we wanted to jmp this way, we would have to load a COG memory location with the value 
of :loop, then the jmp without the pound sign would work as intended.  That's extra work, 
not required in this case.  That is also called an indirect address, where a memory location 
contains an address.  Important for subroutines, and other structured jumps.

Program Discussion
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That's it.  We've more or less parsed through this program.  We now know it does the 
following things over and over:

(in pseudo english form)

-Spin procedure “Main” launches assembly program in COG 1

- set the direction state of pin 16 to be output
-look at the system counter and store it in the working memory location
-add a small minimum, “get things started” delay time to it

:loop -wait for the system counter to catch up, when it does, add delay time
-toggle the pin
-go back to the task identified by the label :loop

Additionally, there are things we can change.  Those things are the immediate value used 
for the initial delay.  That's the #$f in instruction number [2].  The pin to be toggled can be 
changed by redefining the initialized value, identified by the label Pin, which currently is 
memory location [6].  Finally, the delay between toggles is contained in COG memory 
location [7], associated with label Delay.

Finally, some understanding about the level and scope of the task breakdown should be 
understood at this point.  Each instruction has a well defined contribution to the task as a 
whole.

I recommend some time spent making these changes, along with some time watching the 
results in GEAR, or better, on your Propeller hardware setup.  If you want, use the two COG 
example so you have something to compare with.

This is also a great template program, for trying other instructions out.  Some suggestions 
are:

1.  Change the pattern of the pin toggle.  Have it be a repeatable sequence, long, short, 
long, long...

This can be done with a longer loop and some additional waitcnt instructions.

Eg:

waitcnt Time, Delay
xor outa, Pin
waitcnt Time, Delay1
xor outa, Pin

2.  Toggle more than one pin.  Apply the bit operation info presented to build different pin 
masks and operate on them.

53



Bit Logic and Manipulation Operators

Near the beginning of this document, the idea that computers only do two core things was 
introduced.  That's somewhat of an oversimplification.  There is one additional core area of 
operation to be covered in this section.  These operators could be included near the 
beginning with the math.  Maybe they should.  The balance for new information was 
weighed with actually getting through an assembly language program.  Having done that, 
it's time to really explore these powerful tools.  They are as essential as the math is.

Computers process logic in the same way they process math.  In fact, the two ideas are 
closely related as will be explained below.  When two binary numbers are combined, or 
operated on, rules are applied.  So far, the math oriented rules have been presented.  In 
this section, logic rules will be presented.

Each operator will be covered.  There are some new concepts to be learned in this section. 
They will be introduced in context, in a fashion similar to how the math section is done. 
The operator, “OR” is used to introduce source, destination, etc... Other operators will 
assume that material is understood.  Additionally, where the operators apply to the 
example program, that will be discussed in context as well, with the goal of a 
conversational style that ties the whole together, albeit in a somewhat less organized 
fashion.

Truth Tables

A truth table is simply a listing of combinations and results for a given rule.  For any set of 
binary numbers, the number of unique combinations is the sum of the powers of two it's 
number of digits represent, plus one because we count from one and not zero. 

Eg: %1111 = $0f (+1) = 16 = number of combinations
%1111_1111 = $ff (+1) = 256 

A single binary digit has two states, on and off, high and low, true (1), false (0), etc... 
Operating on two numbers then reveals the basic truth table size of four possible states, 
two for each digit involved.

Truth tables for the various logic operators will be given below, along with explanatory 
text.  Truth tables break down the digit combinations, apply the rule and summarize the 
result as being either true (1) or false (0).

OR  (Bitwise OR)

The rule for this one is simple.  If either bit is set, or true, then the result is true, 
otherwise false.  Here is the truth table:
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            OR
        -----------
        1 or 1  = 1  <---Result of OR rule applied
        1 or 0  = 1
        0 or 1  = 1
        0 or 0  = 0

Some examples are in order here, along with some possible use scenarios.  Consider the 
binary numbers below:

            %11000011  <--- Operand 0          %0000     %1001
      OR    %10011001  <--- Operand 1       OR %1010  OR %0000
            ---------                          -----     -----
            %11011011  <--- Logical Result     %1010     %1001

This one is pretty easy!  If there is a one anywhere, the result is one.  The direction of the 
operands does not matter either.  One is either performing an OR operation, or one is not. 
It's worth taking a look at how the propeller does it:

DAT                     org 0

            [0]         or  Result, Operand0
            [1]         or  Result, #%0001_1101

'Pre OR instruction COG memory contents:
Result        long   %00000000_00001111_00000000_00000000
Operand0      long   %00001100_10000001_00011100_00010000

{

Post instruction contents, shown for each instruction.

Result  [0]   long   %00001100_10001111_00011100_00010000
Result  [1]   long   %00001100_10001111_00011100_00011101

Note that Operand0 never changed!

}

For the moment, let's pretend this bit of code has just been loaded into a COG, and the 
Program Counter is at [0], pointing to the first or instruction.  At this moment, both Result 
and Operand0 are initialized data, residing in the COG memory.

When instruction [0] executes, the contents of Operand0 are OR'ed together with the 
contents of Result.  The result of this operation is written back to the COG memory 
associated with label Result.  This can be seen in the comment section above.

Now the next OR instruction runs, but this time one of the operands is immediate.  That's 
the pound sign “ # “.  That operand, %0001_1101 gets OR'ed with Result and the result of 
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that ends up back in the COG memory, shown in the comment section above [1].

On the Propeller, bit operation instructions follow this general convention:

OR  [Result Operand 1], [Source Operand 0]

Remember, the result of the operation will end up being stored where Operand 1 originally 
was.  This is a destructive operation, in that when it is completed, Operand 1 no longer 
exists in it's original form!  Having this behavior is actually a good thing, just be sure you 
understand it.

What about the Carry? (Parity)

Unlike the math operations, bitwise operations don't carry over.  They operate on each pair 
of digits in a discrete fashion.  The carry does serve a useful purpose however.  After a bit 
operation, the number of ones in the result is computed.

This is called parity, and it's simply an expression of the number of digits containing a one, 
being either even or odd.

If they are even, that's a parity result of 0.  If they are odd, then that's a parity result of 1.

eg:

%11000011 = Parity Even = 0    %10011001 = Parity Odd = 1 

This result will go into the carry flag, unless you instruct the Propeller to ignore the 
operation parity with the “NC” condition.

OR Result, #ff  NC

It is also possible to compute the parity only, and not store the result at all!  Here is an 
instruction to do just that:

OR Result, %1101_0011  NR

Parity is used all over the place to perform very simple error checking.  If a stream of bits is 
moving from computer to computer, or even from one part of a computer to another, the 
chance exists that one or more of those bit states will end up changed in the process.

Quite simply, stuff happens.

Parity can catch these in a high number of cases, because the sum total of ones, being even 
or odd, will change with a single bit change.  A parity computation then serves as a general 
sanity check.
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What else can I do with OR?

The OR instruction is great for setting a specific bit to a set, true, or one state without 
impacting the other bits surrounding it.  This is done with a bit mask.

Bit Masking

A bit mask is an operand setup with the idea of it being applied to another operand to 
achieve a specific and predictable result.  It's often used when the patterns of digits to be 
affected vary widely, but the general result does not.  

Without bit masks, most programs would grow to be very lengthly as many branches and 
storage locations would be required to handle varied digits and their manipulations.

In the example program above, a specific pin direction state was set to the output state. 
(1)  What if another pin state needed to be set, and we were never sure what other states 
may have been set in other cogs, or even by other parts of the program itself?

In this case we need to set a single digit to a one, without impacting the other digits.  This 
is an OR operation.

Another example is graphics.  A typical graphics screen has a bitmap display.  The binary 
numbers are read and transformed into pixels on the screen.  Unless the number of bits per 
pixel is a byte, word or long, it is necessary to manipulate bits directly to set and reset 
pixels.  

Let's say the video sub-system is operating in a mode where one bit is used per pixel...

DEST %00000000      ........   SOURCE %11111111  DEST ********
     %00111100      ..****..          %10000001       *.****.*
     %00011000      ...**...   OR     %10000001   =   *..**..*
     %00000000      ........          %11111111       ********

        OR  DEST, SOURCE

In the example above, the video screen source bytes contain an existing image on screen. 
The source bytes are somewhere else, and are to be drawn on top of whatever is already on 
the graphics screen.  In this case, the OR instruction lets us do something that will only add 
pixels to the screen.

Other bit operations work like OR does.  Essentially, there are two operands.  One is the 
source, and is not changed by the instruction.  The other is the destination, and is changed 
by the instruction, unless the programmer has set the NR effect to inhibit this from 
happening.
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Other Truth Tables

XOR  (Exclusive Or)

The exclusive or operation is the toggle, in the program above.  It's truth table looks like 
this:

            XOR
        -----------
        1 xor 1  = 0  <---Result of XOR rule applied
        1 xor 0  = 1
        0 xor 1  = 1
        0 xor 0  = 0

This rule can be summed up thus:  If the first operand or the second operand,  not both, is 
one, the result is one; otherwise the result is zero. 

Consider this truth table in the context of the example program above.  This is how a toggle 
is achieved with one instruction.   The COG memory, identified by label Pin, contains the 
following binary bit mask:

%00000000_00000001_00000000_00000000  

This number identifies pin 16, and is used to change it's state.  The state of all the pins can 
be obtained in the outa register.  If one reads this register, one gets the state of all the 
pins.  If one writes to this register, one then changes said states.

The xor instruction:

             [4]        xor outa, Pin 'Toggle Pins

take the bit mask at Pin, for it's source, and operates on the pin states themselves as a 
destination.  Apply the truth table to see the toggle happen thus:

        outa %xxxxxxxx_xxxxxxx0_xxxxxxxx_xxxxxxxx

 xor    Pin  %00000000_00000001_00000000_00000000

Result  outa %xxxxxxxx_xxxxxxx1_xxxxxxxx_xxxxxxxx

        outa %xxxxxxxx_xxxxxxx1_xxxxxxxx_xxxxxxxx

 xor    Pin  %00000000_00000001_00000000_00000000  (Source bit mask)

Result  outa %xxxxxxxx_xxxxxxx0_xxxxxxxx_xxxxxxxx  (Destination)

58



Notice the x in the results above?  The x means, “doesn't matter”.  Looking at the xor truth 
table, it can be seen that applying an xor operation, with a source operand digit of 0, does 
not change the destination operand ever.  If a one is specified however, the destination 
operand state will be toggled to the opposite state.

Using a bit mask then localizes the impact of the xor operation to the bit controlling the 
state of ping 16.

If it was necessary to toggle pin 17 also, the only change would be to the Pin bit mask, 
leaving the rest of the program as is.

The “|< 16” is a shortcut that basically, sets a one, then shifts it over 16 times.  The pin 
state could also be specified like this:

Pin     [6] long %00000000_00000001_00000000_00000000

There is no difference.  The short hand method, is computed by the Propeller IDE tool.  The 
longer method is keyed in by the programmer.  Either is fine, so long as the mask correctly 
identifies the desired pins to impact.

Suggestion:  Modify the bit mask and view the result in GEAR.

AND (Bitwise AND)

Here's the truth table:

            AND
        -----------
        1 and 1  = 1  <---Result of AND rule applied
        1 and 0  = 0
        0 and 1  = 0
        0 and 0  = 0

The and rule is very simple:  The result is only a one, when both operands are one.

ANDN (Bitwise AND of one number, with NOT of another)

This instruction involves two truth tables, and is really two operations packed into one.  A 
NOT operation is performed on the source operand, with the result of that being ANDed 
with the destination.  It looks like this:

                  ANDN
----------------------------------------------------
         Source %00000000_00000001_00000000_00000000 

NOT      Source %11111111_11111110_11111111_11111111
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AND Destination %00101100_00111001_00010000_00000000

Destination --> %00101100_00111000_00010000_00000000(Result written)

NOT  (Bitwise NOT)

Unlike the other operations, the NOT rule only accepts one operand.  Here is the truth 
table:

            NOT
        -----------
        1 not = 0  
        0 not = 1

The rule for NOT is inverse.  Make all the ones into zeros, and all the zeros into ones. 
That's it!  Not is part of the Propeller instruction set.  The same result can be obtained with 
XOR, using a source mask of all ones.  ($FFFFFFFF)  Not is listed here, as part of the 
explanation for the ANDN instruction, which performs a NOT on it's source operand.

These are the essential bit logic operators.  Other instructions, such as mux, are 
combinations of these aimed at specific purposes and efficiency.  They are covered in the 
Propeller Manual.
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Assembly language programming, as seen now, is about these core things:

-understanding the hardware with a high degree of fidelity

can't control that which is not understood!

-breaking the task down into small elements, that leverage said understanding

if you have problems, you probably don't understand exactly what the hardware is 
really doing

-organization!

you can make as big of a mess as you want to –Keep It Simple Stupid [KISS] applies here 
as much as it does anywhere.

I

I have more examples planned, but need to stop here for the moment.  Comments, 
feedback, successes, failures, stories, all appreciated.  This is actually enough to begin 
to work through the excellent intermediate tutorial deSilva has written.

That's exactly where I am at right now!
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Addendum A  

Parsing Assembly Language Programs

Like any programming language, there are times when it's good to go through other 
programs and understand what is happening when and why.  There is a good starter process 
for this I'm going to detail here, in an appendix, largely because it's a topic that's relevant 
to the beginner, and because it just doesn't fit within the overall document flow so far.

Assembly language programs are differentiated from higher level ones, where parsing to 
understand is concerned, by their simple “building block” structure, and the need to 
consider the hardware functionality in the context of the program to a higher degree than 
is often required for higher level programs.   Working through a program then consists of 
understanding what each instruction does, and why that matters given the hardware at 
hand.

The core elements of the Propeller itself are well documented in the manual and 
schematics.  Because the scope of this document is all about core understanding of the 
software side of things, I'm going to limit the discussion on the hardware side accordingly.

This is a process that has always worked very well for me.  There are others approaches to 
this and by all means consider and use them if they work for you.  

Assembly language instructions all boil down to three core types:

Data movement

The data movement types essentially get data from one place to another.  During the 
course of program execution, values end up in various places as various times.  These are 
the instructions that get that done.

Operators

Essentially, these instructions change bits.  Some examples of operators are add, subtract, 
bitwise OR, AND, shift left, shift right, rotate left, rotate right, etc...

Program Flow

It's rare that a program is just a linear progression of instructions.  Often things need to be 
done multiple times, and the sequence of events necessary to complete the task will vary 
depending on the state of the data too.  Program flow instructions handle these aspect of 
things.  They also help with the overall structure of things, where there is program and 
data elements present, program flow instructions then keep the flow of execution in the 
program areas.  Nobody wants to execute their data, unless they are building self-modifying 
code!
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(In that case, the data to be manipulated is part of the program itself.  This happens on the 
propeller often for pointers.)

It's very handy to have a chart of your available instructions organized into these rough 
categories.  Here is one below, you can start with today.  You will see some instructions end 
up being categorized in more than one way.  The reason for this is those instructions bundle 
functions together.  

Eg:  DJNZ  This instruction decrements a specific COG memory location, and performs a JMP 
(jump to) operation, if that COG memory location is not yet equal to zero.  That's a couple 
of operators (decrement and compare to zero) and a program flow element present, all in 
one instruction!  (jump to, if not zero)  I've got those in bold.

From the chart above, it's clear that most of the instructions are operators.  Where parsing 
a program is concerned, this means starting with the program flow and data movement 
instructions helps put all the operators in context.  Not a bad place to start!  You get a lot 
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CLKSET ABS NEG* CALL
COGID ABSNEG NEGC COGINIT

ADD NEGNC COGSTOP
HUBOP ADDABS NEGNZ

ADDS NEGZ DJNZ
LOCKCLR ADDSX
LOCKNEW ADDX OR JMP
LOCKRET AND JMPRET
LOCKSET ANDN RCL

RCR NOP
MOV CMP REV
MOVD CMPSUB ROL RET
MOVI CMPSX ROR
MOVS CMPX TJNZ

SAR TJZ
RDBYTE DJNZ SHL
RDLONG SHR WAITCNT
RDWORD MAX SUB WAITPEQ

MAXS SUBABS WAITPNE
WAITVID MIN SUBS WAITVID
WRBYTE MINS SUBSX
WRLONG MUXC SUBX
WRWORD MUXNC SUMC

MUXNZ SUMNC
MUXZ SUMNZ

TEST

XOR



of structure with out having to handle too many instructions at one time.

Each instruction does a fairly simple thing.  Maybe it's just moving a number to a location. 
What that number does is often as much about the hardware as it is anything else.  Moving 
a number to set a pin state, for example, might light an LED, or trigger some other device 
to do something.

Moving that same number to a different location in memory may just provide some 
information necessary to complete a math operation in another part of the program too.

The Process

Having gone through that, it's time to take a look at the process.  Generally speaking, it's 
good to go through and understand which instruction does what, according to the gross 
characterizations above.  So, is it a data move, operation, or program flow instruction?

From there, taking it a pass at a time, you break the program down into program areas, 
data areas, inputs and outputs, and other such things that help you to understand the 
structure of things.  It's not a bad idea to print things out, and make notes to reinforce 
what you are learning.

Finally, that structure and understanding of what the instructions do, when they do it, and 
on what they do it to, all combine to form higher level intent.  Having arrived here, you 
should be able to put together a plain English description of what that program does.

It's worth noting at this point, changing the program, or writing a similar one is really this 
process in reverse!  You go from higher level descriptions back down to the granular, 
instruction by instruction tasks necessary for it to happen on whatever hardware you are 
writing for.

The bulk of the main document is about the computing foundations necessary to understand 
what instructions do and what programs look like.  This appendix is really about taking that 
and applying it to other programs to speed the learning and use process.

Consider the following bit of code:

  ORG 0

  mov           Counter_Time_To_Wait_For, CNT
  add           Counter_Time_To_Wait_For, #$20   'Initial_Wait_Time
  waitcnt       Counter_Time_To_Wait_For, Additional_Wait_Time 

In the small bit of code above, there is one of each instruction type.  They are colored, as 
if highlighted.  If this were a larger program, some time would have been spent locating 
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program flow instructions, looking at the labels to see what blocks of code execute when 
and where, followed by a few more passes to locate movement and operators.

In this case, it's enough to just properly characterize each instruction and move on.  It's just 
a code segment to illustrate the process in general.

The mov instruction is a transport / movement instruction.  Really, all this one does is move 
some bits from one COG memory location to another.  This does not tell much of the story 
however, and that's where the hardware part of the picture comes into play.  CNT happens 
to be a predefined constant that points to the COG memory location where the current 
value of the system counter can be obtained.  The move instruction takes whatever that 
value is and stores it in a COG memory location, so that the other parts of the program can 
work with it.

In plain English, this instruction just notes what the value of the counter is at the time it is 
executed, for use later on.  That's it!

In SPIN, that might look like this:

Counter_Time_To_Wait_For := CNT 

Note how the labels convey some of the story too.  Often what the labels are 
will offer up clues as to what is happening.  Sometimes this is the case and 
sometimes it isn't.  For program segments with seemingly cryptic labels, it's  
often worth it to make label notes, or do some digging in the hopes to see 
what the label might mean.

We know now there is a system counter, it's value is important to this program, and that 
value has been noted for use later on.

The add instruction is an operator one.  Essentially, this boils down to some bits getting 
changed.  In this case, the immediate value $20 is added to the counter value already 
noted, with the result of that addition stored in the COG memory location 
Counter_Time_To_Wait_For.

In English then, we understand the program is adding a value to the one noted above and 
storing it where the original value used to be.

In SPIN, that's very similar to this:

Counter_Time_To_Wait_For := Counter_Time_To_Wait_For + $20 

Now we are down to the last instruction, waitcnt.  This one is tricky because it's really two 
instructions in one!  The wait part of the instruction is program flow related.  However, it's 
also an operator in that it performs an addition after it's done waiting!
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Waitcnt pauses until the system counter, CNT, matches a value.  In this case, that value is 
specified by the label,  Counter_Time_To_Wait_For.  

In English this is:

Pause until the system counter is equal to  Counter_Time_To_Wait_For.

That's the program flow part of the instruction.  The operator type is straightforward in 
that the value identified by the label, Additional_Wait_Time, will be added to the value the 
program was waiting for.

In English then, this is:

When the counter matches the target value, add Additional_Wait_Time to the target and 
move on.

Looking it all over, it then becomes clear the program is doing the following, expressed in 
plain English:

1. Look at the counter

2. Note that value

3. Add on some known additional value to compensate for time consumed to get things 
done (execute other instructions)

4. Wait on that result, allowing the counter to catch up.

5. Having caught up, add in the next wait time. 

There are some hardware considerations here, that I glossed over.  The 
reason some time is added to the counter value is because instructions take 
time to execute.  If that time is not accounted for, the program will miss the 
target counter value and hang for about a minute as the counter counts all  
the way through and wraps around.

That's basically how it goes from bottom to top.  From here, we know some things about 
the program and can make changes.  The initial delay time is the $20, value in the add 
instruction.  The other additional wait time can be changed in the waitcnt instruction as 
well.  These changes only make sense once the overall intent behind the program is well 
understood.

Writing new programs, or maybe just changing this one then works in reverse!  Formulate 
the high level statement that details what needs to happen, break it into discrete hardware 
related pieces, apply the instructions that can perform the task, and sequence them into 
the program flow.
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Addendum B

Propeller Memory Addressing

There are two distinct address spaces in the Propeller.  They are COG and HUB memory 
addressing.  The Propeller is fairly, if not totally unique in it's method of loading the COG 
from HUB memory to run assembly language programs.  This addendum exists to highlight 
those differences.

COG / HUB memory addressing differences

The HUB is byte addressed, meaning each numerical address corresponds to a byte in the 
HUB storage area.  $0000 = the first addressable byte.  $0001 = the second addressable 
byte, etc...   

COG memory addresses are linked to longs.  In fact, that's the only option you have in the 
COG for addressing it's memory.  $00 = the first long, which is actually 4 bytes.  $01 = the 
second long, etc...  In the COG, each long is either instructions or data, making this scheme 
extremely easy and compact, but not very granular.  You are basically always working with 
a long, if you are specifying COG memory addresses.

The Propeller Tool calculates addresses for you meaning, if you use labels you really don't 
have to worry too much about which address scheme is in play.  However, when you are 
manipulating the addresses in your program, you must then factor in these differences.

What these differences mean!

One common scenario is reading data from the HUB, into the COG for processing.  There 
are the RDBYTE, RDWORD and RDLONG instructions for this purpose.   Each of these 
instructions will transfer to a single LONG in the COG!  If you perform a RDBYTE, for 
example, the single byte will be copied into the least significant (lower) 8 bits of the target 
COG long specified in the instruction.

If you were to transfer another byte to the same long, the first one transferred would be 
overwritten.  There is no byte addressing in the LONG, only in the HUB!

Another scenario is writing COG memory to the HUB.  In this case, a WRBYTE instruction 
would transfer the least significant 8 bits of the COG long being addressed, to the HUB 
memory being addressed.  You can only transfer the least significant bits of the COG in this 
fashion.

(some) of your options.

What if you want to transfer the various bytes in a COG long to the HUB in a byte addressed 
way?
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Bit shift

One easy solution is to use the barrel shifter.  A barrel shifter is a shift instruction where all 
the bits being operated on are shifted either left or right, N number of times, with some 
bits being eliminated as the shift carries them outside the memory being addressed.

Say we've got a COG memory long that contains $aa11bb22.  If we shift right 8 times (SHR 
cog_long, #8), we then get $00aa11bb.  A shift left would yield $11bb2200.

Bit rotate

There is also the barrel rotate instructions.  These differ from the shift instructions in that 
instead of losing bits out of either end of the memory being addressed, the bits just shuffle 
around to the other end.  

That same COG memory example above rotated left 8 times (ROL cog_long, #8) would 
contain $11bb22aa.  A rotate right 8 times would be $22aa11bb.

Program example

To move bytes (and words) into and out of the COG without using an entire long to contain 
them in the COG, a short series of instructions, or a program loop will accomplish the task.

[program example to come]

In pseudo-english form, such a sequence would look like this:
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