

PPrraaccttiiccaall SSXX//BB

(No assembly required!)

by

JJoonn WWiilllliiaammss

Publishing

WARRANTY

Parallax Inc. warrants its products against defects in materials and workmanship for a period of 90 days from receipt of product.
If you discover a defect, Parallax Inc. will, at its option, repair or replace the merchandise, or refund the purchase price. Before
returning the product to Parallax, call for a Return Merchandise Authorization (RMA) number. Write the RMA number on the
outside of the box used to return the merchandise to Parallax. Please enclose the following along with the returned
merchandise: your name, telephone number, shipping address, and a description of the problem. Parallax will return your
product or its replacement using the same shipping method used to ship the product to Parallax.

14-DAY MONEY BACK GUARANTEE

If, within 14 days of having received your product, you find that it does not suit your needs, you may return it for a full refund.
Parallax Inc. will refund the purchase price of the product, excluding shipping/handling costs. This guarantee is void if the
product has been altered or damaged. See the Warranty section above for instructions on returning a product to Parallax.

COPYRIGHTS AND TRADEMARKS

Copyright © 2007 by Parallax Inc. Text Copyright © 2007 by Jon Williams, published by agreement with Parallax Inc. All
rights reserved. BASIC Stamp and SX-Key are registered trademarks of Parallax Inc. SX/B, Parallax, the Parallax logo are
trademarks of Parallax Inc. SX is a trademark of Ubicom. Windows is a registered trademark of Microsoft Corporation. X10 is
a registerd trademark of X10 LTD Corporation of Bermuda. 1-Wire is a registered trademark of Dallas Semiconductor
Corporation. Other brand and product names herein are trademarks or registered trademarks of their respective holders.

DISCLAIMER OF LIABILITY

Parallax Inc. is not responsible for special, incidental, or consequential damages resulting from any breach of warranty, or
under any legal theory, including lost profits, downtime, goodwill, damage to or replacement of equipment or property, or any
costs of recovering, reprogramming, or reproducing any data stored in or used with Parallax products. Parallax Inc. is also not
responsible for any personal damage, including that to life and health, resulting from use of any of our products. You take full
responsibility for your SX microcontroller application, no matter how life-threatening it may be.

ERRATA

While great effort is made to assure the accuracy of our texts, errors may still exist. If you find an error, please let us know by
sending an email to editor@parallax.com. Occasionally, an errata sheet with a list of known errors and corrections for a given
text will be posted to our web site, www.parallax.com. Please check the individual product page’s free downloads for an errata
file.

SUPPORTED HARDWARE, FIRMWARE AND SOFTWARE

Hardware SX-Key IDE Software SX/B Language

SX28 Version 3.2.3 Version 1.51.03

Dedication

To my son, Sabu: It is my great pleasure to be your dad, and I hope I make you proud in
everything that I do.

Acknowledgements
First and foremost, there would be no SX/B without the tireless efforts of Ken Gracey.
When Ubicom wanted to abandon their SX microcontroller line, Ken stepped up and said,
“Fine, we’ll take it.” Since that time Ken has guided Parallax to provide more and better
low-cost (and no-cost!) tools for those of us that love working with the SX so much.
Thanks, Ken, for your friendship and belief in me, and for all the great times we have
working together.

The heart of SX/B beats in the chest of engineer, Terry Hitt (aka Bean). I’m pretty sure that
Terry never expected his little compiler – which started as a personal project – to become
such a tremendous success and be enjoyed by so many people. Thank you, Terry, for all
your hard work and the uncountable hours you’ve poured into SX/B and supporting SX
users. I am especially grateful for your infinite patience with my questions, comments, and
suggestions as we’ve worked together to grow and improve SX/B.

There are two others that all of us in the SX community owe a debt of gratitude to: Peter
Montgomery who does a great job maintaining the SX-Key IDE for Parallax, and Günther
Daubach who created and maintains the free SXSim simulator program. Both Peter and
Günther are active participants the Parallax user forums (forums.parallax.com) and are
incredibly generous in sharing their knowledge of electronics and programming the SX.
Thanks, gentlemen, I appreciate your friendship and all the things you’ve taught me.

Table of Contents
Preface ...7

PART I: GETTING STARTED..9
1: Introducing SX/B ..10
2: SX Development Tools ...13
3: Quick Start - Success in Under 30 Minutes ..17
4: The LED Blinker Program - How it Works...31
5: Beyond the Basic Blink ...38
6: Decision-Making and Program Flow ..47
7: Controlling Multiple LEDs...52
8: 7-Segment LED Displays...58
9: Digital Input..63
10: Application- A Digital Die ...68
11: Simple Analog Input - Reading a Potentiometer..73
12: Simple Analog Output - Modulating an LED ..82

PART II: PRACTICAL PROGRAMMING ...87
13: Using a Template and Programming with Style...88
14: Divide, Conquer, and Rule! ..97
15: Using and Managing Variable Space in SX/B..109

PART III: SX/B IN ACTION ... 119
16: Pending! ...120
Appendix A: Pending!...125
Index ..126

Preface

Practical SX/B • Page 7

Preface

The back-story: It all started back in the summer of 2004 when Ken Gracey, my boss at the
time, called and asked me what I thought about Parallax providing a free BASIC compiler
for the SX microcontroller line. Of course I thought it was a fantastic idea – assembly
language has not, in the past, come easily to me. Since my days with the Timex-Sinclair
1000 I just seem to live, breathe, and think in BASIC. This explains my affection for the
BASIC Stamp microcontroller and why I’ve built so many personal and professional
projects with it.

The third, and key, member of the original SX/B team is Terry Hitt. Terry is an electronics
engineer and consultant who had started experimenting with compiler designs to improve his
own work-flow for clients. The three of us knocked our heads together, designing SX/B to
be very familiar to BASIC Stamp users, and at the same time provide a bridge to those that
wanted to learn more about SX programming by seeing well-crafted assembly output.

I can tell you from being on the inside it was a lot of hard work. Ken provided Terry and me
with the resources we needed, Terry wrote the compiler to conform to the syntax
specifications we’d all agreed upon, and I spent my time testing, debugging, and creating the
online help file.

The hard work paid off – handsomely – even if I do say so myself. We released the first
version of SX/B in November of 2004 and it was an immediate hit. Why wouldn’t it be? –
by downloading the updated version of the SX-Key IDE Parallax customers now had a
completely free BASIC compiler for their SX projects.

SX/B is definitely a case of getting more than you pay for. It is a quality product that in the
rights hands (that would be yours) allows the programmer to be incredibly productive. I
know this from first-hand experience.

Fast-forward to the summer of 2006: I am now an independent consultant living and
working in Los Angeles when I get a call from a local company that needs someone to
design and build a specialized piece of test equipment for solenoids. After meeting with the
client we come to an agreement that the project should take about two weeks. Then it
happened: the client’s parting handshake lasted a little longer than it should have as he said
to me, “Jon, do you think you could come up with something quick-and-dirty by Monday?”
Those that know me know how much I loathe the phrase “quick-and-dirty” because it is my
opinion that those projects are never quick and are always far dirtier than anyone imagines.

Practical SX/B

Page 8 • Practical SX/B

Well, I was wrong in this case. I told the client that I couldn’t lay out a custom PCB or do
the digital displays we’d discussed in that short amount of time time, but I might be able to
come up with something that would allow him to get started. He agreed.

Thankfully, I had an SX28 Proto Board on my desk to which I added a dual-channel ADC, a
couple potentiometers, and an L293D driver for the coils. Using straight SX/B I was able to
write a program to read the pots and drive the coil at a user-settable frequency and duty
cycle; a digital input even allowed for the device to reverse coil current on alternate cycles.
It worked perfectly the first time we tested it, in fact, it worked so well that the rest of the
contract was cancelled!

For me there are two lessons: 1) SX/B is a great tool and can help anyone produce quality
embedded programs in very little time and, 2) I should collect more fees up front when I
know I’m going to be using the SX and SX/B!

All kidding aside, SX/B is a wonderful tool for the embedded BASIC programmer at any
level, and while this book’s title is a bit on the cheeky side (re: No Assembly Required),
what you’ll learn in these pages is that SX/B can be as flexible as you need it to be, and that
includes full interrupt support and the ability to embed assembly language should you
choose – all this from a compiler that costs you nothing but a few minutes to download and
install it.

I’m going to operate on the assumption that you’re here deliberately, that you understand the
impact microcontrollers have had on our world, and that you want to be a part of all that.
Excellent, you’ve come to the right place. My most important admonition to you is that if
you’re serious about learning the SX, then spend time experimenting – don’t wait for a
“real” project to show up before you get your feet wet. I am quite certain than if you give it
a chance, you’ll find the SX and SX/B will bring you hours of fun and real productivity in
your embedded control projects.

PPaarrtt II::GGeettttiinngg SSttaarrtteedd

1: Introducing SX/B; page 10.
2: SX Development Tools; page 13.
3: Quick Start - Success in Under 30 Minutes; page 17.
4: The LED Blinker Program - How it Works; page 31.
5: Beyond the Basic Blink; page 38.
6: Decision-Making and Program Flow; page 47.
7: Controlling Multiple LEDs; page 52.
8: 7-Segment LED Displays; page 58.
9: Digital Input; page 63.
10: Application- A Digital Die; page 68.
11: Simple Analog Input - Reading a Potentiometer; page 73.
12: Simple Analog Output - Modulating an LED; page 82.

1: Introducing SX/B

Page 10 • Practical SX/B

1: Introducing SX/B

If you’re new to embedded programming, or your experience is limited to interpreter-based
devices like the BASIC Stamp microcontroller, you may in fact be wondering what SX/B is,
exactly. SX/B is a specialized version of the BASIC language and a compiler for the SX
microcontroller line.

BASIC (Beginner’s All Purpose Instruction Code) is a computer language that has been
around for a long time – since 1964! Compilers have been around for a long time, too, you
see, a compiler is a language translator. In the case of embedded controllers, the compiler
output is usually the assembly language for the target device.

So, as suggested above, SX/B has a dual definition: 1) It is a variant of the popular BASIC
programming language that has been designed for embedded applications running on the SX
microcontroller and, 2) It is a compiler that translates high-level SX/B code to SX assembly
code (SASM variant).

Perhaps you’ve heard the term machine language; this is what actually runs on the target
device. Assembly language is a human-friendly version of machine language. In most cases
there is a one-for-one relationship between assembly language and machine language,
though there are a few cases where an assembly language mnemonic will produce more than
one machine instruction.

Have a look at this bit of machine language:

 0C01
 01ED

Can you determine the purpose of this code? Don’t worry, you’re not alone, which is why
assemblers – programs that translate assembly language to machine language – were
developed.

Here’s the same code in assembly language:

 ADD $0D, #1

This is certainly more useful than the machine code version, yet not altogether obvious to the
inexperienced programmer. In this example, 1 is added to the value currently stored at
memory location $0D. Assemblers allow the programmer to alias (rename) memory
locations, so what you’ll actually see is something like this:

1: Introducing SX/B

Practical SX/B • Page 11

 ADD counter, #1

This style makes the program much easier to understand and maintain. Still, even assembly
language is not as easy for most programmers to learn and code with as a high-level
language like BASIC. The example above is written in BASIC as follows:

 counter = counter + 1

I think you’ll agree that the BASIC code is much easier for the beginner to comprehend.

The SX/B compiler, then, will convert your BASIC program to the appropriate assembly
code which the SX-Key IDE will assemble into the machine code output for the SX
microcontroller.

SX/B differs from many other compilers in that it was designed to facilitate the learning of
assembly language, so it does what I call compile in place. This means that every BASIC
command is directly translated to the corresponding assembly language code as it appears in
the listing. In fact, the assembly output retains the original SX/B source as comments so that
you can see how SX/B commands are translated. The assembly output from the SX/B
output looks like this:

 0C01 ADD counter, #1 ; counter = counter + 1
 01ED

That the original BASIC source is included in the assembly language output becomes
especially useful as your programming skills advance and you desire to add assembly
segments to your SX/B programs; you can simply start with the assembly output from an
existing SX/B command and modify it as required. This is particularly true of complex
commands as is illustrated here.
 0CFB MOV FSR, #__TRISB ; PULSOUT Servo, 150
 0024
 005F MODE $0F
 0400 CLRB IND.0
 0200 MOV !RB, IND
 0006
 0018 BANK $00
 0C01 XOR RB, #%00000001

1: Introducing SX/B

Page 12 • Practical SX/B

 01A6
 0C05 MOV __PARAM3, #5
 002A
 0CAB MOV __PARAM4, #171
 002B
 02EB DJNZ __PARAM4, @$
 0010 0A44
 02EA DJNZ __PARAM3, @$-3
 0010 0A44
 0000 NOP
 0000 NOP
 0000 NOP
 0C01 XOR RB, #%00000001
 01A6

Now, don’t let the listing above unnerve you – you may happily program the SX in SX/B for
the rest of your days without ever having a look at the assembly output. Just remember that
it is there for you to learn from if and when you decide to take that step.

2: SX Development Tools

Practical SX/B • Page 13

2: SX Development Tools

While you can learn about programming with SX/B by reading a book, to actually learn the
language will require that you write and execute real programs on an SX microcontroller,
and usually with a bit of additional circuitry (e.g., LEDs, etc.). Thankfully, Parallax gives
the experimenter a range of choices when working with the SX and associated circuitry.

SX Programming Boards
The SX Tech Board (#45205). This student-friendly board is somewhat similar to Parallax’s
famous Board of Education® platform. The SX Tech board employs an LIF (low insertion
force) socket for the SX28AC/DP allowing you to use the board as a programmer for an
SX28 that you intend to move to another device. A socket is also provided for a ceramic
resonator so that you may experiment with running the SX at different speeds. All of the
SX28 pins are made available to you through SIP headers, and a small breadboard allows
you to construct circuits that attach to the SX28.

SX Tech Board

Figure 2.1

2: SX Development Tools

Page 14 • Practical SX/B

The SX28 Proto Board (#45302). If you’re really in a budget pinch your friends at Parallax
have an answer for you in the SX28 Proto Board. As with the SX Tech Board, the SX28
Proto board has a regulated 5-volt power supply and a socket for a ceramic resonator. In
addition to the resonator socket, the SX28 Proto Board has a four-pin socket for a TTL
oscillator. About half the board is configured as a through-hole prototyping area that
includes pads for two 8-pin SOIC devices. You should, though, attach SIP socket headers
and a small breadboard for your experimenting stages. Note that this board uses an
SX28AC/SS that soldered in place, so while you can test SX28 programs with this board,
you cannot move the chip to another project as with the SX Tech Board.

SX28 Proto Board

Figure 2.2

2: SX Development Tools

Practical SX/B • Page 15

The Professional Development Board (#28138). If your budget allows then this is
absolutely the best way to go in my opinion. In addition to a beefy power supply, the PDB
includes a socket and programming connection for the SX28AC/DP, as well as sockets for
all BASIC Stamp® and Javelin Stamp modules.

The PDB comes pre-equipped with LEDs (single and seven-segment), an LCD connection,
servo ports, potentiometers, an audio amplifier, an L293 push-pull driver chip, push buttons,
DIP switches, a pulse generator, an RJ-11 connection that can be used for 1-Wire® or X10®
interfaces, an RS-232 interface and DB-9 connector, and a DS1307 Real Time Clock with
battery backup. All of these components surround a large, solderless breadboard. The PDB
has long been my platform of choice, and I use it when developing my own projects, as well
as those for my clients.

Parallax Professional Development Board

Figure 2.3

2: SX Development Tools

Page 16 • Practical SX/B

Roll Your Own. If you have a well-stocked lab and are really the diehard DIY type, you can
certainly create your own development board for the SX. See Appendix (Pending!) for a
suitable schematic.

SX Programming Tools
Regardless of your development platform you will need a programming device to move code
from the IDE into the SX chip. Your choices are the SX-Key and the SX-Blitz. The SX-
Key gives you full programming and in-circuit debugging capabilities; this tool will
generally be selected by professionals. The SX-Blitz is a great student tool; with it you can
program the SX, but there are no facilities for debugging with this device, hence the simpler
circuit and lower cost. For the most part, this book will assume that you’re using the SX-
Blitz.

SX-Key® Rev F

Figure 2.4

SX-Blitz USB

Figure 2.5

If you desire the capabilities of the SX-Key but don’t have a standard serial port available on
your computer, the SX-Key can be converted to USB with Parallax’s USB to Serial RS-232
Adapter (#28030).

3: Quick Start

Practical SX/B • Page 17

3: Quick Start - Success in Under 30 Minutes

There is nothing that inspires success like success, and you’re about to succeed in
programming the SX in under 30 minutes. Nothing fancy, mind you, but when you’ve
succeeded here you’ll know that you’ve got the pieces in place to move forward and become
a master SX/B programmer.

To run the SX-Key IDE and program SX chips you’ll need a Windows® PC. For best
performance you should be running Windows XP with the latest service packages installed.
See the Parallax web site (www.parallax.com) for the latest recommendations on PC
specifications for Parallax development tools.

Step 1: Install the SX-Key IDE
Even if you ordered product from Parallax and received a CD, I suggest that you navigate to
www.parallax.com's downloads section and obtain the latest version of the SX-Key IDE.
Parallax continuously updates and improves their tools based on customer feedback. CDs
take time to produce, so the version of the SX-Key IDE on your CD could very well be
outdated.

The SX-Key installer is very typical of Windows application installation programs. When
first run, you’ll see a standard “wizard” interface as shown in Figure 3.1. Click the Next
button to start the actual installation.

SX-Key Editor Installer

Figure 3.1

3: Quick Start

Page 18 • Practical SX/B

The next page of the installation wizard will prompt you for the installation type. The SX-
Key IDE is pretty lean and doesn’t use a lot of disk space, so you should always select
Typical. Click the Next button to move on.

Select the Typical Setup

Figure 3.2

The next page gives you an overview of the installation details.

Installation Details

Figure 3.3

Note in particular the installation location on your system, it should look something like:
C:\Program Files\Parallax Inc\SX-Key v3.2.3\

3: Quick Start

Practical SX/B • Page 19

The actual version number when you install may differ from what is illustrated above. The
point is that you will need to know this location later when you want to update the SX/B
compiler files or install the SXSim simulator program.

If you find some problem with the installation details click the Back button and fix it,
otherwise click on Install and the SX-Key IDE software will be installed on your system.
As stated earlier, it’s not a big program and will only take a couple minutes to complete the
installation process.

Installation Status Bar

Figure 3.4

When the installation is complete you’ll get one final page; click Finish.

Installation Complete

Figure 3.5

3: Quick Start

Page 20 • Practical SX/B

Now click on the Windows Start button, then All Programs, then the Parallax Inc group,
then the SX-Key vX.Y.Z group, and then finally on the SX-Key vX.Y.Z program icon (Note
that vX.Y.Z denotes the version number of the SX-Key software you just installed).

Launching the SX-Key Editor from the Start Button

Figure 3.6

To make starting the SX-Key IDE easier, right-click on the SX-Key vX.Y.Z program icon and then
select Pin to Start menu. Doing this will allow you to start the SX-Key IDE with just two mouse
clicks (Start \ SX-Key vX.Y.Z).

The first time the SX-Key IDE runs you will be prompted to do a bit of setup:

First Time Running

Figure 3.7

After clicking OK on the dialog above you’ll be presented with the SX-Key IDE
Configuration dialog that has four sections: IDE, Editor, Assembler, and SX/B Compiler.

3: Quick Start

Practical SX/B • Page 21

The following screens show the suggested starting options for learning SX/B. Note that the
list of serial ports on the IDE page is created at the time the dialog is opened, and will only
show serial ports that are available on the system at that time – not all of them may be valid
for SX programming. Be sure to select a known standard serial or USB port.

 Select SX/B as the
Default Editor Type.

 Select the COM Port

number you are most
likely to use for SX
programming.

IDE Settings

Figure 3.8

Now click on Editor in the Category list.

 Set the Font Size to 12
or something
comfortable for your
screen.

 Check the Colored

Code Keywords box.

Editor Settings

Figure 3.9

3: Quick Start

Page 22 • Practical SX/B

Next, click on the Assembler in the Category list.

 Check the Use SASM
box.

 Check the SASM files to

"SASM Output" dir.
box.

 Check the Local

Labels Must Start in
Col. 1 box.

Assembler
Settings

Figure 3.10

Finally, click on SX/B Compiler in the Category list.

 Check the SX/B files
to "Output Files" dir.
box.

SX/B Compiler
Settings

Figure 3.11

When you’ve reviewed and are satisfied with the Configuration settings, click OK. Note
that you can come back and change these dialogs after the installation has been completed.

With the configuration setup complete you’ll be prompted to accept a disclaimer as shown
below. By using the SX-Key IDE you agree not to hold Parallax and/or Peter Montgomery
(“the developers”) responsible for any problems that arise from the use of the software, SX-
Key programming tool, or the SX chip.

3: Quick Start

Practical SX/B • Page 23

Disclaimer Dialog

Figure 3.12

After clicking I Accept on the disclaimer dialog (the program will not run until you do) the
SX-Key IDE will open as shown in Figure 3.13.

The SX-Key IDE Main Window

Figure 3.13

Before you start programming in SX/B, however, you should check to make sure you’ve got
the latest version of the compiler installed. This may seem confusing at first since the

3: Quick Start

Page 24 • Practical SX/B

compiler is installed with the SX-Key IDE, but the fact is that the compiler is actually a
separate component. You’ll find that Parallax is very responsive to customer input, and
having the SX/B compiler work as a separate module allows the compiler to be updated
without having to modify the IDE. This architecture also allows Parallax to add other
language modules (e.g., a C compiler) to the IDE if they should so choose.

Click on the Help menu, and then click About. You will see the SX-Key IDE About dialog
as shown in Figure 3.14.

About Dialog
(IDE Version)

Figure 3.14

Move the mouse cursor over the IDE version number, and then click on it. When you do
you’ll see that line change to the SASM DLL version number. Click one more time to
display the SX/B compiler version, as shown in Figure 3.15 (right). Make a note of it.

Versions: SASM , left;
SX/B, right.

Figure 3.15

3: Quick Start

Practical SX/B • Page 25

Open your web browser and navigate to forums.parallax.com. When there, click on the SX
Microcontroller forum and look for a “sticky” thread at the top that holds the latest version
of the SX/B compiler. Click on this post and if the latest compiler is newer than the one you
have, download the ZIP archive to your PC.

When you open the archive you will find four files:

 SXB.EXE
 RESERVED.TXT
 INVALID.TXT
 WHATS NEW X_YY_ZZ.TXT

The first three files are critical to the update; the “What’s New” file is simply information
for your reference and it doesn’t hurt to keep a copy of it convenient. Extract these files to
the SX/B compiler folder; the path will be something like:

C:\Program Files\Parallax Inc\SX-Key vX.Y.Z\Compilers\SXB

(Again, “vX.Y.Z” refers to the version number of the SX-Key software that you just
installed.) When the files have been replaced you can restart the SX-Key IDE and you’re
ready to write your first program.

Step 2: Ready to Code
Start the SX-Key program and create a blank SX/B file by clicking File → New (SX/B)

from the main menu. Alternately, you can click on the New toolbar button:

...and then select Yes when prompted by the Verify Editor Type dialog:

Verify Editor Type

Figure 3.16

3: Quick Start

Page 26 • Practical SX/B

If after following the steps above you end up with what looks like a blank program template,
simply remove it by right-clicking in the program window, then clicking on Select all. With
everything selected, press the Delete key. The use of templates will be covered in Chapter 13:

In the world of PC programming there is the ubiquitous “Hello, World!” program that sends
a message to the screen; this is almost always presented as the introduction to a new
language. Embedded microcontrollers usually don’t have screens or fancy displays attached
to them, but LEDs are very commonplace and used in the vast majority of microcontroller
projects that require some kind of visual output. So, in the realm of the microcontroller,
“Hello, World!” is realized by blinking a standard LED.

Don’t scoff at the apparent simplicity – if you can get the program entered, saved, compiled,
programmed into the SX, and running on your target hardware as expected, then you’ve
completed all the steps required for any embedded program; the rest is simply code.

Here’s your first SX/B program:
' BLINK1.SXB

DEVICE SX28, OSC4MHZ, TURBO, STACKX, OPTIONX
FREQ 4_000_000

Led PIN RA.0

PROGRAM Start

Start:
 HIGH Led
 PAUSE 500
 LOW Led
 PAUSE 500
 GOTO Start

Enter the program exactly as shown above. When you’re done, click the Save toolbar

button:

...or click File → Save from the main menu. Point the Save Source as dialog to a
convenient location for your files (usually in the My Documents folder) and save the file as
BLINK.SXB. Note that the SX-Key IDE will not compile or assemble code that hasn’t been
saved, so this is a necessary first step with every program. As the adage goes, save early,
save often.

3: Quick Start

Practical SX/B • Page 27

Save Source As...

Figure 3.17

When the program is saved, compile it by clicking the Compile toolbar button:
...or or click Run → Compile from the main menu. If there are no errors the IDE status line
will read:

"BLINK.SXB: Compile/Assembly Successful"

You should see this message in the bottom of the IDE window:

Compile/Assembly
Successful

Figure 3.18

If you see this message, fantastic! If you don’t, don’t panic, it’s probably something simple.
Double-check the listing for errors and try again. One possibility that is common, especially
with new programmers, is substituting “O” (the letter) for zero (the number), and vice versa.
Once you get the program to compile/assemble successfully, it’s time to download it into an
SX28.

3: Quick Start

Page 28 • Practical SX/B

Step 3: LED Circuit
Assuming that you’re not using a PDB, you’ll need two components to complete the SX28
“Hello, World!” circuit: a 470-ohm (yellow-violet-brown) resistor, and a common LED.
The schematic for the circuit and how it might look connected on an SX Tech Board are
shown below.

LED Circuit Schematic and Wiring Diagram

Figure 3.19

If you’re lucky enough to have a PDB, simply run a length of 22-gauge solid hook-up wire
from the RA.0 socket to one of the individual LEDs at the top of the board.

Connect your SX-Blitz or Key to your PC, using the port you specified for programming
earlier, and then connect it to your development system noting the pin orientation on the
Blitz/Key and the board. If you happen to connect the Blitz/Key upside down you may
damage it, so do be careful.

Be very careful when connecting the SX-Key to your development system; the safest way is
without power applied to the circuit. If the SX-Key is misconnected when power is applied
damage can occur.

3: Quick Start

Practical SX/B • Page 29

Now connect a suitable DC power supply to the development board; 7.5 vdc @ 1 amp is
suggested. The SX requires a bit of current for programming, so don’t try to use a small (0.5
amp or less) power supply. With the development board powered up it’s time for the final
step.

Getting back to the SX-Key program, click the Program toolbar button:

...or click Run → Program from the main menu.

Since you’ve previously tested the program for syntax by compiling and assembling it, you
should immediately see the Device Operation: Erasing dialog:

Erasing...

Figure 3.20

The Erasing dialog won’t be onscreen long. What comes next is the Device Operation:
Programming dialog, as shown in Figure 3.21.

Programming...

Figure 3.21

As you can see, a progress bar displays the current state of the programming process. When
it is complete and the dialog disappears, have a look at your development board, you should
have a blinking LED.

If you do, celebrate! If you don’t – don’t panic, it’s probably something simple. Check
these things:

 Does the development board have power?

3: Quick Start

Page 30 • Practical SX/B

 Is the circuit correctly connected? (Check the LED orientation.)

 Is the SX-Key/Blitz connected to the correct serial or USB port?

Once the offending issue has been located and removed, download the program and join the
celebration – you’re an SX/B programmer. Enjoy your success, and then when you’re ready,
turn the page and have a look under the hood of the LED blinker to see just how it works.

7: Controlling Multiple LEDs

Practical SX/B • Page 31

4: The LED Blinker Program - How it Works

While realize that blinking LEDs are not particularly glamorous, they are extraordinarily
useful. Oftentimes a circuit will require a simple annunciator and the blinking LED is a
great way to convey information to the user. How? Well, the rate at which the LED blinks,
for example, is a quick visual indication of status: a slow rate might convey “everything
okay” while a quick, somewhat urgent rate might convey, “emergency – deal with it now.”

As you move forward there will be several experiments that show just how versatile a single
LED can be. Before you construct other programs, though, work your way through the
deconstruction of this one so you know exactly how it does what it does.

Many programmers start a project with a graphic device called a flowchart. These can be
very useful tools in the design process, and I’m a big fan of flowcharting on a dry-erase
board with colored markers. Here’s what the BLINK.SXB program looks like in flowchart
form:

The Blinker Program in
Flowchart Form

Figure 4.1

The flowchart should immediately make sense based on the listing that you’ve already typed
in and run. What should be pointed out, however, is that in BLINK.SXB the Initialize
section of the flowchart is actually handled “behind the scenes” by SX/B.

In computer programming the term initialize is generally used to indicate the setup a known
state; in embedded programming this is especially true for the user memory (RAM) and the

7: Controlling Multiple LEDs

Page 32 • Practical SX/B

I/O pins. The fact is that many elements of the SX RAM power up in an unknown state and
it is the programmer’s responsibility to initialize them. Again, with the SX/B that is taken
care of for us.

Advanced programmers will be happy to know that the automatic initialization of the SX RAM
and I/O pins may be disabled if desired. See the NOSTARTUP option of the PROGRAM
directive in the SX/B Online Help.

Line by Line
Okay, let’s breakdown the program, line by line, and learn what it does:
' BLINK.SXB

This line is a comment, which gets ignored by the compiler as it is information intended for
the programmer, not for the machine. A comment may start at the beginning of a line as
shown above, or at the end of a line of source code, like this:
 HIGH Led ' turn LED on

Comments always start with an apostrophe and all characters that follow to the end of that
line are considered part of the comment. I tend to favor a coding style that minimizes
comments – my time at the keyboard should produce work, not notes. As we move forward
I will show you a programming style that will allow others to understand, maintain, or
modify your programs without excessive commenting on your part.

DEVICE SX28, OSC4MHZ, TURBO, STACKX, OPTIONX

The DEVICE directive tells the SX/B compiler and the SX-Key IDE what kind of chip
you’re programming, its clock source, and some specifics on how its code runs. While the
SX can – in assembly language – be programmed in what is called “compatibility mode”
(which uses a 4x clock cycle), the SX/B compiler is designed for a TURBO mode (1x clock)
so a 20 MHz clock source gives you 20 million instructions per second (MIPS)! In
“compatibility mode” the same clock would result in only five million instructions per
second – clearly the advantage is TURBO mode. The STACKX and OPTIONX settings are
also required, but only when using the SX18, SX20, or SX28. When programming the SX48
or SX52 the TURBO, STACKX, and OPTIONX settings are assumed and the IDE will
generate an “Obsolete keyword” warning if these options are used.

7: Controlling Multiple LEDs

Practical SX/B • Page 33

The DEVICE line in this program, then, specifies that you’re using an SX28. Note that
packaging doesn’t matter to SX/B or the SX-Key IDE; the chip can be in DP or SS form; it
is still considered an SX28.

The setting OSC4MHZ tells the SX-Key IDE that the chip will use its internal 4 MHz
oscillator to drive the chip. This is great for stand-alone projects where timing isn’t critical,
but it will not be suitable for timing-sensitive applications (those that use serial
communications, for example). Other internal oscillator settings are OSC1MHZ,
OSC128KHZ and OSC32KHZ, the latter being an excellent choice for low-speed, low power
applications.

FREQ 4_000_000

The FREQ directive is used by the SX/B compiler when generating timing-specific sections
of assembly code, as it does with PAUSE. This directive is also used by the SX-Key when
an external clock source is specified. The SX-Key has an onboard clock generator that can
drive the SX at the specified frequency. If you’re using the SX-Blitz and specify an external
clock source you’ll need to connect that clock source (e.g., a ceramic resonator) before your
program will run.

You can make large numbers easier to read by using an underscore character to separate
groups of digits, for example: 4_000_000 is much easier to read than 4000000. This can be
used with any of the numeric formats, and is especially useful for large decimal numbers, or
for separating bits in a binary value, for example: %1001_0000.

Led PIN RA.0

This is the first line that has to do with your application. What you’re doing with the PIN
definition is renaming (often called aliasing) an I/O pin to make the program easier to read,
debug, and maintain. Wow, all that from one definition? Yes.

Professional programmers consider it very bad form to embed the hardware pin names (e.g.,
RA.0) into working code. The reason is simple: computer code, whether it runs on your SX
micro or a Cray super-computer, is a living, breathing, evolving entity that is usually
changing over the design cycle. What happens, say, when you decide to move from an
SX28 to and SX48 to get more pins and the new chip requires a change in I/O layout? Well,
if you’d started by using the actual pin name through your program you’d have to go through
and find all occurrences of the name and change them. Sure, you can use global search-and-
replace but your task is simplified by having the name in one location, and the program will

7: Controlling Multiple LEDs

Page 34 • Practical SX/B

be much easier for others to understand and maintain without you adding a lot of extra
comments (something most programmers are loathe to do, anyway).

You can make your programming life simpler from the outset by using pin aliases instead of
their actual hardware names.

PROGRAM Start

The PROGRAM directive serves two purposes: 1) it specifies the label at which your program
actually begins (Start in this case), and 2) is specifies the location of the internally
generated initialization code.

Start:

This is a program label, which is simply a place marker in the code. As with other
programming languages, labels should begin in column one of the source file and be
terminated with a colon. In SX/B, you must have a label that matches the specification in
the PROGRAM directive. Note that when using a program label in code (or in the PROGRAM
directive) the colon is not included. Labels may be up to 32 characters long, may include
letters, numbers, and the underscore character, but they must not begin with a number.
Check_Level:

...is a valid label, while
1_Check:

...is not. Labels tend to be easier to read if the words within the label are separated by an
underscore character, and new words begin with an uppercase letter.

 HIGH Led

At last, an instruction that does some real work. HIGH is a compound instruction that does
two things: 1) it puts the specified pin into output mode, and 2) it connects the pin’s output
drive to Vdd (usually 5 volts), making it “high.” With an active-high LED circuit (anode
side connected to pin, cathode side connected to ground) the HIGH instruction will cause the
LED to light.

 PAUSE 500

7: Controlling Multiple LEDs

Practical SX/B • Page 35

Even when the SX micro runs at the relatively “slow” speed of four megahertz, each
instruction takes only 250 nanoseconds – that’s 250/1,000,000ths of a second! Yes, it
actually does take more than one machine instruction to execute HIGH, but still, you need to
slow down the program in order to see the LED blink with your eyes.

PAUSE is designed to do just that; it holds the program right where it is (like the pause
button on a DVD player) for a duration specified in milliseconds, usually from one to
65,535. In BLINK.SXB a period of 500 milliseconds will cause the PAUSE instruction to
hold the LED on or off for one half second.

 LOW Led

LOW is the complement of HIGH. Like HIGH, the LOW instruction sets the specified pin to
output mode, but it connects the pin’s output driver to Vss (ground), causing the output to be
a zero volts, or “low.” With an active-high LED circuit the LOW instruction will cause the
LED to extinguish. Next, another PAUSE command keeps the LED off for 500 ms, making
the LED's on-time equal to the off-time.

 GOTO Start

Finally, after the LED has been on a bit, then off a bit, you want the process to repeat. GOTO
redirects the program to the specified label, creating what is called an unconditional jump. It
is called unconditional because it always happens.

Some programmers consider the use of GOTO bad form because it can lead to what is called
“spaghetti code.” The creation of spaghetti code has to do with the programmer, not the
programming language or its keywords. I believe the use of GOTO is fine, and as you’ll see
in later chapters there are other facilities in SX/B for both unconditional and conditional
jumps.

A Look Under the Hood
Now that you know how each of the elements of BLINK.SXB work, have a look at the
assembly output created by the SX/B compiler to see just how much work it does for you.
First, make sure that you have compiled the program by clicking the Compile toolbar button
(you may also click Run → Compile from the main menu, or use the keyboard shortcut
Ctrl+A).

7: Controlling Multiple LEDs

Page 36 • Practical SX/B

Now click on Run → View List (use the keyboard shortcut Ctrl+L). You should get a new
window that floats above the IDE that contains the assembly listing of the BLINK.SXB
program.

Viewing the Assembly Listing of the BLINK.SXB Program

Figure 4.2

Go ahead and scroll through this listing. Don’t be nervous, most of the time you’ll never
look at the assembly output but it’s good to know that it’s there for your review and
edification. When you get to the point where you want to learn assembly language, looking
at the assembly listing from a working SX/B program is a great place to learn some great
tricks and techniques.

As you examine the assembly listing you’ll see that there’s actually quite a bit of code
between the PROGRAM Start directive and the Start label; this is the “behind the
scenes” initialization code that was discussed earlier. This bit of code clears the RAM space,

7: Controlling Multiple LEDs

Practical SX/B • Page 37

initializes the I/O pins (usually to inputs unless otherwise instructed in the PIN declaration),
and can handle other initialization chores that we’ll examine later.

As you can see, the assembly listing contains your SX/B program instructions. Isn’t it
interesting that a single-line instruction like HIGH Led expands out to seven lines of
assembly code? This is the reason programmers use compilers – it saves time. The benefit
of using the SX/B compiler is that you get the ease of BASIC programming with the blazing
execution speed of SX assembly.

7: Controlling Multiple LEDs

Page 38 • Practical SX/B

5: Beyond the Basic Blink

With a firm grip on simple LED blinking it’s time to explore additional strategies. Keep in
mind that when you can control an LED you can control just about anything, usually with
some very simple interface circuitry. To control an incandescent lamp, for example, a
transistor circuit can be used in place of the LED and resistor as shown below.

Transistor Circuit for an
Incandescent Lamp

Figure 5.1

You probably notice that the on- and off-time delays for the blinker program are the same.
When this is the case, the program can be simplified like this:
' BLINK2.SXB

DEVICE SX28, OSC4MHZ, TURBO, STACKX, OPTIONX
FREQ 4_000_000
Led PIN RA.0

PROGRAM Start

Start:
 DO
 TOGGLE Led
 PAUSE 15
 LOOP

Update the blink program and save it as a new file (use File → Save As) called
BLINK2.SXB. When the program is run it will behave exactly like the first version, albeit
with a bit less code.

7: Controlling Multiple LEDs

Practical SX/B • Page 39

In the first version of the program GOTO was used to create an infinite loop. In this version,
a more modern programming style is employed via DO-LOOP. The advantage of DO-
LOOP is that you don’t have to create a label as with GOTO (remember, the Start label in
this program is required by the PROGRAM directive).

In this form, DO-LOOP is unconditional. So, how does it work? Again, it’s the compiler
doing some behind-the-scenes work for you. The assembly listing will show that the
compiler created an internal label for the jump. DO-LOOP is especially appropriate for
small loops like this where DO and LOOP can be easily matched when reading a listing. As
your programs grow and you have larger sections of code within the loop, GOTO may be a
better choice to make the program easier for yourself and others to follow.

The LED state is now controlled with TOGGLE. As with HIGH and LOW, TOGGLE sets the
specified pin to output mode, but then it inverts the state of the pin; if the pin was off, it gets
turned on, and vice-versa. And now when you want to modify the LED flash rate there is
but one PAUSE value to change.

Experiment with the blink rate by adjusting the PAUSE and re-running the program. Notice
that at PAUSE values below 20 the blinking process is no longer visible due to the human
eye’s persistence of vision and, in fact, the LED appears just a bit dim. Fast switching of the
LED, called pulse width modulation, can be used to control LED brightness.

As you’ve seen, HIGH and LOW are very easy to use, but there is a bit of a trap. Most
newcomers consider “high” to mean “on.” In the real world, however, this is not always the
case. Have a look at the two LED circuits in Figure 5.2.

Both are valid. The top circuit will light the LED when the SX output is high – this is called
an active-high circuit. The bottom circuit works as well, but it will light the LED when the
SX output is low, so it is called an active-low circuit.

Note: The experiments in this book will use active-high circuits to maintain compatibility with
the built-in circuitry of the Professional Development Board.

7: Controlling Multiple LEDs

Page 40 • Practical SX/B

LED Schematics:
Active-high LED (top)
Active-low LED (bottom)

Figure 5.2

Since circuit designs can vary you should not assume that a high output will turn something
on and, in fact, it’s a good idea to design your programs to be hardware agnostic. With very
little effort you can update the original blinker program to be hardware agnostic and virtually
self-commenting.
' BLINK3.SXB

DEVICE SX28, OSC4MHZ, TURBO, STACKX, OPTIONX
FREQ 4_000_000

Led PIN RA.0 OUTPUT

IsOn CON 1
IsOff CON 0

PROGRAM Start

Start:
 DO
 Led = IsOn
 PAUSE 500
 Led = IsOff
 PAUSE 500
 LOOP

Update the program as shown above and save as BLINK3.SXB. Notice the change to the
PIN declaration: the OUTPUT modifier has been added after the pin name. The OUTPUT
modifier will cause the compiler to place additional code into the initialization section that
sets this pin to output mode. When a pin is in output mode you can make it high by writing
a “1” to the pin, or low by writing “0” to it.

That said, you should not embed 1 or 0 into your programs, instead, rename these values so
that the program becomes self-commenting and easier to maintain. This can be

7: Controlling Multiple LEDs

Practical SX/B • Page 41

accomplished with the CON (constant) declaration. The CON declaration allows you to
create a name for a numeric value, character, or even string of characters. Constant values
cannot be changed during the run of a program, hence the term, constant. These are all valid
CON declarations:

RoomTemp CON 72 ' a numeric value
TempMode CON "F" ' a character
Baud CON "N9600" ' a string of characters

When the program is compiled and assembled the constant name is replaced by its value
from the CON declaration. Using CON declarations will make your listings easier to read,
and also much easier to maintain, especially when the same value is used in several places in
your program.

Back to BLINK3.SXB, there is no doubt now as to the purpose of these lines of code:
 Led = IsOn
 Led = IsOff

This is good example of self-commenting code, and it is clear that no additional comments
are required here. Through the judicious use of PIN and CON declarations, your programs
can be easier to write and maintain, and immediately useful to others without them having to
sift through a lot of comments. Please trust that you’d rather be typing working code than
comments.

Go ahead and have a look at the assembly listing (use the Ctrl + L keyboard shortcut) to see
how the SX/B compiler handles:
 Led = IsOn

What you should see is that this compiles to just a single line of assembly code:
 SETB Led

Remember that when using HIGH it took seven lines of assembly code to turn the LED on or
off. For blinking LEDs program execution speed is of little consequence, but in other
applications, where speed is paramount, this strategy will be important.

The assembly mnemonic SETB stands for “Set Bit.” This instruction writes a 1 to the specified
bit variable (an I/O pin in this case). The complement of SETB is CLRB which writes a 0 to the
specified bit.

7: Controlling Multiple LEDs

Page 42 • Practical SX/B

Blinks with Meaning
In hardware designs that use an LED annunciator, there are three common strategies
employed to convey information through the blink: rate, duty cycle, and coded blinking.

When rate style blinking is employed, the on- and off-times are the same as demonstrated in
BLINK2.SXB. Still, TOGGLE actually sets the pin to output mode every time it’s executed
and this is no longer required when you use the OUTPUT modifier in the PIN declaration.
When a pin is an output, its state can be inverted with the ~ operator.
' BLINK4.SXB

DEVICE SX28, OSC4MHZ, TURBO, STACKX, OPTIONX
FREQ 4_000_000

Led PIN RA.0 OUTPUT

IsOn CON 1
IsOff CON 0

PROGRAM Start

Start:
 DO
 Led = ~Led
 PAUSE 500
 LOOP

Update the blinker program and save as BLINK4.SXB. As you can see, with two fewer
lines of code the LED still blinks, and by changing the PAUSE to a smaller value it blinks at
a higher rate, conveying a sense of urgency.

Another way to express information through the LED blink is with duty cycle. Duty cycle is
the percentage of the LED’s on-time versus the overall period, which is the sum of the on-
and off-time values as shown below.

50% Duty Cycle

Figure 5.3

7: Controlling Multiple LEDs

Practical SX/B • Page 43

When on- and off-times are equal the duty cycle is 50% as the on-time is half the duration of
the period. By changing the on-time and keeping the same period, you can change the duty.

Changing the On-time Changes
the Duty Cycle

Figure 5.4

You can also change the duty cycle by keeping the on-time constant and changing the off-
time, which changes the overall period.

Changing the Off-time Changes
the Period

Figure 5.5

Reopen BLINK3.SXB and modify the PAUSE values to change the duty cycle. Note that
when using small PAUSE values (5 to 15), the apparent brightness of the LED can be affected
by changing the duty cycle.

When working with period signals like the blinking LED control you will hear the term,
frequency. Frequency, expressed in Hertz (Hz), is the number of cycles per second of a
periodic signal. Frequency can be calculated from a known period:

Frequency = 1 / Period

In BLINK4.SXB the period is 0.2 seconds (0.1 second on plus 0.1 second off) so the
frequency is 5 Hz.

7: Controlling Multiple LEDs

Page 44 • Practical SX/B

As you’ve seen, rate and duty cycle control are useful ways to convey specific meaning with
a blinking LED. Another method is with coded blinking. You could, for example, have a
piece of automation that once used an LED to indicate “okay” and “not okay” that now
needs to be updated to provide additional information from that same LED. Rate and duty
cycle can sometimes be misinterpreted when used for indicators, so coded blinking is a good
choice.

Update the LED blinker as shown below and save as BLINK5.SXB.
' BLINK5.SXB

DEVICE SX28, OSC4MHZ, TURBO, STACKX, OPTIONX
FREQ 4_000_000

Led PIN RA.0 OUTPUT

IsOn CON 1
IsOff CON 0

PROGRAM Start

Start:
 DO
 Led = IsOn
 PAUSE 250
 Led = IsOff
 PAUSE 250
 Led = IsOn
 PAUSE 250
 Led = IsOff
 PAUSE 250
 Led = IsOn
 PAUSE 250
 Led = IsOff
 PAUSE 250
 PAUSE 1000
 LOOP

When you run the program you’ll see that the LED blinks three times, followed by a longer
off period. The value of this technique should be immediately obvious, but the code is not
quite as clean as it could be.

7: Controlling Multiple LEDs

Practical SX/B • Page 45

Thus far you have used GOTO Label and DO-LOOP to control program flow. In both cases,
the loop was infinite, i.e., it ran forever. This coded blinker could benefit from a controlled
loop and that is accomplished with the FOR-NEXT structure as shown in the updated listing
below.
' BLINK5a.SXB

DEVICE SX28, OSC4MHZ, TURBO, STACKX, OPTIONX
FREQ 4_000_000

Led PIN RA.0 OUTPUT

IsOn CON 1
IsOff CON 0

blinks VAR Byte

PROGRAM Start

Start:
 DO
 FOR blinks = 1 TO 3
 Led = IsOn
 PAUSE 250
 Led = IsOff
 PAUSE 250
 NEXT
 PAUSE 1000
 LOOP

The FOR-NEXT structure takes the following form:
 FOR controlValue = StartValue TO EndValue
 ' program statements
 NEXT

As you can see, FOR-NEXT requires a control value, and this must be a variable. A variable
is a value that can change, and as shown above is defined with the VAR declaration. SX/B
provides support for three variable types: Bit, Byte, and Word. The table below shows the
range of values for each variable type.

Bit: 0 to 1
Byte: 0 to 255 (eight bits)
Word: 0 to 65,535 (16 bits)

7: Controlling Multiple LEDs

Page 46 • Practical SX/B

When defining a variable you should always be mindful of the value range it will hold; using
a variable type that exceeds the actual program requirements is wasteful of valuable memory
space.

The only native variable types in the SX microcontroller are Bit and Byte. The Word variable
type is synthesized by the compiler.

Those coming from a background in BASIC Stamp programming may be wondering about the
Nib variable type. Nib is a non-native type that is synthesized in the BASIC Stamp. In the Code
Library you’ll find a function to extract a specified Nib from a value.

When the program encounters a FOR-NEXT loop StartValue (which can be a constant or
variable) is copied to the control variable. The contents of the loop are executed and at
NEXT the value of the control variable in incremented and compared to EndValue (which
can also be a variable or constant). When the control variable is less than or equal to the
EndValue the loop will continue to run. As soon as the control variable exceeds the
EndValue the loop will terminate and the program will continue at the line that follows
NEXT.

Experiment with the EndValue setting in BLINK5a.SXB. At what point does this value
become unwieldy at providing useful information?

Can you rewrite the program to use LED toggling instead of the on and off methods shown
above? Yes, of course you can, but you’ll want to make sure that the FOR-NEXT loop
always runs an even number of cycles so that the LED is off before the long delay.

7: Controlling Multiple LEDs

Practical SX/B • Page 47

6: Decision-Making and Program Flow

To this point your programs have run in fixed loops; most real-world applications, however,
will need to make decisions that change the flow of the program. In all variants of the
BASIC programming language, the IF-THEN construct is used as the primary decision
maker.

In its simplest form, IF-THEN assumes this structure:
 IF Condition THEN Label

… where Condition is a Boolean expression that will evaluate as True or False. When
Condition evaluates as True the program will jump to Label, otherwise it will fall through to
the line that follows IF-THEN. Some experienced programmers may think this form of
IF-THEN as odd, having perhaps been accustomed to the more modern form:
 IF Condition THEN
 ' program statements
 ELSE
 ' other program statements
 ENDIF

SX/B supports both forms of IF-THEN, though the first more closely matches the actual
structure of SX assembly code. Both forms are valid and have their place in your
applications.

The IF-THEN Condition element is used to compare a variable to another value; the second
value may be a variable or may be a constant. Several comparison operators are available for
IF-THEN:

= Equal
<> Not Equal
> Greater Than
>= Greater Than or Equal
< Less Than
<= Less Than or Equal

7: Controlling Multiple LEDs

Page 48 • Practical SX/B

SX/B allows just one comparison per line, so checking for a variable to be within (or
excluded from) a given range requires two IF-THEN statements, like this:
 IF variable >= LowLimit THEN
 IF variable <= HighLimit THEN
 ' variable is in range
 ENDIF
 ENDIF

Modify the blinker as shown below and save it as BLINK6.SXB. Can you determine the
program’s behavior before running it?
' BLINK6.SXB

DEVICE SX28, OSC4MHZ, TURBO, STACKX, OPTIONX
FREQ 4_000_000

Led PIN RA.0 OUTPUT

IsOn CON 1
IsOff CON 0

code VAR Byte
blinks VAR Byte

PROGRAM Start

Start:
 code = 3

Main:
 IF code = 0 THEN Start
 FOR blinks = 1 TO code
 Led = IsOn
 PAUSE 250
 Led = IsOff
 PAUSE 250
 NEXT
 PAUSE 1000
 GOTO Start

If you deduced that, essentially, nothing would happen then you’re right – as far as the LED
is concerned. Still, the program is in fact running. With the value of code set to zero, the
IF-THEN condition evaluates as True and the program is redirected back to Start. A non-

7: Controlling Multiple LEDs

Practical SX/B • Page 49

zero value in code causes the IF-THEN condition to evaluate as False and the program
drops through to the FOR-NEXT loop that causes the LED to flash.

As suggested earlier, SX/B supports modern IF-THEN and IF-THEN-ELSE constructs as
well, as is demonstrated by this version of the program.
' BLINK6a.SXB

DEVICE SX28, OSC4MHZ, TURBO, STACKX, OPTIONX
FREQ 4_000_000

Led PIN RA.0 OUTPUT
IsOn CON 1
IsOff CON 0
code VAR Byte
blinks VAR Byte

PROGRAM Start

Start:
 code = 4

Main:
 IF code = 0 THEN Start
 IF code < 4 THEN
 FOR blinks = 1 TO code
 Led = IsOn
 PAUSE 250
 Led = IsOff
 PAUSE 250
 NEXT
 PAUSE 1000
 ELSE
 Led = IsOn
 PAUSE 100
 Led = IsOff
 PAUSE 100
 ENDIF
 GOTO Start

Can you tell how the program will behave before you run it? Do try. This version is
certainly more interesting and closer to what one might find in a control application that uses
a single LED annunciator.

The early form of IF-THEN, while seemingly simple, actually lets one write code that is
quite easy to follow and this is very important for the long-term maintenance of your

7: Controlling Multiple LEDs

Page 50 • Practical SX/B

programs. The following program, which controls the LED via duty cycle, demonstrates
this fact.
' BLINK7.SXB

DEVICE SX28, OSC4MHZ, TURBO, STACKX, OPTIONX
FREQ 4_000_000

Led PIN RA.0 OUTPUT

IsOn CON 1
IsOff CON 0

code VAR Byte

PROGRAM Start

Start:
 code = "Q"

Main:
 IF code = "Q" THEN Quick_Blink
 IF code = "M" THEN Med_Blink
 IF code = "L" THEN Long_Blink
 GOTO Start

Quick_Blink:
 Led = IsOn
 PAUSE 100
 Led = IsOff
 PAUSE 900
 GOTO Start

Med_Blink:
 Led = IsOn
 PAUSE 500
 Led = IsOff
 PAUSE 500
 GOTO Start

Long_Blink:
 Led = IsOn
 PAUSE 800
 Led = IsOff
 PAUSE 200
 GOTO Start

7: Controlling Multiple LEDs

Practical SX/B • Page 51

When the list of options is short and of non-contiguous values, as is the case above, there are
other strategies available to the SX/B programmer. One such option is ON-GOTO, as
demonstrated here (only the section at Main is shown):

Main:
 ON code = "Q", "M", "L" GOTO Quick_Blink, Med_Blink, Long_Blink
 GOTO Start

Internally, the SX/B generates the same output as with the previous IF-THEN version; the
advantage here is fewer lines of SX/B source code. That said, this form may not be quite as
obvious as the IF-THEN form, and is only suitable for short lists of options as SX/B
statements are restricted to a single line.

Finally, when the control value is contiguous, (e.g., 0, 1, 2, 3, etc.) the code above can be
simplified to:

Main:
 ON code GOTO Quick_Blink, Med_Blink, Long_Blink
 GOTO Start

This form of ON-GOTO expects the control variable to be from zero to N, when N is the
number of times in the labels list minus one. SX/B also includes the BRANCH instruction for
compatibility with the BASIC Stamp and other BASIC-language embedded controllers. The
following instruction using BRANCH is behaves the same as ON-GOTO above:

Main:
 BRANCH code, Quick_Blink, Med_Blink, Long_Blink
 GOTO Start

Experiment with the control structures demonstrated in this chapter. Use primary and
secondary control values to add interest and variety to your LED blinker.

7: Controlling Multiple LEDs

Page 52 • Practical SX/B

7: Controlling Multiple LEDs

As your projects grow in sophistication you will, undoubtedly, have need to control two or
more LEDs. You might suppose that in situations where independent timing of each LED is
required that the program will require extensive use of IF-THEN constructs and timing
variables for each LED. Of course there will be programs where this is the required
solution, but there is in fact a simpler way to control two more LEDs independently with a
single variable – if the application allows for an implicit timing relationship between the
LEDs.

This programming trick takes advantage of the SX’s ability to copy any bit to any other bit,
as well as the normal bit pattern of an increasing binary value.

Add a second LED to your project, connected to pin RA.1.

Two-LED Schematic
and Wiring Diagram

Figure 7.1

7: Controlling Multiple LEDs

Practical SX/B • Page 53

Enter and save the following program as BLINK8.SXB.
' BLINK8.SXB

DEVICE SX28, OSC4MHZ, TURBO, STACKX, OPTIONX
FREQ 4_000_000

Led0 PIN RA.0 OUTPUT
Led1 PIN RA.1 OUTPUT

L0 CON 0
L1 CON 2
ctrl VAR Byte ' timing control

PROGRAM Start

Start:
 DO
 Led0 = ctrl.L0
 Led1 = ctrl.L1
 PAUSE 250
 INC ctrl
 LOOP

When you run the program you’ll see that Led0 flashes quickly while Led1 flashes more
slowly, though both with a 50% duty cycle (i.e., the on- and off-times are equal). This
happens because the ever changing bits of the variable ctrl are being copied to the LEDs.
Table 7.1 shows the bit pattern of ctrl at the beginning of the program.

Bit Pattern Value of ctrl

%00000000 (ctrl = 0)

%00000001 (ctrl = 1)

%00000010 (ctrl = 2)

%00000011 (ctrl = 3)

%00000100 (ctrl = 4)

%00000101 (ctrl = 5)

%00000110 (ctrl = 6)

%00000111 (ctrl = 7)

%00001000 (ctrl = 8)

Table 7.1

The Bit Pattern for the
ctrl Variable

7: Controlling Multiple LEDs

Page 54 • Practical SX/B

Note that BIT0 (right-most column), changes every other count whereas BIT2 (second
column from right) changes every fourth count. Since the LED pins have been set as outputs
by the PIN declaration, copying a bit from the timing control variable allows for direct
control.

You may use any bit (0..7) from a [byte] variable using the dot notation shown in the
program. SX/B does not allow the position to be expressed as a variable value, you must use
a constant (aliased or embedded as shown).

SX/B allows dot notation of bit position with word variables as well; the legal range for bits
with a word is zero (LSB) to 15 (MSB).

The following chart shows the timing relationship between each of the bits in the control
variable.

Timing Chart

Figure 7.2

As you can see, using BIT0 causes the connected LED to change every cycle through the
loop, using BIT1 causes the LED to change every second cycle (half the base rate), BIT2
every fourth cycle (one fourth the base rate), etc.

When using this strategy the only thing that can be set is the base timing rate with the loop
delay, the relationship of all other bits to BIT0 is fixed. Note, too, that the program takes
advantage of INC which is a shortcut for:

 value = value + 1

When INC is applied to a variable at its maximum value (255 for bytes, 65535 for words)
the variable will roll over to zero.

7: Controlling Multiple LEDs

Practical SX/B • Page 55

SX/B as well as SX assembly include the DEC instruction which is the complement to INC and
is the same as:

value = value - 1

When DEC is applied to a variable at its minimum value it will roll under to its maximum (255
for bytes, 65535 for words).

In those applications where the implicit timing between the bits in a single control variable
will not work, independent timing control – while maintaining a 50% duty cycle – is
possible by using a control variable (timing multiplier) for each output. Enter and save the
following program as BLINK9.SXB.
' BLINK9.SXB

DEVICE SX28, OSC4MHZ, TURBO, STACKX, OPTIONX
FREQ 4_000_000

Led0 PIN RA.0 OUTPUT
Led1 PIN RA.1 OUTPUT

TLed0 CON 1 ' multiplier for LED 0
TLed1 CON 7 ' multiplier for LED 1

ctrl0 VAR Byte ' timing control for LED 0
ctrl1 VAR Byte ' timing control for LED 1

PROGRAM Start

Start:
 IF ctrl0 = 0 THEN ' timer expired?
 Led0 = ~Led0 ' invert LED state
 ctrl0 = TLed0 ' reload timer
 ELSE
 DEC ctrl0 ' count down
 ENDIF

 IF ctrl1 = 0 THEN
 Led1 = ~Led1
 ctrl1 = TLed1
 ELSE
 DEC ctrl1
 ENDIF

 PAUSE 100
 GOTO Start

7: Controlling Multiple LEDs

Page 56 • Practical SX/B

As this program uses independent timing multiplier variables for each LED it affords a great
deal more flexibility that the BLINK8.SXB, though it requires additional code for each.
LED control is based on the value currently loaded in the control variable. When this
variable is zero the LED state gets inverted and the variable is reloaded with the timing
multiplier for the LED. On those passes through the program loop when the control variable
is not zero the value is simply decremented.

While this program is more flexible than the former, the LED duty cycle is still fixed at 50%
and this may not always be desirable. Should your application require a variable duty cycle
for each LED, you may be inclined to think that a second control variable is required for
each LED. Indeed, this is not the case as demonstrated in the updated version,
BLINK9a.SXB, shown below.
' BLINK9a.SXB

DEVICE SX28, OSC4MHZ, TURBO, STACKX, OPTIONX
FREQ 4_000_000

Led0 PIN RA.0 OUTPUT
Led1 PIN RA.1 OUTPUT

IsOn CON 1
IsOff CON 0

TLed0 CON 1 ' on multiplier for LED 0
TLed0Off CON 5 ' off multiplier for LED 0
TLed1 CON 7 ' on multiplier for LED 1
TLed1Off CON 3 ' off multiplier for LED 1

ctrl0 VAR Byte ' timing control for LED 0
ctrl1 VAR Byte ' timing control for LED 1

PROGRAM Start

Start:
 IF ctrl0 = 0 THEN ' timer expired?
 IF Led0 = IsOff THEN ' is LED off?
 Led0 = IsOn ' then turn on and
 ctrl0 = TLed0 ' load on multiplier
 ELSE
 Led0 = IsOff ' else turn off and
 ctrl0 = TLed0Off ' load off multiplier
 ENDIF
 ELSE
 DEC ctrl0 ' count down

7: Controlling Multiple LEDs

Practical SX/B • Page 57

 ENDIF

 IF ctrl1 = 0 THEN
 IF Led1 = IsOff THEN
 Led1 = IsOn
 ctrl1 = TLed1
 ELSE
 Led1 = IsOff
 ctrl1 = TLed1Off
 ENDIF
 ELSE
 DEC ctrl1
 ENDIF

 PAUSE 100
 GOTO Start

Up to this point, the programs have set the LED state. As demonstrated in BLINK9a.SXB
the current LED state can in fact be read by the program as with any other bit variable. So,
upon expiration of the associated control variable the state of the LED is tested and the new
state and appropriate timing multiplier is loaded accordingly. By using separate timing
multipliers for the on- an off-states of the LED, the duty cycle may be independently set for
each resulting in very sophisticated output patterns with simple code.

8: 7-Segment LED Displays

Page 58 • Practical SX/B

8: 7-Segment LED Displays

Multiple LEDs become particularly useful when they take a thin, rectilinear shape and are
physically arranged and packaged as in the illustration below:

7-Segment Display

Figure 8.1

No doubt you’ve see such displays any number of times in any number of applications, from
alarm clocks to cable TV decoders to smart toasters. Seven segment displays, as they’re
called, have been used since the early days of the space program and still find favor for their
low cost, ease of use, as well as their exceptional variety of size and color options.

While called seven segment displays, the modules usually include an eighth LED to form a
decimal point as shown in the illustration above. The displays come in two basic varieties:
common-cathode and common-anode. We’ll use a common-cathode display to simplify
programming. A common cathode display will have nine active pins: eight for the segment
LEDs, the ninth that is the cathode (Vss) connection to all LEDs in the module (Note: Some
modules will have multiple common pins).

Each of the LEDs in the display is assigned a letter code as illustrated; segment A is the
topmost segment (12 o’clock position) with the others being assigned in order as one moves
clockwise around the display, ending in segment G in the center, or ending with the decimal
point when part of the module.

Connect a seven segment display to an SX28 using the schematic in Figure 8.2. Note that
the pin assignments, while seemingly random, actually facilitate the connection of the
display when using the SX Tech Board.

When using the Parallax Professional Development Board (PDB) connect the segments as
shown, and then connect a single digit control line to Vss. Current-limiting resistors are built
into the PDB and do not need to be added externally.

8: 7-Segment LED Displays

Practical SX/B • Page 59

7-Segment LED Display Schematic and Wiring Diagram

Figure 8.2

In earlier programs the PIN directive was used with a single I/O point and, as you’ll soon
see, can also be used with an I/O port (e.g., RA, RB, RC, RD, RE). Enter the following
program and save it as SEGS7.SXB.
' SEGS7.SXB

DEVICE SX28, OSC4MHZ, TURBO, STACKX, OPTIONX
FREQ 4_000_000

Segments PIN RC OUTPUT

PROGRAM Start

Start:
 ' bafg.cde
 Segments = %10000100 ' 1
 END

Notice the assignment of Segments; the output assignment includes all the bits of the RC
port, i.e., RC.0 through RC.7. All eight bits are set to outputs by the PIN directive. In those

8: 7-Segment LED Displays

Page 60 • Practical SX/B

rare cases when you need to set the I/O direction manually, you can do so with the TRIS
register for associated port, for example:

 TRIS_C = %00000000

Using the TRIS register in this style is useful when a port has a mixture of input and outputs,
and using the multiple PIN directives to define them could be tedious.

BASIC Stamp programmers should note that in SX/B, a 0 in the associated bit of the TRIS
register puts the pin into output mode; a 1 in the TRIS register puts the pin into input mode.
This is easy to remember in that a zero looks like the letter “O” (for output), and a one looks
like the letter “I” (for input).

After initialization, there is but one active line in the program which activates the LEDs
connected to RC.7 (segment B) and RC.2 (segment C) which causes a “1” to be displayed.

After running the program, experiment on your own with the bit pattern assigned to the
segments. Can you create additional digits and alpha characters?

Since the static display of a single digit or character could be had without the use of a
microcontroller, update the program as follows:
' SEGS7a.SXB

DEVICE SX28, OSC4MHZ, TURBO, STACKX, OPTIONX
FREQ 4_000_000

Segments PIN RC OUTPUT

PROGRAM Start

Start:
 ' bafg.cde
 Segments = %10000100 ' 1
 PAUSE 1000
 Segments = %11010011 ' 2
 PAUSE 1000
 Segments = %11010110 ' 3
 PAUSE 1000

8: 7-Segment LED Displays

Practical SX/B • Page 61

 GOTO Start

This is certainly more interesting than the former version, yet it lacks the flexibility to assign
the display as may be required by the program. Update the program again and save as
SEGS7b.SXB.
' SEGS7b.SXB

DEVICE SX28, OSC4MHZ, TURBO, STACKX, OPTIONX
FREQ 4_000_000

Segments PIN RC OUTPUT

idx VAR Byte

PROGRAM Start

Start:
 FOR idx = 0 TO 9
 READ Dig_Map + idx, Segments
 PAUSE 1000
 NEXT
 GOTO Start

Dig_Map:
 ' bafg.cde
 DATA %11100111 ' 0
 DATA %10000100 ' 1
 DATA %11010011 ' 2
 DATA %11010110 ' 3
 DATA %10110100 ' 4
 DATA %01110110 ' 5
 DATA %01110111 ' 6
 DATA %11000100 ' 7
 DATA %11110111 ' 8
 DATA %11110110 ' 9

Like most versions of BASIC, SX/B supports a DATA statement to store information for
later use. In this version of the program the DATA statement is used to store the bit patterns
of the ten decimal digits. Note the use of a label, Dig_Map, ahead of the DATA statements.
This is important for the use of information stored with DATA.

8: 7-Segment LED Displays

Page 62 • Practical SX/B

The information stored by DATA is permanent, somewhat like a constant, but it is not aliased
like a constant value. Instead, a value can be retrieved from a set of DATA statements
knowing the storage address (hence the use of the Dig_Map label). And while elements
from a DATA table can be retrieved during the execution of the program, they cannot be
modified (except, of course, at the source code level before compilation).

A value is retrieved from a DATA table with READ which takes three parameters: the base
address of the DATA table, an offset index for the desired element, and an output variable.
The base address is provided by the label used to define the table; the offset index is the
zero-based position of the element within the table. In this program, the output variable is
the segment control pins.

As you can see, then, FOR-NEXT is used to iterate idx through the values zero to nine and
point to the segment patterns in the table defined at Dig_Map. You must be careful not to
allow the table offset index to extend beyond the bounds of the table otherwise undefined
data will be placed on the outputs.

Update the program to display hex digits, 0 through F. Hint: Use lowercase letters for digits B
and D to prevent confusion with eight and zero.

9: Digital Input

Practical SX/B • Page 63

9: Digital Input

As you have no doubt become more acutely aware of the number of seven-segment displays
enriching your life, you probably noticed that they are nearly always accompanied by some
sort of button; to set the time on the alarm clock, for example, or change the channel on the
cable television decoder box. These are but a few examples of where push-buttons get used
without much notice. Did you “surf” the Internet today? Perhaps as you did you were able
to detect the resolute “click” of the pushbutton in your computer’s mouse.

You can connect a push-button or switch to any of the SX’s I/O pins. When set to input
mode – the default mode after a reset – the current state of a pin can be determined by
examining the associated port bit. The bit value, 0 or 1, will be determined by the voltage
level present on the input pin, which will usually be zero volts (input bit is 0) or five volts
(input bit is 1).

Input pins have a voltage threshold that determines the set-point at which an input transitions
from 0-to-1 and back; in fact, this threshold may be configured. The standard set-point, called
TTL level, is at 1.4 volts. The optional set-point, called CMOS level, is at one-half Vss – 2.5 volts
in most applications.

Digital inputs are very sensitive and can in fact be adversely affected by static electricity
near the SX microcontroller. For this reason, when a pin is to be used as a digital input it is
best to “pull” the pin to the “off” state with a resistor, usually 10 kΩ, though 4.7 kΩ resistors
are also a popular choice. The resistor will hold the I/O pin at the off state until an actual
input is present (e.g., a button gets pressed).

9: Digital Input

Page 64 • Practical SX/B

The schematics below show the connections of a normally-open push-button in both the
active-high (input bit is 1 when pressed) and active-low (input bit is 0 when pressed) modes.

Push-button Schematics: Active-high (left); Active Low (right)

Figure 9.1

DO NOT REMOVE THE PULL-UP OR PULL-DOWN RESISTOR FROM THE CIRCUIT, NOR TRY TO
CONNECT MORE THAN ONE I/O PIN TO A SINGLE PULL-UP/PULL-DOWN RESISTOR.

The addition of a small series resistor is also recommended to protect the SX microcontroller
from a possible programming error. If the input pin were to be inadvertently made an output
and set the opposite level of the expected input state, a button press could create a short
circuit that does damage to the I/O pin if there is nothing to limit the current flow through it;
the 220-ohm resistor provides this protection.

Connect the active-high button circuit above to the seven-segment display experiment as
shown in Figure 9.2, and then enter and save the following program as PBUTTON.SXB.

9: Digital Input

Practical SX/B • Page 65

Push-button Circuit Add to the Seven-Segment LED Display Circuit

Figure 9.2

' PBUTTON.SXB

DEVICE SX28, OSC4MHZ, TURBO, STACKX, OPTIONX
FREQ 4_000_000

PButton PIN RB.0 INPUT
Segments PIN RC OUTPUT

PROGRAM Start

Start:
 IF PButton = 1 THEN ' check input
 Segments = %10000100 ' "1"
 ELSE
 Segments = %11100111 ' "0"
 ENDIF
 GOTO Start

When you run the program you’ll see that it displays the state of the push-button input pin,
RB.0. Note that in the listing, the PIN declaration for the push-button uses the INPUT
modifier; while not strictly necessary in this example, it does add clarity to the listing.

With a bit of modification and the addition of a counter variable, the program can be
modified to as to make it useful. Modify and save the program as PBCOUNT1.SXB.

9: Digital Input

Page 66 • Practical SX/B

' PBCOUNT1.SXB

DEVICE SX28, OSC4MHZ, TURBO, STACKX, OPTIONX
FREQ 4_000_000

PButton PIN RB.0 INPUT
Segments PIN RC OUTPUT

IsPressed CON 1 ' for active-high input
IsNotPressed CON 0

counter VAR Byte

PROGRAM Start

Start:
 READ Dig_Map + counter, Segments ' show counter
 IF PButton = IsPressed THEN ' check input
 INC counter ' update counter
 IF counter = 10 THEN ' past limit?
 counter = 0 ' yes, reset
 ENDIF
 PAUSE 250 ' minimum display time
 ENDIF
 GOTO Start

Dig_Map:
 ' bafg.cde
 DATA %11100111 ' 0
 DATA %10000100 ' 1
 DATA %11010011 ' 2
 DATA %11010110 ' 3
 DATA %10110100 ' 4
 DATA %01110110 ' 5
 DATA %01110111 ' 6
 DATA %11000100 ' 7
 DATA %11110111 ' 8
 DATA %11110110 ' 9

Run the program and experiment with pressing the button. You’ll see that very short presses
result in a single-digit change, while holding the button results in a constantly-incrementing
count. When it is not desirable to have a running count on a “stuck” button, a small update
can be made that allows just one change per button press-and-release cycle.

Modify the core of the program as follows and save the new version as PBCOUNT2.SXB.

9: Digital Input

Practical SX/B • Page 67

Start:
 READ Dig_Map + counter, Segments ' show counter
 IF PButton = IsPressed THEN ' check input
 INC counter ' update counter
 IF counter = 10 THEN ' past limit?
 counter = 0 ' yes, reset
 ENDIF
 DO
 PAUSE 50
 LOOP UNTIL PButton = IsNotPressed ' force button release
 ENDIF
 GOTO Start

What’s new is the modification of the DO-LOOP with the [optional] UNTIL condition. In
this configuration, the statements enclosed in DO-LOOP will execute until the condition
expressed after UNTIL is satisfied. In this version of the program the DO-LOOP will
continue until the button is not pressed. As this is part of the main loop, the user is forced to
press and release the button before seeing the updated count.

Another option of DO-LOOP is with WHILE, as shown below:
 DO
 PAUSE 50
 LOOP WHILE PButton = IsPressed ' force button release

Can you see that this loop is functionally equivalent to that used in the program above?

In the last two examples of DO-LOOP the condition test was placed at the end; this
configuration forces the contents of the loop to run at least one time. In some cases it is
desirable to test the condition before executing the loop contents, as shown in the examples
below:

 DO UNTIL PButton = IsNotPressed ' force button release
 PAUSE 50
 LOOP

and…
 DO WHILE PButton = IsPressed ' force button release
 PAUSE 50
 LOOP

Ready for your first “real” project? It starts on the next page...

10: A Digital Die

Page 68 • Practical SX/B

10: Application- A Digital Die

With the circuits used in the previous chapters and a small bit of code, you have what it takes
to create simple yet full-blown application: a single-digit, digital die. By using a low clock
frequency to reduce power consumption, this program is perfectly suited for battery power.

The program DIGI-DIE.SXB is a little longer than what you’re accustomed to at this
point, so I’ll break it down and explain it section-by-section (for full listing see page 71).
DEVICE SX28, OSC1MHZ, TURBO, STACKX, OPTIONX, BOR42
FREQ 1_000_000

The header is straightforward, specifying an internal 1 MHz resonator which is plenty fast
enough for this little program. Something new has been added: the BOR42 setting. This
enables the brownout monitor circuit and sets the low-voltage threshold to 4.2 volts. Should
the incoming voltage drop below 4.2 volts the SX go into reset to prevent errant program
behavior.

Brownout refers to a condition where the incoming power sags (drops) below its nominal
value; this condition is often caused by weak batteries (in battery-powered circuits) or
demands on the power supply that exceed its capability.

PButton PIN RB.0 INPUT
Segments PIN RC OUTPUT

IsPressed CON 1 ' for active-high input
IsNotPressed CON 0

pntr VAR Byte ' animation pointer
seed VAR Byte ' random value
die VAR Byte ' die value for this roll

The next section holds out pin, constant, and variable definitions. Note that PButton is
defined as an input. This is not explicitly necessary as all pins are defined as inputs unless
otherwise changed to outs; still the INPUT specification does not harm and can add a bit of
clarity for others that review your listings.

10: A Digital Die

Practical SX/B • Page 69

PROGRAM Start

Start:
 DO
 READ Bug + pntr, Segments ' update animation
 INC pntr ' update pointer
 IF pntr = 6 THEN ' reached max position?
 pntr = 0 ' yes, reset
 ENDIF
 PAUSE 75 ' set bug speed
 RANDOM seed ' tumble random value
 LOOP WHILE PButton = IsNotPressed ' wait for button

The front end of the program runs in a conditional DO-LOOP structure and serves two
purposes: 1) It creates a simple animation (rotation) in the 7-segment LED to get the user’s
attention and, 2) It tumbles a variable called seed using the RANDOM function – this is akin
to shaking the die.

The animation is accomplished by moving a pattern from a DATA table (at label, Bug) into
the display. In this case it’s very simple, as we just light a single segment in the order A-B-
C-D-E-F before starting over. The variable called pntr is use as an index into the pattern
table. A short PAUSE is used to control the speed of the animation. Be careful about
making this value too small or too large; if to small, the display will be a blur; if too large,
the value of seed won’t get tumbled very much.

The RANDOM function in SX/B is like that of other embedded controllers: it’s actually
pseudo-random. What this means is that it actually produces a sequence of seemingly
random numbers; but given the same input value, the output will be the same. By adding a
“human touch,” that is, a human has to press the button, true randomness is achieved as it
would be impossible for a human to know or keep track of the pseudo-random output values
and press the button at just the right moment.
 Segments = %00000000 ' clear display
 DO
 LOOP UNTIL PButton = IsNotPressed ' force button release

Once the user presses the button, the display is cleared to confirm the button press. It’s good
idea to force the button release before moving to the next section. You probably see this
behavior all the time without noticing; the next time you use your computer’s mouse, check
to see if the selected behavior does not actually take place until the button is released.

10: A Digital Die

Page 70 • Practical SX/B

 die = seed // 6 ' extract value, 0 to 5
 INC die ' fix to 1 to 6
 READ Dig_Map + die, Segments ' display digit
 PAUSE 1000 ' minimum display time

And now the program can create and display the die value. Remember that a die has a value
from one to six, but the value of seed is something between zero and 255. To create the
proper value, the modulus operator (//) is used. The modulus operator returns the
remainder of an integer division which means that the result will always be something
between zero and the divisor minus one.

By using a divisor of six the value of die is initially set to something between zero and five
(based, of course, on the current value of seed). The next line increments (adds one to) die
to get it into the correct value range, and with this value the digit pattern can be read from a
DATA table (at label, Dig_Map) and moved into the display. A one-second PAUSE
ensures a minimum display duration of the current die value.
 DO
 LOOP UNTIL PButton = IsPressed ' wait for press

 DO
 LOOP UNTIL PButton = IsNotPressed ' wait for release

 GOTO Start

The end of the program waits for the user to press and release the button and then jumps
back to the top to start all over.

And there you have it, your first real SX/B application. Now, before you get too excited and
move on, why not try to modify the program?

Challenge: Modify the beginning loop to display an animated Figure-8 instead of the rotating
“bug.” Can you do it? Of course you can!

The complete listing for DIGI-DIE.SXB is given below.

10: A Digital Die

Practical SX/B • Page 71

' DIGI-DIE.SXB

DEVICE SX28, OSC1MHZ, TURBO, STACKX, OPTIONX, BOR42
FREQ 1_000_000

PButton PIN RB.0 INPUT
Segments PIN RC OUTPUT

IsPressed CON 1 ' for active-high input
IsNotPressed CON 0

pntr VAR Byte ' animation pointer
seed VAR Byte ' random value
die VAR Byte ' die value for this roll

PROGRAM Start

Start:
 DO
 READ Bug + pntr, Segments ' update animation
 INC pntr ' update pointer
 IF pntr = 6 THEN ' reached max position?
 pntr = 0 ' yes, reset
 ENDIF
 RANDOM seed ' tumble random value
 PAUSE 75 ' set bug speed
 LOOP WHILE PButton = IsNotPressed ' wait for button

 Segments = %00000000 ' clear display
 DO
 LOOP UNTIL PButton = IsNotPressed ' force button release

 die = seed // 6 ' extract value, 0 to 5
 INC die ' fix to 1 to 6
 READ Dig_Map + die, Segments ' display digit
 PAUSE 1000 ' minimum display time

 DO
 LOOP UNTIL PButton = IsPressed ' wait for press

 DO
 LOOP UNTIL PButton = IsNotPressed ' wait for release

 GOTO Start

10: A Digital Die

Page 72 • Practical SX/B

Bug:
 ' bafg.cde
 DATA %01000000 ' tumbling animation
 DATA %10000000
 DATA %00000100
 DATA %00000010
 DATA %00000001
 DATA %00100000

Dig_Map:
 ' bafg.cde
 DATA %11100111 ' 0
 DATA %10000100 ' 1
 DATA %11010011 ' 2
 DATA %11010110 ' 3
 DATA %10110100 ' 4
 DATA %01110110 ' 5
 DATA %01110111 ' 6
 DATA %11000100 ' 7
 DATA %11110111 ' 8
 DATA %11110110 ' 9

11: Simple Analog Input

Practical SX/B • Page 73

11: Simple Analog Input - Reading a Potentiometer

Thus far, all of our experiments have been purely digital in nature, that is, an input or output
was either fully on or fully off. Yet just as between white and black there are many shades
of gray, in the analog world in which we live there are an infinite number of levels between
ground (zero volts) and five volts.

That said, the SX is a digital device, so how do we deal with analog inputs? Well, with a
few simple components, the understanding of RC circuits, and a bit of code, we can deal
with one form of analog input: the position of a potentiometer. Let’s have a quick look at
the behavior of RC circuits.

Figure 11.1 shows the characteristic charge (beginning at 0 V) and discharge (beginning at 5
V) curves of an RC circuit. The physics of RC circuits dictate that a resistor will fully
charge or fully discharge in five time-constants, where a time-constant, expressed in
seconds, is equal to R × C; with R expressed in ohms and C in farads.

Characteristic RC Circuit Charge
and Discharge Curves

Figure 11.1

If a circuit uses a 10 k Ω resistor and a 0.1 µF capacitor, the TC will be one millisecond:

TC = 10,000 Ω × 0.0000001 F = 0.001 s

11: Simple Analog Input

Page 74 • Practical SX/B

That it takes a specific, predictable period for the capacitor to charge or discharge is what
allows a purely digital device like the SX to measure the RC value. You see, every pin has a
threshold voltage where the input switches from 0-to-1 (rising) or 1-to-0 (falling). With the
SX chip that voltage is normally set to 1.4 volts (TTL level), but can be changed by the user
to ½ Vdd if desired (CMOS level). For these experiments we’ll leave the I/O pin in TTL
mode.

In the graph above you’ll find a line at 1.4 volts; this is the TTL switching threshold. If you
look carefully you’ll see that the charge curve crosses this line after about 0.3 TCs, and that
the discharge curve crosses after about 1.3 TCs. It makes sense that it should take longer to
go from 5 volts to 1.4 volts (3.6-volt span) than from 0 volts to 1.4 volts (1.4-volt span). In
order to get the greatest resolution from an RC measurement, then, it’s best to measure the
discharge of the RC circuit.

The charge time of a capacitor, to voltage Vfinal, can be calculated with this equation:

 Tcharge = −RC x ln(1 − (Vfinal / Vapplied))

Using a 10K resistor and a 0.1 µF capacitor, the charge time from zero volts to the TTL
threshold of 1.4 volts works out to:

 Tcharge = −0.001 x ln(1 − (1.4 / 5.0))
 Tcharge = −0.001 x ln(1 − (0.28))
 Tcharge = −0.001 x ln(0.72)
 Tcharge = −0.001 x −0.328
 Tcharge = 0.328 milliseconds

The discharge time of a capacitor, from voltage Vinitial to voltage Vfinal can be calculated with
this equation:

 Tdischarge = −RC x ln(Vfinal / Vinitial))

Using a 10K resistor and a 0.1 µF capacitor, the discharge time from five volts to the TTL
threshold of 1.4 volts works out to:

Tdischarge = −0.001 x ln(1.4 /5.0)
Tdischarge = −0.001 x ln(0.28)
Tdischarge = −0.001 x −1.272
Tdischarge = 1.272 milliseconds

11: Simple Analog Input

Practical SX/B • Page 75

Measuring the RC discharge time with the SX chip requires these steps:

1. Make the I/O pin an output and high to charge the capacitor.
2. Hold the program long enough to allow the capacitor to fully charge (5 × TC).
3. Make the I/O pin an input to allow the capacitor to discharge.
4. Keep track of the time elapse until the I/O pin switches from 1 to 0.

Step four is the most involved, and SX/B has a built-in function specifically for this purpose:
RCTIME. Add the following circuit to the seven-segment LED project:

Potentiometer Circuit added to 7-Segment LCD Display Circuit

Figure 11.2

As you can see, this circuit actually has two resistors, and there is a very good reason: the
220-ohm fixed resistor is designed to protect the SX’s I/O pin. In step 1, above, the pin is
made an output and high. Assuming no 220-ohm resistor, what would happen if the
potentiometer was at its minimum (0 ohm) position and the program was delayed? The pin
would short directly to Vss and could be damaged. By inserting a 220-ohm resistor – as we
did with the basic button input circuit – we can protect the SX by limiting the current
through the I/O pin.

With this circuit the capacitor charge time will be: 5 × 220 Ω × 0.0000001 F = 0.00011 s, or
110 microseconds. I suggest you double this to 200 microseconds to account for component

11: Simple Analog Input

Page 76 • Practical SX/B

tolerances. It’s true that 200 microseconds is a very short duration, but SX/B can handle it
with its PAUSEUS (pause in microseconds) instruction, as shown in the listing that follows.

The following program requires the SX-Key to display the RCTIME value using the debug
output window. If you’re using the SX-Blitz, read the program explanation and then move to
the next section that demonstrates moving the RCTIME value to a seven-segment display.

' RCTIME1.SXB
' -- requires SX-Key for debug mode (use Run or Poll)

DEVICE SX28, OSC4MHZ, TURBO, STACKX, OPTIONX
FREQ 4_000_000

PotPin PIN RB.0

potVal VAR Byte

PROGRAM Start

Start:
 DO
 HIGH PotPin ' charge the cap
 PAUSEUS 20
 RCTIME PotPin, 1, potVal, 3 ' read pot, 6 uS units

 WATCH potVal ' display potVal
 BREAK ' update Debug window

 LOOP

The definitions section of the program should make sense to you now so we’ll focus on the
main loop at Start. The first line sets the control pin high to charge the capacitor;
remember that the HIGH instruction automatically sets the specified I/O pin to the output
mode.

As with other versions of embedded BASIC, SX/B includes the INPUT
and OUTPUT instructions. These instructions are rarely required,
however, and do not need to be used in conjunction with most complex
instructions (e.g., RCTIME). To do so will not cause harm, but it will
consume code space.

11: Simple Analog Input

Practical SX/B • Page 77

As explained above, the capacitor will charge in about 110 microseconds so a 200
microsecond delay using PAUSEUS provides ample time for the capacitor to charge. The
real work is done by RCTIME which is complex, multi-stage instruction.

RCTIME starts by setting the specified pin to input mode as this will allow the capacitor to
discharge to Vss through the potentiometer. Next, the output variable is cleared (to zero)
and a timer is started. At the end of the timer the output variable is incremented and the I/O
pin is tested to see if it has crossed the input voltage threshold or the output variable has
rolled-over to zero. If neither event has taken place the timer-test-increment sequence is
repeated.

In the RCTIME function syntax the value that follows the I/O pin is the pin level when
RCTIME is active; 1 when using discharge mode, 0 when using charge mode. The default
timing unit is two microseconds, but this is not always adequate for a given RC circuit and
the size of the output variable.

In this program, potVal is a byte, so its range is zero to 255. What we need to do is ensure
that at the maximum potentiometer setting the output value will fit into a byte. Here’s how
we do that: we start by taking our time-constant, one millisecond, and multiplying it by the
time required for the RC circuit to go from fully charged to 1.4 volts, a factor of 1.27 (see
the info box, above).

So, it should take about 1.27 milliseconds for the capacitor to discharge to the input
threshold level. We divide 255 into this value and if the result is exactly two microseconds
or less, we can use RCTIME without the optional resolution parameter.

That’s not the case here, however. Here’s the math:

0.00127 s / 255 = 0.00000498 (4.98 microseconds)

As this value is greater than two microseconds we must divide it by two and round up to the
nearest integer. The result is three in the resolution parameter which sets the internal timer
for RCTIME to six microseconds. With this resolution the theoretical maximum output for
this circuit using RCTIME is 212 (1.27 milliseconds divided by six microseconds).

How can we see this value as the program operates? Without additional hardware (e.g.,
serial LCD display), the easiest thing we can do is use the debug capability of the SX-Key
IDE, but we can only do this when using the SX-Key (the IDE will not enter debug mode

11: Simple Analog Input

Page 78 • Practical SX/B

when using the SX-Blitz). The SX-Key differs from the SX-Blitz in that it can generate the
required clock frequency and display the contents of the SX’s memory as the program runs.

The SX-Key Debugging Tool Windows

Figure 11.3

To facilitate viewing the value we have inserted two lines into the program:
 WATCH potVal ' display potVal
 BREAK ' update Debug window

The WATCH directive moves the target variable to its own window so that it’s easy to see.
The BREAK directive stops the program at that point so that we can see the results.

11: Simple Analog Input

Practical SX/B • Page 79

After you’ve entered and saved the program, compile it and enter debug mode by clicking
the Debug toolbar button:

...or click Run → Debug from the main menu. If there are no errors the program will be
downloaded and several new windows will appear on your screen as shown in Figure 11.3.

In the Debug Control Panel, click the Run button. The program will run and the value in the
Watch window will probably change and be displayed on a red background. Red is used to
indicate that the value has changed since the last break. Turn the potentiometer to a new
position and click Run again.

If you want to see the program in [near] real-time, click the Poll button. This runs the
program, refreshes the Watch window and display at BREAK, and then restarts the program.
In polling mode you can watch potVal change as you turn the potentiometer.

Display without Debug
Okay… what if you don’t have an SX-Key (you’re using the SX-Blitz) and can’t run the
IDE in debug mode – how do you see the value of the potentiometer without resorting to a
fancy external display (that you haven’t learned to use yet!)?

The answer is simple, if not immediately obvious: we can use the seven-segment display
from Chapter 8. Wait a minute, there’s only one digit. No problem, we’ll display the three
digit value, one digit at a time, with a short break in between so we can differentiate one
reading from the next. We’ll be using a technique similar to the coded LED pulsing, but this
time we’re displaying three digits in sequence.

Modify the listing as shown below.
' RCTIME2.SXB
' -- display in (coded) DEC3 format with 7-segment LED

DEVICE SX28, OSC4MHZ, TURBO, STACKX, OPTIONX
FREQ 4_000_000

PotPin PIN RB.0
Segments PIN RC OUTPUT

potVal VAR Byte
digit VAR Byte
PROGRAM Start

Start:

11: Simple Analog Input

Page 80 • Practical SX/B

 HIGH PotPin ' charge the cap
 PAUSEUS 200
 RCTIME PotPin, 1, potVal, 3 ' read pot, 6 uS units

Show_100s:
 digit = potVal / 100 ' get 100s digit
 potVal = __REMAINDER ' save 10s and 1s
 READ Dig_Map + digit, Segments ' display digit
 PAUSE 350
 Segments = %00000000 ' blank
 PAUSE 100

Show_10s:
 digit = potVal / 10 ' get 10s digit
 potVal = __REMAINDER ' save 1s
 READ Dig_Map + digit, Segments
 PAUSE 350
 Segments = %00000000
 PAUSE 100

Show_1s:
 digit = potVal ' get 1s digit
 READ Dig_Map + digit, Segments
 PAUSE 350
 Segments = %00000000
 PAUSE 500 ' delay between readings
 GOTO Start

Dig_Map:
 ' bafg.cde
 DATA %11100111 ' 0
 DATA %10000100 ' 1
 DATA %11010011 ' 2
 DATA %11010110 ' 3
 DATA %10110100 ' 4
 DATA %01110110 ' 5
 DATA %01110111 ' 6
 DATA %11000100 ' 7
 DATA %11110111 ' 8
 DATA %11110110 ' 9

After reading the RC circuit we extract the hundreds digit from potVal by dividing by 100.
SX/B does only integer division and anything left over is put into an internal variable called
__REMAINDER; at this point __REMAINDER will hold the tens and ones values so we copy
that back into potVal for the sections that follow.

11: Simple Analog Input

Practical SX/B • Page 81

The value of digit is used as an index into the seven-segment table and READ is used to
update the LED display. We hold the display with PAUSE and then clear it briefly. The
clearing step is very important as it lets us differentiate each digit.

After the blanking period the process is repeated for the tens and the ones, but we don’t have
to do any dividing to get the ones because the remainder of a division by 10 will always be
something between zero and nine.

The final blanking space is extended to 500 milliseconds. This provides a clear indication
that what’s being displayed is a new value.

Update the program to display the potentiometer value in hexadecimal format. Hint: you only
need two digits, and the divisor is 16. For those with a little programming experience, see if
you can find a way to show the number without using division.

12: Simple Analog Output - Modulating an LED

Page 82 • Practical SX/B

12: Simple Analog Output - Modulating an LED

The last experiment demonstrated that with a small amount of code and simple support
components, a digital device like the SX can deal with the world of analog input (one form,
we’ll see others later). The same holds true for analog output, specifically an analog voltage
from a digital output pin. This is accomplished with the PWM instruction.

Since the SX/B PWM instruction is designed to charge an RC circuit it behaves differently
than you might expect. If we look at the raw output of the instruction we’ll see what
sometimes looks like a random stream of 1’s and 0’s. What’s happening, though, is that the
ratio of 1’s to 0’s in the stream – when averaged over the Duration – matches the ratio of
Duty / 255. Since the full output is five volts we can calculate Duty to provide a specific
output voltage with PWM using this formula:

Duty = (Volts / 5.0) × 255

Figure 12.1 shows a simple circuit that allows the SX to provide a useful output voltage
(0 to 5) when using the PWM instruction.

LM358 Op-Am Schematic

Figure 12.1

In order to get 5.0 volts from the LM358, its supply voltage should be at least 6.5 volts. Refer to
the LM358 datasheet for details.

12: Simple Analog Output - Modulating an LED

Practical SX/B • Page 83

What really counts here is the RC structure connected to the output pin. By holding a charge
the modulated output from PWM is converted to a DC level. The op-amp simply buffers the
RC components so that they are not swamped by an applied load.

We can in fact demonstrate the PWM instruction with a much simpler circuit – one that allows
us to use built-in test equipment.

LED Circuit

Figure 12.2

Have you guessed what test equipment will be used? Our eyes, of course! You see, when
the PWM instruction is applied to an LED, the modulation of the LED is so fast that our eyes
will integrate (through persistence of vision) the pulses into an apparent brightness level. If
we put PWM into a loop we can modulate the brightness; instead of blinking the LED appears
to slowly pulsate.
' PWM.SXB

DEVICE SX28, OSC4MHZ, TURBO, STACKX, OPTIONX
FREQ 4_000_000

Led PIN RB.0

duty VAR Byte

PROGRAM Start

Start:
 DO
 FOR duty = 0 TO 254 ' off to bright
 PWM Led, duty, 2 ' modulate the LED
 NEXT
 FOR duty = 255 TO 1 STEP -1 ' bright to off
 PWM Led, duty, 2
 NEXT
 PAUSE 50
 LOOP

12: Simple Analog Output - Modulating an LED

Page 84 • Practical SX/B

As you can see there are two FOR-NEXT loops that handle the brightening and dimming
phases of the modulation, and that the maximum output is at 255 (this is the 100% point
where the output stream contains only 1’s). For the dimming loop we’re forced to use a
STEP value of negative 1 so that the loop will count backward. Without a negative STEP
the FOR-NEXT loop will terminate prematurely because the starting value is greater than the
terminating value. If your LED appears to go from dark slowly to bright, then immediately
back to dark, you’ve left out the STEP parameter of the second FOR-NEXT loop. This is
easy to do, and something you’ll want to watch for when using FOR-NEXT to count
backward.

It’s important to understand that the SX/B PWM instruction works differently from the PWM
process used by DC motor controllers. Motor control circuits typically use a fixed frequency
and vary the duty cycle of the output to change the motor speed. The PWM instruction, on the
other hand, does not have a perfectly-fixed period within a single on-off cycle of the output
pin. The output, however, when averaged over the time specified in the Duration parameter,
does attain the specified duty cycle.

Internally, a byte-sized accumulator is kept in which the Duty value is constantly added
during the course of the Duration. When this accumulator rolls-over (exceeds 255), the
output is made high, otherwise it is made low. If the Duty was set to 115 (45%), for
example, we would see the following values in the accumulator at the start of the instruction.

Accumulator Value PWM Pin

0 Low

15 Low

230 Low

345(89) High(overflow)

204 Low

319(63) High(overflow)

Table 12.1

Accumulator Values

Even with this short list you can see that the output is not symmetrical, and yet if you
continue the list it will average out to a duty-cycle of 45% over time. If you watch the raw
output on an oscilloscope the wave-form will appear to bounce-around a bit; this is due to
the asymmetrical roll-over behavior of the accumulator. This style of PWM may not be the
best for controlling motor speed, but it works very well for generating an analog voltage and
is extremely code efficient.

12: Simple Analog Output - Modulating an LED

Practical SX/B • Page 85

If you need to use the op-amp circuit above to create a “stiff” voltage, be sure to set the
Duration parameter to match the RC charge time. In the circuit above the RC time-constant
is 10 milliseconds (10,000 × 0.000001 = 0.01), so the Duration parameter of PWM should be
set to 10 or greater to ensure that the capacitor will be fully changed when the Duty
parameter is set to 255 (100%). Remember, it takes five time constants to charge a capacitor
to the applied voltage.

Finally, even with the op-amp buffer, there will be some leakage from the capacitor so the
PWM instruction will need to be called periodically to hold the output at the desired level.

12: Simple Analog Output - Modulating an LED

Page 86 • Practical SX/B

PPaarrtt IIII::PPrraaccttiiccaall PPrrooggrraammmmiinngg

13: Using a Template and Programming with Style; page 88.
14: Divide, Conquer, and Rule!; page 97.
15: Using and Managing Variable Space in SX/B; page 109.

13: Using a Template and Programming with Style

Page 88 • Practical SX/B

13: Using a Template and Programming with Style

As you study the habits of professional programmers, those individuals who make a living
by writing code day-in and day-out, you will find that they tend to be very organized,
especially when it comes to their source code listings. The reason is simple: why expend
creative energy on formatting and programming style when that energy is best targeted at the
problem to be solved?

Note that I used the term “creative energy” here. I used this term deliberately because
programming is both art and science. What it comes down to is that I sincerely believe you
will be well-served by creating or adopting a programming style and then just sticking with
it. In this section I’m going to share my template and my style guidelines. Now, I cannot
claim to have created all of this myself; this is the result of many years of programming
various machines and in a variety of languages, and mostly from a lot of great input from
many highly-capable sources.

An interesting note is that I can usually recognize my own code where it has been
incorporated into another’s program, because my programming style is so consistent. I view
this as a good thing, as my programming habits tend to follow the way I think so when I do
find my code elsewhere I can usually figure out what is going on without a lot of stress.
Adopt the template and style as-is, or modify it so that it better fits you and your needs; the
key is to make things comfortable so that you can simply focus on the logic of your program,
not the mechanical execution of entering it. Let’s have a look at what I consider a nice SX/B
programming template:
' ===
'
' File......
' Purpose...
' Author....
' E-mail....
' Started...
' Updated...
'
' ===

' ---
' Program Description
' ---

13: Using a Template and Programming with Style

Practical SX/B • Page 89

' ---
' Conditional Compilation Symbols
' ---

' ---
' Device Settings
' ---

DEVICE SX28, OSCXT2, TURBO, STACKX, OPTIONX, BOR42
FREQ 20_000_000
ID "Name"

' ---
' I/O Pins
' ---

' ---
' Constants
' ---

' ---
' Variables
' ---

' ===
' INTERRUPT
' ===

' RETURNINT

' ===
 PROGRAM Start
' ===

' ---
' Subroutine / Function Declarations
' ---

13: Using a Template and Programming with Style

Page 90 • Practical SX/B

' ---
' Program Code
' ---

Start:

Main:

 GOTO Main

' ---
' Subroutine / Function Code
' ---

' ---

' ---
' User Data
' ---

What you should immediately notice is that everything is sectionalized, providing a bit of
roadmap to program construction. Where the order of things does matter, that is already
taken care of (e.g., the INTERRUPT section must appear before other code). Of course, we
won’t and certainly don’t have to use every section, but for a template it is best to be all-
inclusive and then remove those sections that are not required when the program has been
completed and is ready for distribution. Or, if you expect a program will evolve, you can
simply leave them in place as they have no affect on the compiled output.

Another nice thing about using a template is that we don’t have to remember mundane
details like the elements of the program header, those items in the DEVICE directive. And
do note that the INTERRUPT section is there, but “commented out.” We do this because
an empty interrupt still interrupts the program and may cause the program to behave in ways
we don’t want or expect. When we do need to have an interrupt in our program, however,
the template has it for us, in the correct place, and all we have to do is remove the comment
markers.

The great news is that the SX/Key IDE supports templates so we don’t have to open the file
and save it to a new name; most of this process is automated. Simply take the template file
(above) and copy it to the \Template folder of the IDE. On my system, that’s located at:
C:\Program Files\Parallax Inc\SX-Key v3.2.3\Templates

13: Using a Template and Programming with Style

Practical SX/B • Page 91

To enable the template you’ll need to go back into the Configuration dialog by clicking Run
→ Configure on the menu. In the Configuration/IDE page, click on Use Templates If
Available and make sure the Default Editor Type is set to SX/B.

• Select Use Templates If
Available

• Select SX/B as the Default
Editor Type

Figure 13.1

Click on OK to exit the dialog. Now, when you click on File → New your template will be
loaded and ready to use. If you click on the New toolbar button you’ll get the following
dialog to verify the editor type:

Verify Editor Type Dialog

Figure 13.2

Just click on Yes and your SX/B template will be loaded into the IDE.

13: Using a Template and Programming with Style

Page 92 • Practical SX/B

A Matter of Style
As I mentioned earlier, programming style is a very big thing in the professional world. In
fact, many organizations write entire manuals on programming style so that they can use
contract programmers and still end up with code that gracefully integrates into the code
written by their staff.

I don’t think we need a whole book, but a few guidelines will make your listings easier to
read, and therefore easier to debug. Yes, we would all like to think that we write perfect
programs 100% of the time, but that is just not the case – nor will it ever be. It is my
contention, then, that a neat, orderly style will make tracking down “bugs” (human errors) in
your programs a whole lot easier. Why do I think this way? Because most of the problems
I’ve created myself were not errors in logic, they were typos created out of laziness and not
sticking to my own guidelines.

For new programmers some of the terms used below may seem a bit foreign – don’t worry
about that. The chapters that follow will explain everything (like subroutines, functions, etc.)
in a great deal of detail.

I ask you to consider these things when writing your SX/B programs:

1. Do It Correctly the First Time

Many programmers, especially new ones, fall into the “I'll knock it out now and fix it later.”
trap. Invariably, the “fix it later” part never happens and then sloppy code makes its way into
production projects. If you don't have time to do it correctly now, when will you find time to
do it again?

Start clean and you'll be less likely to introduce errors into your programs. And if errors do
pop up, clean and organized formatting will make them easier to find and fix.

2. Be Organized and Consistent

Using a standard template (see above) will help you organize your programs and establish a
consistent presentation. The SX-Key IDE allows you to specify a template for the File →
New (SX/B) menu option.

13: Using a Template and Programming with Style

Practical SX/B • Page 93

3. Use Meaningful Names

Be verbose when naming constants, variables and program labels. The compiler will allow
names up to 32 characters long. Using meaningful names will reduce the number of
comments and make your programs easier to read, debug, and maintain.

4. Naming I/O Pins

Begin I/O pin names with an uppercase letter and use mixed case, with uppercase letters at
the beginning of new words within the name. For example,
HeaterCtrl PIN RA.0

Since connections don't change during the program run, I/O pins are named like constants
(#5) using mixed case, beginning with an uppercase letter. Resist the temptation to use SX
pin names (e.g., RB.7) in the body of a program as this can lead to errors when making
circuit changes.

5. Naming Constants

Begin constant names with an uppercase letter and use mixed case, with uppercase letters at
the beginning of new words within the name.
AlarmCode CON 25

6. Naming Variables

Begin variable names with a lowercase letter and use mixed case, with uppercase letters at
the beginning of new words within the name.
waterLevel VAR Byte
tally VAR Word

7. Variable Type Declarations

SX/B supports word, byte, byte array, and bit variables. To define bit variables, the byte or
word that holds them must be defined first.
sysCount VAR Word
alarms VAR Byte
overTemp VAR alarms.0
underTemp VAR alarms.1
clock VAR Byte(3)

13: Using a Template and Programming with Style

Page 94 • Practical SX/B

8. General Program Labels

Begin program labels with an uppercase letter, separate words within the label with an
underscore character, and begin new words with a number or uppercase letter. Labels should
be preceded by at least one blank line, begin in column one, and must be terminated with a
colon. Note that program labels are not followed with a colon when used as part of a
command, such as with GOTO, below.
Blink_Led:
 Leds = %00000001
 DO
 PAUSE 100
 Leds = Leds << 1
 LOOP UNTIL Leds = %00000000
 GOTO Blink_Led

9. SX/B Keywords

All SX/B language keywords, including CON, VAR, and SUB should be uppercase. The SX-
Key IDE does syntax highlighting, but does not change case so this is the responsibility of
the programmer.
Main:
 DO
 HIGH AlarmLed
 WAIT_MS 100
 LOW AlarmLed
 WAIT_MS 100
 LOOP

10. Declare Subroutines and Functions

Declared subroutines were introduced in SX/B version 1.2, and as of version 1.5, SX/B
supports functions as well. Functions allow a routine to return byte or word values, while
subroutines are limited to returning a single byte. Good programming practice suggests
using a function when the normal behavior is to return a value.

Declared subroutines and functions benefit the programmer in two ways: 1) the compiler
creates a jump table that allows the subroutine code to be placed anywhere in the program
space and, 2) the compiler does a syntax check on the subroutine call to ensure that the
proper number of parameters are being passed.
DELAY_MS SUB 1, 2
GET_TEMP FUNC 2

13: Using a Template and Programming with Style

Practical SX/B • Page 95

When using a declared subroutine, the use of GOSUB is not required.
Main:
 DO
 HIGH AlarmLed
 DELAY_MS 100
 LOW AlarmLed
 DELAY_MS 100
 LOOP

Note that when a subroutine or function does not require any parameters to be passed to it
you should declare zero parameters, like this:
SOUND_ALARM SUB 0
RX_BYTE FUNC 1, 0

In the RX_BYTE function declaration, above, there are no parameters passed but one byte is
returned.

11. Subroutine and Function Labels

Subroutines and functions are reusable sections of code that go a long way to conserving SX
program space and making our listings easier to read and manage. For subroutine and
function labels use all uppercase letters, separating words within the label with an
underscore character. Note that in use, subroutine and function labels will be preceded with
SUB or FUNC and do not require a colon; the code block will be terminated with ENDSUB or
ENDFUNC. Using this format makes your SX/B programs compatible with planned updates
of SX/B, so it’s best to adopt this style now.
' Use: DELAY_MS ms
' -- 'ms' is delay in milliseconds, 1 - 65535

SUB DELAY_MS
 IF __PARAMCNT = 1 THEN
 tmpW1 = __PARAM1 ' save byte value
 ELSE
 tmpW1 = __WPARAM12 ' save word value
 ENDIF
 PAUSE tmpW1
 ENDSUB

' Use: result = RX_BYTE
' –- returns one byte from serial input

FUNC RX_BYTE
 SERIN RX, Baud, tmpB1 ' rx one byte

13: Using a Template and Programming with Style

Page 96 • Practical SX/B

 RETURN tmpB1
 ENDFUNC

As shown above, it is good practice to document the subroutine with usage requirements,
especially when optional parameter(s) may be used.

12. Indent Nested Code

Nesting blocks of code improves readability and helps reduce the introduction of errors.
Indenting each level with two spaces is recommended to make the code readable without
taking up too much space on any line when you have several levels of indenting.
' Use: LCD_OUT [aByte | string | label]
' -- "aByte" is single-byte constant or variable
' -- "string" is an embedded literal string
' -- "label" is DATA statement label for stored z-String

SUB LCD_OUT
..tmpB1 = __PARAM1
..IF __PARAMCNT = 2 THEN
....tmpW1 = __WPARAM12
....DO
......READINC tmpW1, tmpB1
......IF tmpB1 = 0 THEN EXIT
......SEROUT LcdTx, LcdBaud, tmpB1
....LOOP
..ELSE
....SEROUT LcdTx, LcdBaud, tmpB1
..ENDIF
..ENDSUB

Note: The dots are used to illustrate the level of nesting and are not a part of the code.

14: Divide, Conquer, and Rule!

Practical SX/B • Page 97

14: Divide, Conquer, and Rule!

While the chapter title sounds like the advice given by some great general to a commander
about to be sent into battle, this is in fact my admonition to you regarding your SX/B
programs. It’s easy for us to feel overwhelmed by the scope of a big project, and the best
way to get past that feeling is to use the elephant rule:

Q: How does one eat an elephant?
A: One bite at a time.

When you consider it, a large program is nothing more than a collection of related lines of
code, and when we’re especially practical there will be groups of lines within the program
that will serve a specific purpose and that can (and should) be reused. We call these groups
subroutines and functions. The use of subroutines and functions allows us to divide a big
program into smaller, more manageable modules.

If you have any programming background at all you’ve probably heard the terms but may
not be clear on what distinguishes one from the other. The difference is subtle: subroutines
do some process; functions do some process and return one or more values. The truth is that
subroutines can return a single value, but we don’t often employ this ability, and it is good
form to define a module that can return one or more values as a function.

The use of subroutines and functions serves two major purposes in SX/B: 1) they allow us to
extend and customize the language to our needs and, 2) they allow us to encapsulate SX/B
instructions that generate a lot of assembly code into a single location, thus saving the
program space requirements of our application.

Let’s look at an example using PAUSE. Now, PAUSE doesn’t generate a lot of assembly
code but it is used so frequently within embedded applications that we can save program
space by encapsulating it in a subroutine. It would be nice, too, if the subroutine could work
with byte or word values. One of the great things about SX/B is that it includes a
mechanism for passing values (called parameters) to subroutines, and the compiler will even
check our code to ensure that we’re using the subroutine correctly.

Declaring and Using Subroutines
Everything starts with the declaration. For subroutines the declaration syntax is as follows:
NAME SUB Min_Bytes {, Max_Bytes }

14: Divide, Conquer, and Rule!

Page 98 • Practical SX/B

The declaration starts with the name of the subroutine; per convention the subroutine name
will be in all caps and with an underscore to separate words within the name. This is
followed by the SUB identifier and the parameter count list. The parameter count list tells
how many bytes, if any, will be passed to the subroutine. Not all subroutines will require
parameters and when they don’t we should define the Min_Bytes value as zero. If a
subroutine can handle a variable number of parameter bytes, the first value in the list is the
minimum number of bytes expected, the second is the maximum.

I tend to use the name DELAY_MS for the subroutine that encapsulates PAUSE. And here’s
how that subroutine is declared in an SX/B program:
DELAY_MS SUB 1, 2 ' delay in milliseconds

In the declaration for DELAY_MS we can see that the subroutine expects at least one byte
and can accept two. If we try using it with zero or more than two bytes, the compiler will
flag an error as we’ve violated our own definition of the subroutine’s interface.

The mechanism for moving values from our main program to the subroutine is through a set
of reserved variables. In the global RAM space (see Chapter 15: Using and Managing
Variable Space in SX/B) there are five bytes of RAM used for parameter passing to and
from subroutines and functions. Groups of two bytes can be combined to form word values
as shown in the table below:

Byte Word

__PARAM1

__PARAM2
__WPARAM12

__PARAM3
__WPARAM23

__PARAM4
__WPARAM34

__PARAMCNT/__PARAM5

Table 14.1

Parameter-
passing RAM

As you can see, there are four parameter bytes (which can be grouped into words) and a byte
that passes the parameter byte count to the subroutine or function. For those subroutines
and functions that use a fixed number of parameters the __PARAMCNT byte may be used as
__PARAM5 if needed.

14: Divide, Conquer, and Rule!

Practical SX/B • Page 99

Let’s work through the DELAY_MS subroutine before exploring the intricate details of
mixing parameter types. Here’s the listing:
' Use: DELAY_MS ms
' -- 'ms' is delay in milliseconds, 1 - 65535

SUB DELAY_MS
 IF __PARAMCNT = 1 THEN
 tmpW1 = __PARAM1 ' save byte value
 ELSE
 tmpW1 = __WPARAM12 ' save word value
 ENDIF
 PAUSE tmpW1
 ENDSUB

The subroutine starts with the SUB definition and the name from the previous declaration,
DELAY_MS. Note that the subroutine name is not followed by a colon as is the case with
standard program labels. The first operational line of code examines __PARAMCNT to see
how many bytes were passed; if one byte was passed then __PARAM1 is copied into tmpW1;
if two bytes were passed (indicating a word value) then __WPARAM12 is copied into
tmpW1. We don’t have to worry about moving the values into __PARAM1 or
__WPARAM12, the compiler handles that part for us – we just need to know that a byte will
show up in __PARAM1 and a word in __WPARAM12.

SX/B uses the __PARAMx and __WPARAMx variables internally so the first thing a subroutine
or function should do is copy any passed values to other variables. Failing to copy passed
values may result in their corruption by the use of an SX/B instruction.

Once we’ve captured the value that was passed the rest is easy; we simply use that value
with PAUSE. Again, the reason for doing this is that PAUSE is compiled into a single
location and this saves space versus using PAUSE at multiple locations in our program.

Once the subroutine is declared and coded its use is straightforward – just like a new
keyword:
 DELAY_MS 100

...or:
 DELAY_MS 2500

14: Divide, Conquer, and Rule!

Page 100 • Practical SX/B

In the first example the value of 100 will be put into __PARAM1 and __PARAMCNT will be
set to one before jumping to MS_DELAY because a byte will hold that value. In the second
example our value exceeds the limits of a single byte so the value of 2500 will be put into
__WPARAM12 (which is constructed from __PARAM1 and __PARAM2) and __PARAMCNT
will be set to two before calling MS_DELAY. When MS_DELAY is complete and the
ENDSUB instruction is executed the program will return to the line that follows the call to
the subroutine.

Declaring and Using Functions
A function is very much like a subroutine except that by its design it will return one or more
bytes to the caller. The syntax for a function declaration is:
Name FUNC Return_Bytes {, Min_Bytes {, Max_Bytes }}

You can see that with functions there may be up to three values in the parameters definition
list. The first is how many bytes will be returned to the caller. The second is the minimum
number of bytes, if any, that will be passed to the function, the final, if used, is the maximum
number of bytes that will be passed to the function.

It should be clear that the parameters list for subroutines and functions specify the number of
bytes that are passed, not the number of values. If, for example a subroutine or function
requires a byte and a word to be passed to it, the minimum parameter count value will be
three.

Let’s have a look at a simple function that will be useful in many embedded applications
RX_BYTE FUNC 1, 0, 1 ' receive a byte

By this declaration you can see that the function called RX_BYTE will return one byte to the
caller and may or may not be passed a single byte parameter. The purpose of RX_BYTE will
be to receive a byte from a serial device like a PC, modem, or even another processor –
perhaps a master controller in a multi-processor system. The SX/B function that receives a
serial byte is called SERIN. SERIN is a complex function and generates a lot of assembly
code relative to other SX/B instructions, so it makes good sense to package it into a custom
function. And by doing this we can even modify the SERIN return value if desired.

14: Divide, Conquer, and Rule!

Practical SX/B • Page 101

Here’s the custom RX_BYTE function:
' Use: theByte = RX_BYTE { ConvertToUpper }
' -- converts "a".."z" to "A".."Z" if "ConvertToUpper" bit 0 is 1

FUNC RX_BYTE
 IF __PARAMCNT = 1 THEN ' option specified
 tmpB2 = __PARAM1 ' yes, save it
 ELSE
 tmpB2 = 0 ' no, set to default
 ENDIF
 SERIN RX, Baud, tmpB1 ' receive a serial byte
 IF tmpB2.0 = 1 THEN ' convert to uppercase?
 IF tmpB1 >= "a" THEN ' lowercase?
 IF tmpB1 <= "z" THEN
 tmpB1.5 = 0 ' ...yes, make uppercase
 ENDIF
 ENDIF
 ENDIF
 RETURN tmpB1
 ENDFUNC

As you’d expect a function begins with the FUNC declaration followed by the function name,
RX_BYTE (again, without a trailing colon). And as we did with the subroutine earlier, the
first order of business is to check for parameters that have been passed. With RX_BYTE you
may or may not get a parameter. If one is passed that value is copied into tmpB2, otherwise
tmpB2 is cleared to zero.

The SERIN keyword is used just as it would be in any other program, specifying the receive
pin, a baud rate/mode constant, and a return variable for the value, in this case tmpB1 is used
for the return value. The reason that a parameter could be passed to RX_BYTE is that this
will allow the function to convert a lowercase letter to uppercase if desired. This is very
useful in command processor applications where the master device may send a command as
uppercase or lowercase (this is especially true when the “master” is a terminal program
being run by a human that doesn’t make the same distinction between “a” and “A” that a
microcontroller does). By converting letters to uppercase the command processing code of
the application is simplified.

After the serial byte has been received the code checks to see if bit 0 of tmpB2 (which holds
the parameter, or zero if none) is 1. If it is, then the received byte is checked to see if it is a
lowercase letter. If both conditions are met the letter is converted to uppercase by clearing
bit 5 of its [ASCII] value. Finally, RETURN is used to send the value of tmpB1 back to the
caller.

14: Divide, Conquer, and Rule!

Page 102 • Practical SX/B

To use RX_BYTE without case conversion we would do this:
 cmd = RX_BYTE

… where cmd is a byte variable. To convert cmd to uppercase when a letter is received we
would modify the call like this:
 cmd = RX_BYTE 1

What’s wrong with this line of code? Nothing, from a technical standpoint. It will in fact
work, but it’s not very friendly or elegant. We can fix that with a constant definition:
Uppercase CON 1

And now the call to RX_BYTE can be changed to something far more user friendly:
 cmd = RX_BYTE Uppercase

Creating Cooperative Subroutines and Functions
In the course of many applications you will have the opportunity to call a subroutine or
function from another and you’ll want to design them such that they can cooperate with each
other in the manner in which they use variables.

In the example above we saw how the RX_BYTE function was created to put a wrapper
around SX/B’s SERIN function. The complement to SERIN is of course called SEROUT
and it is used to transmit a serial byte to another device. Like SERIN, the SEROUT
instruction generates a lot of assembly code and should be wrapped in a custom subroutine
to conserve program space.

Here’s the declaration for TX_BYTE which is used to transmit a serial byte (on a known I/O
pin and fixed baud rate).
TX_BYTE SUB 1 ' transmit a byte

And here’s the subroutine code that corresponds to it:
' Use: TX_BYTE theByte

SUB TX_BYTE
 tmpB1 = __PARAM1
 SEROUT TX, Baud, tmpB1
 ENDSUB

14: Divide, Conquer, and Rule!

Practical SX/B • Page 103

This subroutine is very simple; the parameter passed to TX_BYTE is copied into tmpB1 and
that variable is used with SX/B’s SEROUT instruction. We can get double-duty out of this
subroutine by defining another routine to transmit strings of characters. For this we will add
a new subroutine declaration to the program:
TX_STR SUB 2 ' transmit a z-string

The reason that this subroutine requires two bytes is that we will actually pass an address
pointer to the beginning of the string. This can come in two forms: an inline (embedded)
string or in a DATA statement (see chapter XX for more details on DATA and WDATA). The
inline use would look like this:
 TX_STR "SX/B Rocks!"

This code will compile to the string of characters between the quotes and be followed by a
zero, hence the term z-string (zero-terminated string); the address of the inline string is
passed to TX_STR. As you’ll see in just a moment the zero terminator is critical to the
operation of the TX_STR subroutine.

To put a string in a DATA statement you would do this:
Msg:
 DATA "SX/B Rocks!", 0

Note the trailing zero – again, this is critical and not added automatically as is the case with
embedded strings. To use this string the call to TX_STR is as follows:
 TX_STR Msg

The compiler resolves the label, Msg, to an address value in the SX’s program space. The
advantage of the second method is that it saves program space in the SX if the same string is
transmitted from different locations in the code. Okay, let’s look at the code for sending a
string:
' Use: TX_STR [String | Label]
' -- pass embedded string literal or DATA label (zString at label)

SUB TX_STR
 tmpW1 = __WPARAM12 ' get address of string
 DO
 READINC tmpW1, tmpB1 ' read a character
 IF tmpB1 = 0 THEN EXIT ' if 0, string complete
 TX_BYTE tmpB1 ' send the byte
 LOOP
 ENDSUB

14: Divide, Conquer, and Rule!

Page 104 • Practical SX/B

With a two-byte (word) address being passed to the subroutine the compiler will put this
value into __WPARAM12; our subroutine will copy this into tmpW1 for use in our code. The
subroutine enters a loop using READINC to pull a character from memory at the address
now specified in tmpW1. After the read operation the value of tmpW1 is automatically
incremented which causes it to point to the next character.

The current character is now in tmpB1 and compared against zero; if it is zero we have
reached the end of the string and the loop is terminated with EXIT. If not zero, the byte is
passed to TX_BYTE in tmpB1 and the loop continues to process the next character.
Remember that TX_BYTE is going to capture the parameter sent to it and place it in tmpB1
for transmission via SEROUT.

What’s really happening, then, is that the character is moving from tmpB1 to __PARAM1
and then back into tmpB1. There is no elegant way around this small redundancy and at SX
speeds it will not affect the operation of the program. By designing two cooperative
subroutines like this we get the greatest flexibility while using the smallest amount of
variable space.

Mixing Parameter Values
There will come a point when an application requires multiple values be passed to a
subroutine or function and that those values can be either bytes or words. There is no
problem in doing this, yet there is one caveat: you must know the design of your subroutine
or function so that when you pass values of mixed types you pass them in the correct order.

Let’s use multiplication as an example. The * operator seems somewhat innocuous and yet
generates a fair amount of assembly code, so let’s package this operator into a custom
function called MULT. For the greatest flexibility the function should allow two bytes, a byte
and a word, or two words to be multiplied. It’s that second option that is the tricky part: we
need to know the order in which mixed-type values are passed. I tend to favor the small
value first approach so the when a byte and word are to be multiplied, the byte will be the
first parameter.

Since the MULT function will return a word value the declaration is as follows:
MULT FUNC 2, 2, 4 ' multiply two values

To handle the options available to the MULT function we’ll use a complex IF-THEN
structure to move the various parameters to the correct working variables.

14: Divide, Conquer, and Rule!

Practical SX/B • Page 105

' Use: result = MULT value1, value2

FUNC MULT
 IF __PARAMCNT = 2 THEN ' two bytes?
 tmpW1 = __PARAM1
 tmpW2 = __PARAM2
 ELSEIF __PARAMCNT = 3 THEN ' word and byte?
 tmpW1 = __WPARAM12
 tmpW2 = __PARAM3
 ELSE
 tmpW1 = __WPARAM12 ' two words
 tmpW2 = __WPARAM34
 ENDIF
 tmpW1 = tmpW1 * tmpW2
 RETURN tmpW1
 ENDFUNC

When a word and byte are passed, the __PARAMCNT variable will be set to three. The
MULT function expects mixed values to be passed as word and then byte. If we pass the byte
and then the word, __PARAMCNT will still be set to three but the results will not be correct
due to the misalignment of values when moved into tmpW1 and tmpW2.

You may have noticed in some of the listings above that there is a “Use” example in
comments associated with the code. This practice will help you (and others using your code)
to keep things straight. Remember, the __PARAMCNT variable indicates the number of
bytes being passed to a subroutine or function, but it does not determine what those bytes
mean – your program does. Here are the possibilities:

__PARAMCNT = 1
 A. One byte in __PARAM1

__PARAMCNT = 2
 A. First byte in __PARAM1
 Second byte in __PARAM2

 B. One word in __WPARAM12

14: Divide, Conquer, and Rule!

Page 106 • Practical SX/B

__PARAMCNT = 3
A. First byte in __PARAM1
 Second byte in __PARAM2
 Third byte in __PARAM3

B. One byte in __PARAM1
 One word in __WPARAM23

C. One word in __WPARAM12 ← Recommended for mixed types
 One byte in __PARAM3

__PARAMCNT = 4

A. First byte in __PARAM1
 Second byte in __PARAM2
 Third byte in __PARAM3
 Fourth byte in __PARAM4

B. First byte in __PARAM1
 Second byte in __PARAM2
 One word in __WPARM34

C. First byte in __PARAM1
 One word in __WPARM23
 Second byte in __PARAM4

D. One word in __WPARM12 ← Recommended for mixed types
 First byte in __PARAM3
 Second byte in __PARAM4

E. First word in __WPARAM12
 Second word in __WPARAM34

I think the list above illustrates the importance of designing your subroutines and functions
carefully when they are using mixed-type parameters. A quick comment associated with
your subroutines and functions code can save a lot of troubleshooting.

14: Divide, Conquer, and Rule!

Practical SX/B • Page 107

Returning Multiple Values from a Function
We’ve seen how a subroutine or function can receive multiple, even mixed-type, values.
What if we want a function to return multiple values – is this possible? Yes, it is; a function
can return up to four bytes and as with receiving multiple parameters, returning multiple
bytes, especially as mixed-type values, requires a bit of thought.

A function that returns two bytes could be returning a word or two individual bytes; again,
that is based on our design – the compiler makes no assumption of what the bytes mean.
When returning a word we would do something like this:
 RETURN tmpW1

… and in the main listing we’d use something like this to get that word:
 wResult = MY_FUNC

But what if we want the function to return two individual (and unrelated) byte values? The
function’s RETURN instruction would be modified like this:
 RETURN tmpB1, tmpB2

In this case the first byte will be returned in __PARAM1 and the second in __PARAM2. Of
course, the call to the function must now be modified as well:
 bResult1 = MY_FUNC ' get the first byte
 bResult2 = __PARAM2 ' get the second byte

Note that two (or more) lines are required if the function is returning more than one value.
If the second line (above) is not used, then the value in __PARAM2 will likely be lost as this
variable (as with all the __PARAM variables) is used internally by SX/B instructions. So,
make sure you save the results of a function immediately after the call to prevent losing what
was returned. By using multiple comma-delimited values with RETURN, your function can
return up to five bytes (__PARAM1 through __PARAM5) to the caller.

Let’s look at one more example just so that this is clear. With this line:
 RETURN tmpW1, tmpB1, tmpB2

… the calling code should look something like:
 myWordVal = MY_FUNC
 myByteVal1 = __PARAM3
 myByteVal2 = __PARAM4

14: Divide, Conquer, and Rule!

Page 108 • Practical SX/B

Does this make sense? – it should. The word value is returned in __WPARAM12 which is
built from __PARAM1 and __PARAM2, hence the first byte in the list is returned in
__PARAM3.

Review
Subroutines and functions allow us to extend SX/B as we desire and to save precious code
space that would otherwise be [redundantly] used by the compile-in-place nature of SX/B.
SX/B affords a great deal of flexibility in passing values back and forth between the main
program and custom subroutines and functions; it’s simply a matter for us to design, declare,
and code those routines. You’ll get lots of practical guidance using subroutines and
functions in the chapters that follow.

15: Using and Managing Variable Space in SX/B

Practical SX/B • Page 109

15: Using and Managing Variable Space in SX/B

When compared to a microcontroller like the Basic Stamp, the SX has a lot of RAM
(variable) space; 136 bytes in the SX28 and 262 bytes in the SX48. That said, not all of the
RAM space is available for user variables. Another challenge at first is that the RAM space
is not contiguously addressed, it is in fact split into “banks” of 16 bytes each; the bank
concept for RAM is not unique to the SX and is used in many other small microcontrollers.
The SX28 has seven banks; the SX48 has 16 banks.

For simple programs with minimal variable requirements we will not be bothered by the
RAM banking. The SX’s RAM, when managed by SX/B, works out like this:

Device General RAM Arrays Max Array Size

SX20 20 6x16 + 1x5 + 1x4 16
SX28 19 6x16 + 1x5 + 1x4 16

SX48/52 17 223 223

Table 15.1

Parameter-
passing RAM

This table deserves a bit of explanation. When using an SX28, for example, we have 19
bytes of program memory that we never have to worry about. In the general RAM space we
can define bytes and words, and define bits within a byte or word. Here’s an example
defining each of these types:
flags VAR Byte
hiTemp VAR flags.0
loTemp VAR flags.1

tmpSetting VAR Word

These definitions would occupy three bytes of the general RAM space: one byte for the flags
variable, two bytes for the tmpSetting variable. When defining words like this the compiler
also provides aliases to the low- and high-bytes of the word, in this case those aliases would
be tmpSetting_LSB and tmpSetting_MSB.

It may at first seem odd that the bigger processors have smaller general RAM spaces. The
reason for this is that the SX’s architecture maps the output ports into the general RAM
space; the SX28 has one more port (RC) than the SX20, and the SX48/52 has two more ports
(RD and RE) than the SX28.

15: Using and Managing Variable Space in SX/B

Page 110 • Practical SX/B

It’s not a frequent occurrence, but you can actually run out of general (bank 0) RAM space.
When you do the compiler will complain with the following error:

“VARIABLE EXCEEDS AVAILABLE RAM”

Of course, we haven’t run completely out of RAM, we’ve just exceeded the limits of the
general RAM space. We can use the variable space in bank 1 and higher but to do so in
SX/B means we have to declare those variables as elements of an array of bytes – SX/B does
not currently support arrays of bits or words. In the table above you can see that the SX28
will handle up to six arrays of 16 elements, plus one array of five elements, plus one array of
four elements.

As we covered in earlier chapters, SX/B allows the aliasing (renaming) of variables so in an
advanced application we might see something like this:
serial VAR Byte (16)
txCount VAR serial(0)
txDivide VAR serial(1)
txLo VAR serial(2)
txHi VAR serial(3)
rxCount VAR serial(4)
rxDivide VAR serial(5)
rxByte VAR serial(6)
baud1x0 VAR serial(7)
baud1x5 VAR serial(8)

When using these definitions, manipulating the variable called txCount is actually
manipulating element zero of the serial array. When an array is declared as above, it is
automatically placed in the first available RAM bank above bank zero.

Before moving on let’s look at a diagram of the SX RAM banking scheme in Figure 15.1.
The SX20/28 memory consists of a global RAM bank of special function registers (for
program and port control), and eight, 16-byte banks of general-purpose RAM. The SX48
memory consists of the global RAM bank and 16, 16-byte banks of general-purpose RAM.

In this diagram, n is seven for the SX20/28, and 15 for the SX48/52. On the SX20 ports C,
D, and E are not implemented so those bytes are available for general use. On the SX28
ports D and E are not implemented so those bytes are available for general use. The SX/B
compiler reserves five bytes (as __PARAM1 through __PARAM5) of the global bank
immediately after the port variables for internal use.

15: Using and Managing Variable Space in SX/B

Practical SX/B • Page 111

 Global Bank 0 Bank 1 Bank 2 Bank n
$00 - IND $10 - $0 $0 $0 $0
$01 - RTCC $11 - $1 $1 $1 . . . $1
$02 - PC $12 - $2 $2 $2 $2
$03 - Status $13 - $3 $3 $3 $3
$04 - FSR $14 - $4 $4 $4 $4
$05 - Port A $15 - $5 $5 $5 $5
$06 - Port B $16 - $6 $6 $6 $6

* $07 - Port C $17 - $7 $7 $7 $7
* $08 - Port D $18 - $8 $8 $8 $8
* $09 - Port E $19 - $9 $9 $9 $9

$0A - $A $1A - $A $A $A $A
$0B - $B $1B - $B $B $B $B
$0C - $C $1C - $C $C $C $C
$0D - $D $1E - $D $D $D $D
$0E - $E $1E - $E $E $E $E
$0F - $F $1F - $F $F $F $F

SX RAM Banking Scheme

Figure 15.1

Note that SX/B reserves several bytes in bank 7 on the SX20 and SX28 for TRIS “shadow
registers” and saving internal variables during interrupts; advanced programmers need to
exercise caution before manually mapping variables into the SX’s RAM space. When defining
arrays, bank selection is handled by the compiler.

The general RAM space used by SX/B is the memory available in the global bank after the
port variables, and in bank 0. When arrays are defined they are mapped into bank 1 and
higher as space is available. Note that the SX20 and SX28 are limited to arrays of 16
elements each. Given no other definitions, these arrays:
arrayN1 VAR Byte (12)
arrayN2 VAR Byte (12)

… would be mapped into banks 1 and 2, respectively, when used in an SX20 or SX28. If the
total size of both arrays was 16 or fewer bytes they could be mapped into a single bank; this
process is handled during the compilation stage, so despite what looks like scary
complexities at first, we need not be concerned about the actual bank mapping of our arrays.
SX/B takes care of the nitty-gritty details.

15: Using and Managing Variable Space in SX/B

Page 112 • Practical SX/B

SX/B Variable Usage Considerations
As suggested earlier the general RAM space (global space and bank 0) is easiest on the code
generated by SX/B. In fact, many instructions reset the SX’s bank pointer (called the FSR)
after an instruction to make sure the SX is pointing to the general RAM by default.

For complete details on SX RAM space utilization and access refer to Appendix E in the SX-
Key/Blitz Development System Manual.

It should be understood that the only native variable types in the SX are the byte and bit, and
a bit is not really a stand-alone element, it is, essentially, an element of a bit-array that we
call a byte.

The word variable type is synthesized in code. In SX/B the only place that word variables
can be assigned is in the general space. And for those coming from Parallax’s Basic Stamp
2 family (or any of the multitude of copy-cats) the nib variable type is also synthesized and
does not exist in SX/B.

One of the great joys I get from being a programmer is programming my way out of
problems. The rest of this chapter will be devoted to utility functions that let us get the most
from the SX’s abundant RAM space.

Bit Access in Bytes and Words
A byte really is just an array of eight bits, but there is no mechanism in SX/B – or assembly
for that matter – to provide a variable index for a bit within a byte. We spent a lot of time
on subroutines and functions in Chapter 14 so let’s put that education to work.

We’ll start by creating a set of functions that allow us to manipulate byte-sized or word-sized
bit arrays. Start with these declarations:
SET_BIT FUNC 2, 2, 3 ' set a bit
CLR_BIT FUNC 2, 2, 3 ' clear a bit
PUT_BIT FUNC 2, 3, 4 ' put bit into value
GET_BIT FUNC 1, 2, 3 ' get bit from value

The first three functions return two bytes so that they’re compatible with word variables.
Don’t worry if your output variable for one of the functions is a byte, the SX/B compiler

15: Using and Managing Variable Space in SX/B

Practical SX/B • Page 113

knows to use the LSB of a word variable that is being moved to a byte. As we saw in the
last chapter, we can use SX/B’s __PARAMCNT variable to determine whether a byte or
word was passed to the function.

The first function, SET_BIT, is designed to let us write a 1 to any bit position within a byte
or word. The modified value will be returned (as a word). The reason for this design is that
it provides the greatest flexibility in use as the function result can be written back to the
variable that was passed, or to a separate variable altogether – like these examples:
 val1 = SET_BIT val1, 3 ' change val1
 val2 = SET_BIT val1, 0 ' change val2; val1 unchanged

And now for the function listing:

' Use: result = SET_BIT value, pos
' -- sets bit of "value" specified by "pos" to 1

FUNC SET_BIT
 IF __PARAMCNT = 2 THEN
 tmpW1 = __PARAM1 ' save byte value
 tmpB1 = __PARAM2 ' save position
 ELSE
 tmpW1 = __WPARAM12 ' save word value
 tmpB1 = __PARAM3 ' save position
 ENDIF
 tmpW2 = 1 << tmpB1 ' convert position to mask
 tmpW1 = tmpW1 | tmpW2 ' set selected bit
 RETURN tmpW1 ' return to caller
 ENDFUNC

This function starts by saving the value passed to it in tmpW1 (a word) and the bit position to
set in tmpB1, using the __PARAMCNT variable to determine how the values were passed to
the function. The position value tmpB1 is converted to a word-sized bit mask for the
position by using the left-shift operator.

Using the left-shift operator is an efficient way to create a mask; here are a few values to
illustrate how it works:

1 << 0 = %0000000000000001
1 << 1 = %0000000000000010
1 << 8 = %0000000100000000
1 << 15 = %1000000000000000
When using the left-shift operator (<<) the shift value indicates how many zeroes will end
up on the right of the value being shifted.

15: Using and Managing Variable Space in SX/B

Page 114 • Practical SX/B

The value and position bit mask are ORed together to set the selected bit position (one OR
anything is one) and then the modified value is returned to the caller.

The second function, CLR_BIT, is the complement of SET_BIT in that it allows us to clear
the specified bit within a byte or word value.
' Use: result = CLR_BIT value, pos
' -- clears bit of "value" specified by "pos" to 0

FUNC CLR_BIT
 IF __PARAMCNT = 2 THEN
 tmpW1 = __PARAM1 ' save byte value
 tmpB1 = __PARAM2 ' save position
 ELSE
 tmpW1 = __WPARAM12 ' save word value
 tmpB1 = __PARAM3 ' save position
 ENDIF
 tmpW2 = 1 << tmpB1 ' convert position to mask
 tmpW2 = ~tmpW2 ' invert mask
 tmpW1 = tmpW1 & tmpW2 ' clear selected bit
 RETURN tmpW1 ' return to caller
 ENDFUNC

As you can see, this function starts out identically to SET_BIT. The change comes after the
creation of the bit mask where the bits in the mask value are inverted (0 to 1, 1 to 0). Now
the mask is ANDed with the target value, and as the position bit is zero from the inversion of
the mask, this bit will be cleared (zero AND anything is zero).

For those programs where we want to write a variable value to a given position within a byte
or word, the PUT_BIT function is useful. This is, essentially, a combination of SET_BIT
and CLR_BIT that uses the bit value passed to the function to determine how the mask is
applied.
' Use: result = PUT_BIT value, pos, bitVal
' -- sets bit of "value" specified by "pos" to bitVal.0

FUNC PUT_BIT
 IF __PARAMCNT = 3 THEN
 tmpW1 = __PARAM1 ' save byte value
 tmpB1 = __PARAM2 ' save position
 tmpB2 = __PARAM3 ' save bit value
 ELSE
 tmpW1 = __WPARAM12 ' save word value
 tmpB1 = __PARAM3 ' save position
 tmpB2 = __PARAM4 ' save bit value
 ENDIF
 tmpW2 = 1 << tmpB1 ' convert position to mask

15: Using and Managing Variable Space in SX/B

Practical SX/B • Page 115

 IF tmpB2.0 = 0 THEN ' 0?
 tmpW2 = ~tmpW2 ' yes, invert mask
 tmpW1 = tmpW1 & tmpW2 ' clear selected bit
 ELSE
 tmpW1 = tmpW1 | tmpW2 ' no, set selected bit
 ENDIF
 RETURN tmpW1 ' return to caller
 ENDFUNC

Note that the bit value must be passed as a byte and will be saved in tmpB2. When the
function is ready to check this value it tests bit 0; if this bit is zero then the specified position
bit is cleared, otherwise the position bit is set.

The final function for dealing with bit arrays is called GET_BIT. This function will retrieve
a specific bit value from a byte or word.
' Use: result = GET_BIT value, pos
' -- returns 0 or 1 based on value.pos

FUNC GET_BIT
 IF __PARAMCNT = 2 THEN ' byte value
 tmpW1 = __PARAM1 ' save value
 tmpB1 = __PARAM2 ' save position
 ELSE
 tmpW1 = __WPARAM12 ' word value
 tmpB1 = __PARAM3
 ENDIF
 tmpW2 = 1 << tmpB1 ' convert position to mask
 tmpW1 = tmpW1 & tmpW2 ' clear other bits
 IF tmpW1 > 0 THEN ' if result not zero
 tmpB1 = 1 ' return 1
 ELSE
 tmpB1 = 0
 ENDIF
 RETURN tmpB1 ' return to caller
 ENDFUNC

Like the others, this function creates a mask and applies it to the target value. If the
specified bit was set, the result of the AND operation will be equal to the mask value,
otherwise the result will be zero. To keep the function friendly we’ll reassign the output
byte to 1 if the bit was set, hence the bit value ends up bit 0 of the returned byte.

For BASIC Stamp 2 programmers the PUT_BIT and GET_BIT functions described above
can be used in place of the .LOWBIT(idx) variable modifier.

15: Using and Managing Variable Space in SX/B

Page 116 • Practical SX/B

Nib Access in Bytes and Words
You know by now that the nib, like the word, is a synthesized data type and not native to the
SX. That said, using nib values can be convenient and there will be times, especially when
dealing with BCD (binary coded decimal) numbers that nib placement or extraction is
useful.

As above, we can use SX/B to create a set of routines to take care of nib access for those
programs that need this feature. With two functions we can set and get a specified nib
within another byte or word value.
PUT_NIB FUNC 2, 3, 4 ' sets specified nib
GET_NIB FUNC 1, 2, 3 ' returns specified nib

The PUT_NIB function will return an updated value if the position specified is valid, that is
between 0 and 3, inclusive, as these are the only valid nibs in a word. Likewise, GET_NIB
will return the specified nib if the position specified is valid, otherwise the result will be
zero. Let’s look at the code for PUT_NIB:
' Use: result = PUT_NIB value, newNib, pos
' -- "value" returned in "result" if "pos" not valid

FUNC PUT_NIB
 IF __PARAMCNT = 3 THEN ' byte passed
 tmpW1 = __PARAM1 ' save value
 tmpB1 = __PARAM2 & $0F ' save newNib (four bits)
 tmpB2 = __PARAM3 ' save position
 ELSE ' word passed
 tmpW1 = __WPARAM12
 tmpB1 = __PARAM3 & $0F
 tmpB2 = __PARAM4
 ENDIF
 IF tmpB2 < 4 THEN ' validate position
 tmpB2 = tmpB2 << 2 ' x4 for nibs
 tmpW2 = %1111 << tmpB2 ' create mask
 tmpW2 = ~tmpW2 ' invert for ANDing
 tmpW1 = tmpW1 & tmpW2 ' clear previous nib
 tmpW2 = tmpB1 << tmpB2 ' shift newNib into
position
 tmpW1 = tmpW1 | tmpW2 ' put into result
 ENDIF
 RETURN tmpW1
 ENDFUNC

15: Using and Managing Variable Space in SX/B

Practical SX/B • Page 117

After saving the parameters passed to it, PUT_NIB checks the position value – if this is out
of range (0..3) there is no need for additional processing. Assuming the position value is
good, the nib position is converted to a bit shift value by multiplying it by four. Note,
though, that the multiplication operator is not used, instead, the shift-left operator is used
here. There are times when shifting is the better choice than multiplying or dividing.

When multiplying or dividing by powers of two (2, 4, 8, 16, 32…), the shift operators are far
more efficient than * or /. Instead of:
 result - result * 4

use:
 result - result << 2

The left-shift operator (<<) is used for multiplying, the right shift operator (>>) for dividing.

Using the newly adjusted tmpB2 a mask is created in tmpW2. The first line sets ones in the
bits of the target nib, the second line inverts the bits of the mask so that the AND operator
can be used to clear the bits of the target nibble.

The new nibble value is now shifted into the appropriate position and placed into the result
by using OR. The updated value, in tmpW1, is returned to the caller.

Now let’s see how we can extract a nibble value from a byte or word.
' Use: result = GET_NIB value, pos
' -- returns 0 if "pos" is not valid

FUNC GET_NIB
 IF __PARAMCNT = 2 THEN ' byte passed
 tmpW1 = __PARAM1 ' save value
 tmpB1 = __PARAM2 ' save position
 ELSE ' word passed
 tmpW1 = __WPARAM12
 tmpB1 = __PARAM3
 ENDIF
 IF tmpB1 < 4 THEN ' valid
 tmpB1 = tmpB1 << 2 ' x4 for nibs
 tmpW1 = tmpW1 >> tmpB1 ' move target nib to _LSB
 ELSE
 tmpW1_LSB = 0 ' not valid, result is zero
 ENDIF
 tmpW1_LSB = tmpW1_LSB & $0F ' strip off high nibble
 RETURN tmpW1_LSB ' return result to caller
 ENDFUNC

15: Using and Managing Variable Space in SX/B

Page 118 • Practical SX/B

For the GET_NIB function we need the value and the nibble position. With those
parameters saved we’ll check the position to ensure that it’s valid, if not the low byte of
tmpW1 is cleared to zero. For a valid position the position is converted to a bit shift value as
above, and then the input value is shifted right; this puts the target nibble into the low nib of
tmpW1_LSB. The high nibble of tmpW1_LSB is stripped off by ANDing it with $0F and
the final result is returned to the calling program. Even though a byte is returned, it will
always be in the range of $0 to $F.

You might think that we would extend our function library with PUT_BYTE and
GET_BYTE but as indicated in the first part of this chapter, a word variable is actually
created from two bytes. Instead of creating a whole function to set a given byte within a
word we can use our knowledge of SX/B variables to do it directly:

Let’s say we want to set the high byte of result to 0 – here’s how easy that is:
 result_MSB = 0

For review, this declaration:
result VAR Word

… actually generates the following definitions:
result EQU 0x0E
result_LSB EQU result
result_MSB EQU result+1

Note that to use a word you must declare a word – you cannot manually synthesize words by
making equivalent declarations in high-level SX/B.

Review
The SX has a lot of RAM space and in most applications we won’t ever have to think about
assignments. In those rare cases where our simple variable requirements exceed the amount
of general RAM we can overcome this problem by creating arrays and using aliasing to give
the array elements useful names; SX/B will take care of the rest for us. When bit or nib
access is required the subroutines and functions in this chapter should be handy.

Yes, there are additional memory tricks (like arrays of more than 16 bytes on an SX28) that
we can use to get the most of the SX’s ample RAM space, and those are best learned in
application, so let’s get to it!

