
1568 IEEE TRANSACTIONS ON ACOUSTICS, SPEECH. AND SIGNAL PROCESSING. VOL. 37. NO. IO. OCTOBER 1989

A New Vector Quantization Clustering Algorithm

Ahtrucr-The Pairwise Nearest Neighbor (PNN) algorithm is we-
sented as an alternative to the Unde-Bum-Gray (generalized Lloyd)
algorithm for vector quantization clustering. The PNN algorithm de-
rives a vector quantization codebook Is a dimfnishingly s d l fraction
of the time previously required, without soerking performance. In
addition, the time needed to generate a codebook grows only like O (N
lag N) in training set size, and is Independent of the number of code
words desired. Using this new metbed, one can either minimize the
number of code words needed subject to a maximum allowable distor-
tion or minlmlze the dktortioa subject to a maximum rate. The PNN
algorithm can be used with squared error Snd weigbted squared error
distortion measures. Simulations on a variety of images encoded at 1/2
bit per pixel lndlcate that PNN codebooks can be developed in roughly
5 percent of the time required by the LBG algorithm.

I. VECTOR QUANTIZATION
ECTOR quantization [l], [2] is a process in which V data to be encoded are broken into small “blocks,”

or vectors, which are then sequentially encoded vector by
vector. The idea is to identify a set, or “codebook,” of
possible vectors which are representative of the informa-
tion to be encoded. The vector quantization encoder pairs
up each source vector with the closest matching vector
from the codebook, thus “quantizing” it. The actual en-
coding is then simply a process of sequentially listing the
identity of the code words which were deemed to most
closely match the vectors making up the original data.
The decoder has a codebook identical to the encoder, and
decoding is a trivial matter of piecing together the vectors
whose identity has been specified. The key to this method,
of course, is to have a good codebook of representative
vectors, typical of the data to be sent. To date, the method
used almost exclusively for developing a codebook has
been the algorithm known as the Linde-Buzo-Gray (LBG)
algorithm [3]. This algorithm is also sometimes referred
to as the generalized Lloyd algorithm (GLA), since it is
a vector generalization of a clustering algorithm due to
Lloyd [4].

A. 7he Generalized Lloyd, or ‘ ‘LBG. ” Algorithm
The LBG algorithm for deriving a codebook based on

a set of training vectors is iterative, and can be described
as follows. The initialization step involves choosing the
starting codebook of vectors. This could be a codebook

Manuscript received April 15, 1987; revised December 17, 1988. This
paper is based in part on work supported by a National Science Foundation
Graduate Fellowship, and was presented in pan at 1987 ICASSP.

The author is with the IBM Almadcn Research Center, 650 Harry Rd..
Department W2/802, San Jose, CA 95120-6099.

.
IEEE Log Number 8929999.

used previously, or something arbitrary, such as evenly
spaced points in the vector space. The iteration begins by
assigning each training vector to its “best fit” code word,
based on some distortion measure and an exhaustive
search. Next, given the set of vectors assigned to a par-
ticular code, that code is modified to minimize its error
relative to the training vectors currently assigned to it.
This two step pmcess continues iteratively. The process
is terminated when the overall error between the training
vectors and the codes they are assigned to changes by a
small enough fraction between one iteration and the next.
The codebook is then considered to be determined and,
given arbitrary error tolerances, this codebook reduces the
coding error to at least a local minimum. The execution
time of this algorithm is uncertain because the required
number of iterations cannot be predicted ahead of time.
Experience indicates that execution time grows quickly as
the training set gets larger, as the number of code words
increases, and as the vector dimension increases.

In this algorithm, by far the most complicated task is to
come up with an acceptable initial codebook. Since the
LBG algorithm can only find local minima, it is important
that one start out in the general neighborhood of the cor-
rect solution, lest one become stranded at a local mini-
mum distant from the global minimum. As stated previ-
ously, one possible way to initialize the LBG algorithm
is to use a codebook previously developed for some other
purpose. Altematively, one might initialize with evenly
spaced code words in the vector space or use a so-called
“splitting” technique as described in [l]. However, per-
haps the best simple initialization is to randomly choose
a sampling from the training set for use as the initial codes.
In practice, the “random initialization” is typically im-
plemented by choosing evenly spaced elements in the
training sequence (e.g., 2, ? k + l , & + , , - - 9 ,
x (c - l) k + l where Zi is the ith training vector, N = the
number of training vectors, C = the number of code words
desired, and k = N / C).

B. Other Clustering Algorithms
Other authors have mentioned that one could develop

vector quantization codebooks based on pattern recogni-
tion “clustering” techniques, and at least one has been
implemented [SI. However, the efficacy of these tech-
niques has not been demonstrated, and these techniques
often suffer from the defect that they cannot specify ahead
of time how many clusters will result. Additionally, many
typical clustering algorithms are no less complicated than
the LEG algorithm and suffer f r o m the defect that they

-

0096-3518/89/1000-1568$01 .OO 0 1989 IEEE

bproduced uith permission of copyright WWC. Further reproduction prohibited.

EQUITZ: NEW VECTOR QUANTIZATION CLUSTERING ALGORITHM

cluster points with the aim of classifying the points rather
than minimizing reconstruction error.

I 569

11. PAIRWISE NEAREST NEIGHBOR CLUSTERING
In this section, a new algorithm, the Pairwise Nearest

Neighbor (PNN) algorithm, is presented as a substitute
for the LBG algorithm. This new algorithm significantly
reduces needed computation without sacrificing perfor-
mance. This algorithm can also be considered as an ini-
tializer for the LBG algorithm, providing better perfor-
mance than either algorithm can achieve separately. The
PNN algorithm is designed for use with squared error and
weighted squared error distortion measures. The full
search version of this algorithm will first be presented,
and then an efficient approximation will be described. A
preliminary version of this work first appeared in [6].

A. Full Search Painvise Nearest Neighbor Clustering
The process of generating vector quantization code

words from a training set is equivalent to the process of
grouping the training set into “clusters,” where each
cluster is to be represented by a single code word. The
Pairwise Nearest Neighbor (PNN) algorithm begins with
a separate cluster for each vector in the training set and
merges together two clusters at a time until the desired
codebook size is achieved. At the start of the clustering
process, one converts N clusters, each containing one
vector, into the optimal (N - 1) cluster codebook by
merging together into a single cluster the two closest
training vectors. The code word for this new cluster is
chosen to minimize the error incurred by replacing these
two vectors with a single code word. In other words, it is
the centroid of the two vectors now in the new cluster.

For instance, in Fig. 1 we start with six training vectors
of two-dimensional data. We consider each training vec-
tor to be a separate cluster. The two components of each
vector are represented as x and y coordinates on the graph
and each cluster centroid is represented in the diagram
with an X. Before any merges, each cluster centroid has
the number “1” next to it, signifying that it is made up
of just one training vector. After one merging step there
are five clusters, with the two closest cluster centroids de-
leted and replaced by a single cluster centroid half way
between the two deleted X’s. This new centroid has a “2”
next to it, signifying that it IMW represents two training
vectors.

Unfortunately, once clusters have more than one mem-
ber, things become more complicated. However, given K
clusters, we can always optimally move to K - 1 by
merging the two clusters which result in the best tradeoff
between merging close clusters and affecting few training
vectors. If the members of a cluster can be approximated
by their centroid, then this step-by-step optimality will
lead us to a good overall clustering.

Consider the example in Fig. 2. This diagram repre-
sents a typical merge in the PNN algorithm. We start with
f ive clusters and merge together the clusters consisting of

-

Fig. 1. First mrge in PNN algorithm.

Fig. 2. Typical mcrgc in PNN algorithm.

four and one training vectors, respectively. We merge to-
gether these two clusters rather than the clusters with four
and one-hundred training vectors, which appear “closer,”
because the larger error introduced to each training vector
in our chosen two clusters is outweighed by the fact that
our choice of clusters affects many fewer training vectors.

The clustering process is halted when we are satisfied
with our clusters, and then the centroid of each cluster is
used as a code word. Stopping criteria are described in
more detail below, Of course, it is not true that the “op-
timal” size C codebook will necessarily be achievable by
sequentially developing the optimal codebooks of de-
creasing size, but this is the approximation on which the
algorithm is built.

The pair of clusters which will introduce the least error
when merged can be calculated as follows. If our distor-
tion measure is squared error (the calculations are similar
for weighted squared error), and we use the following no-
tation:

c, =
c, =

ni =
“0 =
Zi =
xv =
s: =

s?. =

(X , Y) =

11

then

i th cluster of training vectors
cluster formed by merging ith and j t h clus-
ters
number of training vectors in Ci
number of training vectors in C,
centroid (mean) of the training vectors in C,
centroid (mean) of the training vectors in C,
average squared error between X i and the
training vectors in Ci
average squared error between Eo and the
training vectors in C,
inner product of x and y,

(3)

2 2
= c 1. -Eijl + c 1. - % j I , (4)

xscr xsc,

ism IEEE TRANSACTIONS ON ACOUSTK :S. SPEECH, AND SIGNAL PROCESSING. VOL. 37, NO. 10. OCTOBER 1999

where

niZi + njZi - nixi - njZj I ni + ni
= niS: + ni

njZi - njxj I ni + nj- [= niS! + ni (9)

Consequently,

2 nf nj + 2 J E j - ZiJ
. (ni + nj)

ninj(ni + nj)
= n , ~ , 2 + njSj + 1zi - XjI2 (1 2)

(ni + nj)‘

(13)
ni nj 2 - xj1 . = niS;2 + njSf + -

ni + nj
We interpret the last term in (13) as the squared e m r in-
troduced by merging clusters Ci and Cj, and the idea is to
choose the clusters Ci and Cj which minimize this quan-
tity. Notice that the only statistics one need keep track of
for each cluster are and n,. In fact, Ci can be considered
to be a vector of “weight” ni located at the centroid of
the cluster g . In this way, the distortion introduced by
merging two clusters can be considered a “weighted dis-
tance” between the two centroids.

If one is interested in tracking the error introduced as
the clustering proceeds, one might also keep track of S:
for each cluster. However, one should recognize that this
value is just an upper bound on the distortion the real en-
coder will introduce. This is because the calculation above
assumes that all the training vectors in a cluster are closer
to the centroid of their own cluster than to the centroid of
a different cluster. In practice, this may not be the case,
and the training vectors may thus be encoded with strictly
less distortion. Using this method allows one to terminate
the clustering process when a certain distortion relative to
the training set is reached, rather than when a certain
number of clusters are obtained.

We can now see that there are two possible termination
criteria. First, we may choose to terminate when we have

reduced our training set to a predetermined number of
clusters. Alternately, we may choose to continue merging
clusters as long as the average emr introduced by repre-
senting the training data by the cluster centroids stays be-
low some predetermined threshold. Since the number of
clusters determines the coding rate, we see that these ter-
mination criteria correspond respectively to minimizing
distortion, subject to a rate constraint, and to minimizing
rate, subject to a distortion constraint.

B. Fast Search PNN Clustering
The PNN codebook development algorithm is a matter

of progressively merging together pairs of clusters with
minimal weighted distance between their centroids. The
key to quick execution of this algorithm is quickly finding
the closest pairs of centroids among an essentially ran-
domly distributed set. The obvious way is to explicitly
find each point’s nearest neighbor, but this is very slow
(a log N search at best) and leads to closest pair compu-
tation cost on the order of N log N for each merge. How-
ever, it is possible to efficiently find good, if suboptimal,
pairs of clusters to merge as described below. We do not
care if we merge the absolute closest pair of clusters at
each step, as long as close clusters get merged eventually.
We call this approximated PNN algorithm the “fast”
PNN algorithm.

The way we accomplish the computational saving is to
search for a vector’s near neighbors only within a small
region, with neighborhoods being defined by a k-d tree
partitioning of the multidimensional space. In the past [6]-
[8], k-d trees have been used in vector quantization cod-
ing as a means of performing the nearest neighbor searches
required by the LBG algorithm, but in our case we will
merely be using the partition of k-dimensional space in-
duced by organizing the training vectors into a k-d tree
structure.

1) K-d Trees:
Structure: K-d trees (short for k-dimensional trees)

were developed by Bentley [9], [IO] and provide a data
structure which allows for log (N) multidimensional
“nearest-neighbor” searches to be accomplished. K-d
trees (see Fig. 3) consist of a set of interconnected nodes
and a set of terminal nodes, or “buckets,” located at the
lowest level of the tree. The nodes serve to organize the
data, the buckets hold the data. Similar to binary search
trees, each node in a k-d tree partitions data into two sets
based on some scalar threshold, but unlike simple binary
trees, Bentley’s k-d trees partition vector data at each node
by performing a threshold test on a single coordinate of
each vector. The coordinate being tested is the same for
all vectors being “partitioned” at a given node, but can
be different at each node of the k-d tree.

A node in a k-d tree is defined by four elements. The
first element is the index i of the coordinate used for par-
titioning the data at this node. The second element is the
threshold t for partitioning data. Any vector in the subtree
“below” this node whose i th coordinate has a value less
than t is located in the left branch of this subtree and,

Reproduced uith permi8sion of copyright oumr. Further reproduction prohibited.

EQUlTZ NEW VECTOR QUANTIZATION CLUSTERING ALGORITHM 1571

XK

XL

Fig. 3. Example of a K-d trcc. Fig. 4. K-d partition corresponding to example.

conversely, any vector whose ith coordinate is greater
than z is located in the right branch. It is a matter of con-
vention in which branch a vector belongs if its ith coor-
dinate happens to equal t . The last two elements of a node
are pointers to the left and right branches, or childien.
These children are k-d trees in their own right, organizing
their “half’ of the data.

Buckets are special nodes which point to, or “con-
tain,” data rather than other nodes. In a completely or-
ganized tree, each bucket would contain only one vector,
but usually it is more efficient to have a bucket contain a
small number of vectors which are all similar. This way
fewer nodes (and levels in the tree) are needed. The vec-
tors in a given bucket can be stored in a finite array if it
is guaranteed that there will never be more than a certain
number of vectors per bucket or they can be stored as a
linked list.

One can consider each particular k-d tree to be a parti-
tioning of k-dimensional with each node corresponding to
a hyper-plane parallel to all but one coordinate axis. For
example, consider the two-dimensional case in Fig. 4
which corresponds to the tree in Fig. 3. Here there are 12
vectors, represented by the letters A-L. The top node acts
as the first partition, dividing the two-dimensional region
into two haif-planes. The next level of the tree divides
these half-planes once again, and so on. The lines (hyper-
planes in general) dividing up the “space” correspond to
nodes, and the regions defined by the nodes correspond
to buckets. Each partition could, in theory, be done with
respect to any coordinate, but to get the most effective
partitions one would normally try to use different coor-
dinates at different nodes.

Building a K-d Tree: K-d trees, like binary trees, are
constructed recursively from the top down, and are de-
signed specifically to partition a particular set of data. The
first parameter one fixes is the number of vectors one will
allow in each bucket. Then, if one wants to build a tree
with this many or fewer vectors, they are all assigned to
a single bucket. If there are more vectors than will fit into
a single bucket, a single coordinate i and a threshold t are
chosen and the set of vectors is divided into two halves
based on the value of their ith coordinate. As described
above, if a vector’s ith coordinate is less than t it is as-
signed to the left child, and if it is greater than f it goes
to the right child. If the ith coordinate equals t it goes to
one child or the other based on convention. Each of these
two sets of vectors are then recursively formed into a new
k-d tree, and so on, until all the vectors are assigned into
buckets.

At each node, one is faced with the difficult question of
which coordinate to use for partitioning the data. One
simple approach is to choose cyclically among the coor-
dinates. On the top level of the tree partition on the basis
of the first coordinate; on the second level, use the sec-
ond, etc. When all the coordinates have been used once,
start over again with the first one. A better method is to
choose for each node the coordinate which best “spreads
out” the data. That is to say, one might choose to parti-
tion the data on the basis of the coordinate which has the
largest variance associated with it. The reason for choos-
ing this as the “split coordinate” is that if the data are
very spread out along a particular dimension, then pre-
sumably differences in that coordinate are more “signifi-
cant” in some sense than differences in another, more
densely grouped coordinate. Choosing in this second
manner has the effect of splitting the data on the basis of
uncorrelated coordinates.

To achieve a maximally balanced tree, one should use
the median coordinate value from among the vectors in-
volved as the split threshold. Friedman ez al. [101 report
that a bucket size averaging around eight entries seems to
be optimal for a wide range of problems.

2) Using K-d Trees to Petform Fast PNN Cluster-
ing: We use k-d trees in the following way (see Fig. 5) .
When looking for pairs of clusters to merge, we only con-
sider pairs where both cluster centroids are assigned to the
same region of k-dimensional space as defined by the
buckets of a k-d tree.

We start by organizing the training set in a k-d tree.
Then we repeatedly perform the following steps until we
are satisfied with our clustering. As usual, we consider
the training vectors to be the first set of cluster centroids.
After the tree is created, candidate pairs for merging are
generated by doing local comparisons within each k-d
bucket. Within each bucket, the pair of clusters which
will introduce the least distortion when merged is called
the bucket’s “candidate.” Next, a fixed fraction of these
candidate pairs (such as 50 percent) are merged based on
the distortion their merge would introduce. The candidate
pair which would introduce the least distortion is always
merged, and then the pair which would introduce the sec-
ond least amount, and so on, until the desired fraction of
candidates have been merged. The ” o n for merging
only a fraction of the candidate pairs at each pass is that
some partitions (buckets) will not have any close pairs.
At this point, we can stop if we want, either because we
have the correct number of clusters or because we have
reached the maximum desired distortion between the

1572 m e TRANSACTIONS ON ACOUSTICS, SPEECH. AND SIGNAL PROCESSING. VOL. 37. NO. 10. OCTOBER 1989

Fig. 5. The PNN algorithm.

training set and our cluster centroids. If we decide to con-
tinue, the k-d tree is then rebalanced to account for the
loss of the merged cluster centroids and the addition of
the results of these merges. Buckets which now contain
too many cluster centroids are split, and buckets which
now contain too few cluster centroids are combined with
neighboring buckets. This tree readjustment has the effect
of keeping the number of vectors in each bucket roughly
constant. With this newly adjusted tree, new candidate
pairs are generated and the process continues.

3) Complexity of the Fast PNN Algorithm: Bentley
shows that the amount of computation needed to build the
k-d tree is O (W log N) where there are N k-dimensional
vectors to be organized, so if T equals the number of vec-
tors in the training set, the complexity of the first step in
the fast PNN algorithm is 0 (T log T). This computation
is performed once.

If there are initially T clusters (one for each training
vector) and if at the end there are C clusters, there must
be a total of (T - C) merges performed. Since T is typ-
ically much larger than C, we lose little by upper bonding
the number of merges performed by T. The cost of an
individual merge is the cost of deleting two vectors from
the tree and adding one. This is of complexity O(log T)
so the complexity of all the merges combined is O(T log
T). I

At each pass in the fast PNN algorithm, a fixed fraction
of the candidate pairs of cluster centroids are actually
merged, so the total number of buckets searched during
the entire clustering process is (T - C)/y, where y is
the fraction of candidates merged at any given step. Since
buckets are kept at a small constant size, searching within
a bucket incurs a constant computational cost, and the
overall complexity attributable to searching for candi-
dates is O(T). In addition, the operation of determining
which candidates to merge is linear in the number of can-
didates produced at any stage, since it involves only find-
ing a percentile (median, for example) and comparing all
candidates to this percentile. Since finding a percentile is
linear is the size of the data set, at any stage the com-
plexity of determining which candidates to merge is pro-
portional to the number of buckets searched. As above,
the total number of buckets searched for a candidate is
O(T), so the overall cost of generating candidate pairs is
WT).

Consequentiy , the complexity of the PNN clustering
process is O(T log T) in the size of the training set and
is essentially independent of the size of codebook gener-
ated (even though larger codebooks take slightly less time
than small ones).

111. APPLICATION TO IMAGE CODING
In this section we describe an application of the PNN

algorithm to vector quantization coding of still images.
We chose image coding because we felt this was the ap-
plication in which the computational difficulties were most
severe. However, in theory the PNN algorithm could
serve as an effective substitute for the LBG algorithm in
any vector quantization application.

A. Vector Quantization Picture Coding
We used the typical [111-[14] approach of coding dig-

itized images by dividing them into blocks of pixels and
then using these blocks as vectors. Our blocks were 4 X
4 pixels in size and the images we used were 512 x 512
pixels. Our pictures were digitized to 8 bits per pixel (256
possible gray levels) and we chose to generate a codebook
with 256 codewords, resulting in a coding rate of 1 /2 bit
per pixel.

While organizing the training vectors in k-d trees, the
coordinate used to partition the data at each node in the
tree was the coordinate with the greatest variance. The
split threshold was the median value of this coordinate.
When a child was given eight or fewer vectors they were
placed in a bucket.

All tests were performed on either a Vax 111780 or a
Vax 111750 with programs written in the C programming
language. Execution time was measured in Berkeley
UNIX accounting units. These “units” are measured in
seconds and are similar to CPU seconds, except that they
are adjusted for system load. All performance tests shown
in a single table were run on the same computer. All tests
involving the LBG algorithm were run until there was less
than a 0.1 percent change in the distortion introduced by
representing the training set with the codebook being de-
veloped. Most tests were run using vectors from a single
image as the training set, although larger training sets were
also tested with similar Rsults.

For LBG coding, a “trick” which increased perfor-
mance significantly was to initialize not with evenly
spaced vectors from the training set beginning with the
first vector, but rather with evenly spaced vectors from
the training set offset by a small number. The reason for
the performance enhancement was that the first training
vector corresponded to the block of pixels in the top left
comer of the image, and evenly spaced vectors beginning
with this vector included a large fraction of vectors lying
along the left boundary of the picture. This was a problem
because digitized images often have artifacts along the
edges corresponding to windowing or other effects, and
initializing the LBG algorithm with unrepresentative vec-
tors degraded its performance significantly. We also al-

Reproduced uith permission of copyright owner. Further reproduction prohibited.

EQUITZ: NEW VECTOR QUANTlZATlON CLUSTERING ALGORITHM

Picture

baboon
lake
airport
lcna
peppers
plane

1573

Codebook Development Algorithm
LBG in i t id id with fast LBC initialized with

6.55 7.21 6.54
2.60 2.65 2.38
1.75 1.51 I .38
1 . 1 i 1.26 1.11
1.2i 1.33 1.20
1.42 1.441 I .25

random training uectors P N N fast PSN codes

ways ran the LBG algorithm as enhanced by the use of
k-d tree nearest neighbor searching. This alone reduced
computation by a factor of two as reported in [6] and [7].
We also used other computational enhancements such as
those cited in [15] and [la].

B. Full Search PNN versus “Fast” PNN
The “full search’’ PNN algorithm of Section 11-A is a

slow and costly process. Since it requires an unacceptable
amount of computation, the pertinent question is how
much the “fast” PNN algorithm degrades performance
as compared to the full search algorithm. It was found that
the fast PNN algorithm increased coding error (squared
error in this case) by approximately 0.4-0.6 dB for single
image encoding. This figure increased as the overall cod-
ing error increased.

C. Execution Time of PNN versus LBG
The fast implementation of the PNN algorithm was

compared to the LBG algorithm (enhanced to use k-d tree
searching) and was found in this application to require
less than 5 percent of the amount of time needed by LBG
algorithm (see Table I). Recall that for these examples,
the training set is a single picture (T = 16,384 for 512 X
512 pictures by 4 x 4 codewords), although in practice
the training set might be composed of several pictures
which belong to a certain “class of pictures.’’

D. Numerical PNN Quality versus LBG Quality
The quality of images generated by any VQ design al-

gorithm is of great importance because even an extremely
fast algorithm is useless if it produces bad pictures. What
is desired is a fast alternative with performance equivalent
to LBG performance, and as Table I1 shows, PNN distor-
tion is comparable in all cases. It should be noted that the
codebooks generated by the PNN algorithm are subopti-
mal since the LBG algorithm can always improve on them
by running a few iterations. On the other hand, the LBG
algorithm is not necessarily globally optimal. A typical
picture is shown in Fig. 6 along with the images produced
by each algorithm blown up to show detail (see Figs. 6-
8). These images were coded at 1 /2 bit per pixel.

E. PNN as LBG Initializer
As can be seen by Table 11, when the output from the

PNN clustering algorithm was used as the initializer for
the LBG algorithm, total coding error was lower in all
cases than for the LBG codebook with random initializa-
tion. In addition, with the PNN initializer the LBG algo-
rithm always converged in fewer iterations (often half as
many), so the computation time overall was lower also,
as one or two iterations alone take more time than the
entire execution of the fast PNN algorithm. Conse-
quently, it is clear that even if the PNN algorithm were
to be considered unacceptable because it usually does not
generate an “optimal” codebook, it appears to be an ex-

TABLE 1
EXECUTION TIME OF LBG VERSUS PNN

Picture

baboon

airport
lena
PePPaB
plane

16089
6930
8602

33 9577 400

Fig. 6. “Peppers” original.

cellent altemative to random initialization for the LBG
algorithm, and used this way results in excellent perfor-
mance as well as computational savings.

F. Performance Outside Training Set
Tests were performed to determine if the PNN algo-

rithm would continue to perform comparably with the
LBG algorithm when coding pictures outside the training
set. In these cases, picture reconstruction was understand-
ably worse, but picture quality with PNN codebooks re-
mained comparable to that achieved using LBG code-
books. The computational advantage of the PNN

1574 IEEE TRANSACTIONS ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING. VOL. 37, NO. 10, OCTOBER 1989

fraction of the time previously required. The PNN algo-
rithm is not sensitive to initializations and is guaranteed
to terminate in a finite amount of time. The PNN algo-
rithm is shown to take slightly less time the larger the
codebook desired and allows one the option of either min-
imizing coding distortion subject to a rate constraint, or
minimizing rate subject to a distortion constraint. In ad-
dition, since practical implementations of the PNN algo-
rithm use local nearest neighbor searching, processing can
be done in parallel to take advantage of the added speed
that extra hardware can bring.

When applied to image coding with small training sets,
the time required to execute the PNN algorithm is dem-
onstrated to be just 5 percent of that typically required by
the LBG algorithm. Reconstructed pictures generated with
this new algorithm were shown to be as good as those
generated with the standard algorithm. It is interesting to
note that the PNN algorithm makes it computationally
feasible to develop a different codebook for each image.
Sending the codebook to the receiver before the encoded
image would take an additional 1/8 bit per pixel with
parameters as stated.

Fig. 7. Blowup (250 x 250 pixels) of “Peppers” coded with LBG code-
book.

Fig. 8. Blowup (250 x 250 pixels) of “Peppers” coded with fast PNN
codebook.

algorithm over the LBG algorithm became more pro-
nounced as the size of the training set increased.

IV. CONCLUSIONS
The Pairwise Nearest Neighbor (PNN) algorithm was

presented as a noniterative way to generate vector quan-
tization codebooks comparable to those generated by the
LBG algorithm. This algorithm is useful for applications
involving squared error and weighted squared error dis-
tortion measures. The PNN algorithm’s main “feature”
is that it develops codebooks in a diminishingly small

It was also shown that using PNN code words as an
LBG initialization for image coding results in much better
codebooks (with fewer iterations) than does “random in-
itialization.” This provides for a way to generate better
codebooks and indicates that the LBG algorithm using
random training vectors as an initializer typically con-
verges to suboptimal codebooks, a fact often not given
adequate attention. It is the opinion of the author, how-
ever, that the main usefulness of the PNN algorithm is as
a fast alternative to the LBG algorithm which allows vec-
tor quantization to be used in situations where it had pre-
viously been computationally prohibitive, such as in re-
petitive experimental work, or in situations with large
training sets or codebooks.

REF~RENCES
[I] R . M. Gray, “Vector quantization,” IEEE ASSP Maguzine, pp. 4-

29, Apr. 1984.
(21 A. Gcrsho, “On the structure of vector quantizers,” IEEE Trans.

Inform. Tkcory. vol. IT-28, pp. 157-166, Mar. 1982.
[3] Y. Linde. A. Buzo. and R. M. Oray, “An algorithm for vector quan-

tizer design,” IEEE Trans. Commun., vol. COM-28. pp. 84-95, Jan.
1980.

[4] S. P. Lloyd, “Least squares quantization in pcm,” IEEE Trans. In-
form. ntOory, vol. IT-28, pp. 129-137, Mar. 1982 (reprint of 1957

[5] L. Miclet and M. Dabwz, “Low bit rate transmission of speech by
vector quantization of the spectrum,” Dep. Commun. Ecole Nation-
ale Superieun des Telecommunications, Pans, 1985, unpublished.

[6] W. H. Equitz. “Fast algorithms for vector quantization picture cod-
ing,” Master’s thesis, Mass. Inst. Technol.. June 1984.

[7] -, “Fast algorithms for vector quantization picture coding.“ in
Proc. ICASSP, Dallas, TX. Apr. 1987. pp. 18.1.1-18.1.4.

[SI A. Lawry, S. Hossain, and W. Millar, “Binary search trees for vector
quantization,” in Proc. ICASSP, Dallas, TX, Apr. 1987, pp. 51.8.1-
51.8.4.

191 J . L. Bentley. “Multidimensional binary search trees used for asso-
ciative scarching,” Commun. ACM, vol. 18, no. 9, pp. 509-517,
Sept. 1975.

PPer)*

Reproduced uith permiststion of copyright owner. Further reproduction prohibited.

EQIJITZ: NEW VECTOR QUANTIZATION CLUSTERING ALOORITHM IS75

[IO] J. H. Friedman. J. L. Bentley, and R. A. Finkel. "An algorithm for
finding best matches in logarithmic expected time." ACM Trum.
Muth. Sofiwure. vol. 3. no. 3, pp. 209-226, Sept. 1977.

[111 R. L. Baker and R. M. Gray, "Image compnssion using non-adap-
tive spatial vector quantization," in Pror. 16rh Asilomar Cot,f. Cir-
ruirs. Syr. . C m p u ~ . , 1982. pp. 55-61.

1121 T. Murakami. K. Awi. and E. Yamazaki. "Vectorquantizerof video
signals." Elecrron. Lrrr.. vol. 18. no. 23. pp. 1005-1006. Nov. 1982.

1131 A. Gersho and B. Ramamunhi. "lmage coding using vector quanti-
zation," i n Prm. ICASSP, Paris. France, 1982. pp. 428-431.

[141 Y. Yamada, K. Fujita. and S. Tazaki. "Vector quantizer of video
signals," in Proc. Annu. ConJ IECE, 1980. p. 1031.

1151 D.-Y. Cheng. A. Gersho. B. Ramamurthi, and Y. Shoham, "Fast
search algorithms for vector quantization and pattem matching." i n
Proc. ICASSP. San Diego. CA. Mar. 1984. pp. 9.11.1-9. I I .4.

1161 C.-D. Bei and R. M. Gray. "An improvement of the minimum dis-
tortion encoding algorithm for vector quantization.'' I€€€ Truns.
Commun.. vol. COM-33. pp. 1132-1 133. Oct. 1985

William H. Equitz (M'8Y) was born in Wauwa-
tosu. W1. on A u p s l 19, 1961. He received the
S.B. dcgrec in mathematics and thc M.S. degree
in electrical engineering from the Massachusettb
Institute of Tcchnology in 1983 and 1984. respec-
tively. He received a National Science Foundation
Graduate Fellowship tn study at Stanford Univer-
sity beginning in 1984. and rcceived thc Ph.1).
degree in electrical engineering from Stanford in
June 1989.

Fmm 1983 to I984 he was employed at AT&T
&I1 Laboratories in Holmdel. NI, where hc workcd on vector quantization
image coding, and is cumntly employed at thc IBM Almaden Research
Center in San Jose. CA. doing work on data compression using arithmetic
coding. His current research interests include data compression. ratc dis-
torlion theory. image processing, and other forms nl' applied information
theory and statistics.

Dr. Equitz is a member of Sigma Xi.

Reproduced uith permission of copyright -. Further reproduction prohibitad.

