
FlexBASIC Language Reference
5.9.8

Total Spectrum Software

01/31/2022

ii

Contents

FlexBASIC 1
Introduction . 1

Command Line compilation . 1
Preprocessor . 1

Directives . 1
Predefined Symbols . 3

Language Syntax . 4
Comments . 4
Integers . 4
Keywords . 5
Predefined functions and variables 7
Variable, Subroutine, and Function names 10
Operators . 13
Extending lines . 15
Multiple statements per line . 16

Data Types . 16
Numeric Data types . 16
Pointer types . 17
String type . 17
Classes . 18
Type Aliases . 19

Language features . 19
TRUE and FALSE . 19
Function declarations . 19
Memory allocation . 20
Templates . 22
Selecting code based on type properties 23

Libraries . 24
Classes . 24
Include files . 24

Propeller Hardware Features . 25
Input, Output, and Direction . 25
Hardware registers . 26

iii

iv CONTENTS

Alphabetical List of Keywords and Built In Functions 26
ABS . 26
ACOS . 26
ALIAS . 26
AND . 26
ANDALSO . 27
ANY . 27
APPEND . 27
AS . 27
ASC . 28
ASIN . 28
ASM . 28
ATAN . 29
ATAN2 . 29
BIN$. 29
BITREV . 30
__BUILTIN_ALLOCA . 30
BYREF . 30
BYTE . 31
BYTEFILL . 31
BYTEMOVE . 31
BYVAL . 31
CALL . 32
CASE . 32
CAST . 32
CATCH . 33
CHR$. 33
CLASS . 33
CHAIN . 35
CHDIR . 36
_CLKFREQ . 36
CLKFREQ . 36
CLKSET . 36
CLOSE . 37
CONST . 37
CONTINUE . 37
COS . 38
COUNTSTR . 38
CPU . 38
CPUCHK . 39
CPUID . 39
CPUSTOP . 39
CPUWAIT . 39
CURDIR$. 40
DATA . 40
DECLARE . 40

CONTENTS v

DECUNS$. 42
DEF . 42
DEFINT . 42
DEFSNG . 42
DELETE . 43
DELETE$. 43
DIM . 43
DIR$. 44
DIRECTION . 45
DO . 45
DOUBLE . 46
ELSE . 46
END . 46
ENDIF . 47
ENUM . 47
EXIT . 47
EXP . 48
FALSE . 48
FIXED . 48
FOR . 49
FUNCTION . 50
FUNCTION . 52
GET . 53
GETCNT . 53
GETERR . 54
GETMS . 54
GETRND . 54
GETSEC . 54
GETUS . 54
GOSUB . 54
GOTO . 55
_HASMETHOD . 55
HEAPSIZE . 56
HEX$. 56
IF . 56
IMPORT . 57
INPUT . 57
INPUT$. 58
INSERT$. 59
INSTR . 59
INSTRREV . 59
INT . 59
INTEGER . 59
LCASE$. 59
LEFT$. 60
LEN . 60

vi CONTENTS

LET . 60
LIB . 60
LINE . 60
_LOCKCLR . 60
_LOCKNEW . 60
_LOCKREL . 61
_LOCKTRY . 61
LOG . 61
LONG . 61
LONGINT . 61
LONGFILL . 61
LONGMOVE . 61
LOOP . 61
LPAD$. 62
LTRIM$. 62
MID$. 62
MOD . 62
MOUNT . 62
NEW . 63
NEXT . 63
NIL . 63
NOT . 64
NUMBER$. 64
OCT$. 64
ON X GOTO . 64
OPEN . 64
OPTION . 65
OR . 66
ORELSE . 66
OUTPUT . 67
PAUSEMS . 67
PAUSESEC . 67
PAUSEUS . 67
PI . 67
PINFLOAT . 67
PINLO . 68
PINHI . 68
PINREAD . 68
PINRND (P2 only) . 68
PINSET . 68
PINSTART (available on P2 only) 68
PINTOGGLE . 68
POINTER . 69
PRINT . 69
PRINT USING . 70
PRIVATE . 71

CONTENTS vii

PROGRAM . 71
PTR . 71
PUT . 71
RDPIN (available on P2 only) . 72
READ . 72
_REBOOT . 72
REM . 72
REMOVECHAR . 72
REPLACECHAR . 72
RESTORE . 73
RETURN . 73
REVERSE$. 73
RIGHT$. 73
RND . 73
ROUND . 74
RPAD$. 74
RTRIM$. 74
_SAMETYPES . 74
SELECT CASE . 74
SELF . 75
SENDRECVDEVICE . 75
_SETBAUD . 75
SHARED . 75
SHL . 76
SHORT . 76
SHR . 76
SIN . 76
SINGLE . 76
SIZEOF . 76
SPACE$. 77
SQR . 77
SQRT . 77
STEP . 77
STR$. 77
STRERROR$. 77
STRING$. 77
STRINT$. 78
SUB . 78
TAN . 79
THEN . 79
THROW . 79
THROWIFCAUGHT . 79
TO . 80
TRIM$. 80
TRUE . 80
TRY . 80

viii CONTENTS

TYPE . 80
UBYTE . 81
UCASE$. 81
UINTEGER . 81
ULONG . 81
ULONGINT . 81
USHORT . 81
USING . 81
VAL . 81
VAL% . 82
VAR . 82
WAITCNT . 82
WAITPEQ (only available on P1) 82
WAITPNE (only available on P1) 82
WEND . 83
WITH . 83
WHILE . 83
WORD . 83
WORDFILL . 83
WORDMOVE . 83
WRPIN (only available on P2) 84
WXPIN (only available on P2) 84
WYPIN (only available on P2) 84
XOR . 84

Tips and Tricks . 84
Including binary data . 84

Sample Programs . 85
Toggle a pin . 85

FlexBASIC

Introduction
FlexBASIC is the BASIC language supported by the FlexProp compiler for the
Parallax Propeller and Prop2. It is a BASIC dialect similar to FreeBASIC or
Microsoft BASIC, but with a few differences. On the Propeller chip it compiles
to LMM code (machine language) which runs quite quickly.

The FlexProp GUI supports BASIC development.

Command Line compilation
At the moment there is no stand-alone BASIC compiler, but both the C compiler
(flexcc) and Spin compiler (flexspin) can compile BASIC programs. The compiler
recognizes the language in a file by the extension. If a file has a ".bas" extension
it is assumed to be BASIC. Otherwise it is assumed to be a different language
(the default is Spin for flexspin and C for flexcc).

Because Spin has similar comment structures to BASIC, the flexspin compiler
front end is generally a good choice for BASIC development.

Preprocessor
flexspin has a pre-processor that understands basic directives like #include,
#define, and#ifdef / #ifndef / #else / #endif.

Directives
DEFINE

#define FOO hello

Defines a new macro FOO with the value hello. Whenever the symbol FOO
appears in the text, the preprocessor will substitute hello.

Note that unlike the C preprocessor, this one cannot accept arguments. Only
simple defines are permitted.

1

2 FLEXBASIC

Also note that by default the preprocessor is case sensitive, like the C preprocessor
but unlike the rest of the BASIC language. This is for compatibility with older
releases, and may change at some point. However, the preprocessor may be
made case insensitive with the #pragma ignore_case directive (see below).

If no value is given, e.g.

#define BAR

then the symbol BAR is defined as the string 1.

IFDEF

Introduces a conditional compilation section, which is only compiled if the symbol
after the #ifdef is in fact defined. For example:

#ifdef __P2__
'' propeller 2 code goes here
#else
'' propeller 1 code goes here
#endif

IFNDEF

Introduces a conditional compilation section, which is only compiled if the symbol
after the #ifndef is not defined.

ELSE

Switches the meaning of conditional compilation.

ELSEIFDEF

A combination of #else and #ifdef.

ELSEIFNDEF

A combination of #else and #ifndef.

ERROR

Prints an error message. Mainly used in conditional compilation to report an
unhandled condition. Everything after the #error directive is printed. Example:

#ifndef __P2__
#error This code only works on Propeller 2
#endif

PREPROCESSOR 3

INCLUDE

Includes a file. The contents of the file are placed in the compilation just as if
everything in that file was typed into the original file instead. This is often used

#include "foo.h"

Included files are searched for first in the same directory as the file that contains
the #include. If they are not found there, then they are searched for in any
directories specified by a -I or -L option on the command line. If the environment
variable FLEXCC_INCLUDE is defined, that gives a directory to be searched after
command line options. Finally the path ../include relative to the FlexProp
executable binary is checked.

PRAGMA

Provide a compiler or preprocessor hint. Only two pragmas are currently
supported:

#pragma ignore_case

Makes the preprocessor, like the rest of the compiler, case insensitive. This will
probably become the default in some future release.

#pragma keep_case

Forces the preprocessor to be case sensitive.

WARN

#warn prints a warning message; otherwise it is similar to #error.

UNDEF

Removes the definition of a symbol, e.g. to undefine FOO do:

#undef FOO

Predefined Symbols
There are several predefined symbols:

Symbol When Defined
__propeller__ always defined to 1 (for P1) or 2 (for P2)
__propeller2__ only defined if compiling for Propeller 2
__P2__ obsolete version of __propeller2__
__FLEXBASIC__ always defined to the FlexProp major version number
__FLEXSPIN__ if the flexspin front end is used
__SPINCVT__ always defined to the FlexProp major version number
__SPIN2PASM__ if --asm is given (PASM output) (always defined by flexspin)

4 FLEXBASIC

Symbol When Defined
__SPIN2CPP__ if C++ or C is being output (never in flexspin)
__cplusplus if C++ is being output (never in flexspin)
__DATE__ a string containing the date when compilation was begun
__FILE__ a string giving the current file being compiled
__LINE__ the current source line number
__TIME__ a string containing the time when compilation was begun
__VERSION__ a string containing the full version of flexspin in use

A predefined symbol is also generated for type of output being created:

Symbol When Defined
__OUTPUT_ASM__ if PASM code is being generated
__OUTPUT_BYTECODE__ if bytecode is being generated
__OUTPUT_C__ if C code is being generated
__OUTPUT_CPP__ if C++ code is being generated

Language Syntax
Comments
Comments start with rem or a single quote character, and go to the end of line.
Note that you need a space or non-alphabetical character after the rem; the
word remark does not start a comment. The rem or single quote character may
appear anywhere on the line; it does not have to be the first thing on the line.

There are also inline or multi-line comments, which start with /' and end with
'/.

Examples:

rem this is a comment
' so is this
print "hello" ' this part is a comment too
/' here is a multi

line comment '/
print /' this inline comment is ignored '/ "hello, world"

Integers
Decimal integers are a sequence of digits, 0-9.

Hexadecimal (base 16) integers start with the sequence "&h", "0h", or "0x"
followed by digits and/or the letters A-F or a-f.

LANGUAGE SYNTAX 5

Binary (base 2) integers start with the sequence "&b" or "0b" followed by the
digits 0 and 1.

Numbers may contain underscores anywhere to separate digits; those underscores
are ignored.

For example, the following are all ways to represent the decimal number 10:

10
1_0
0xA
&h_a
&B1010

Keywords
Keywords are always treated specially by the compiler, and no identifier may be
named the same as a keyword.

abs
alias
and
andalso
any
append
as
asm
__builtin_alloca
byref
byte
byval
call
case
cast
catch
chain
class
close
const
continue
cpu
data
declare
def
defint
defsng
delete
dim

6 FLEXBASIC

direction
do
double
else
end
endif
enum
exit
extern
fixed
for
function
__function__
get
gosub
goto
_hasmethod
if
import
input
integer
let
lib
line
long
longint
loop
mod
next
new
nil
not
open
option
or
orelse
output
pointer
print
private
program
ptr
put
read
rem
restore

LANGUAGE SYNTAX 7

return
_sametypes
select
self
shared
shl
short
shr
single
sizeof
sqrt
step
sub
then
throw
throwifcaught
to
try
type
ubyte
uinteger
ulong
ulongint
until
ushort
using
var
wend
while
with
word
xor

Predefined functions and variables
A number of functions and variables are predefined. These names may be
redefined (for example as local variable names inside a function), but changing
them at the global level is probably unwise; at the very least it will cause
confusion for readers of your code.

bin$
bitrev
bytefill
bytemove
chdir
_clkfreq

8 FLEXBASIC

clkfreq
clkset
cos
countstr
cpuchk
cpuid
cpustop
cpuwait
curdir$
decuns$
delete$
dir$
dira
dirb
exp
false
_gc_alloc
_gc_alloc_managed
_gc_collect
_gc_free
getcnt
geterr
getms
getrnd
getsec
getus
hex$
ina
inb
input$
insert$
instr
instrrev
lcase$
left$
len
_lockclr
_locknew
_lockrel
_locktry
log
longfill
longmove
lpad$
ltrim$
mid$

LANGUAGE SYNTAX 9

mkdir
mount
number$
oct$
outa
outb
pausems
pausesec
pauseus
pi
pinfloat
pinhi
pinlo
pinread
pinrnd
pinset
pinstart
pintoggle
rdpin
_reboot
removechar$
replacechar$
reverse$
right$
rnd
round
rtrim$
sendrecvdevice
_setbaud
sin
space$
str$
strerror$
string$
strint$
tan
trim$
true
ucase$
val
val%
waitcnt
waitpeq
waitpne
waitx
wordfill

10 FLEXBASIC

wordmove
wrpin
wxpin
wypin

Variable, Subroutine, and Function names
Names of variables, subroutines, or functions ("identifiers") consist of a letter or
underscore, followed by any sequence of letters, underscores, or digits. Names
beginning with an underscore are reserved for system use. Case is ignored; thus
the names avar, aVar, AVar, AVAR, etc. all refer to the same variable.

Identifiers may have a type specifier appended to them. $ indicates a string
variable or function, % an integer variable or function, and # or ! a floating point
variable or function. The type specifier is part of the name, so a$ and a# are
different identifiers (the first is a string variable and the second is a floating point
variable). If no type specifier is appended, the identifier is assumed to be an
integer. This may be overridden with the defsng directive, which specifies that
variables starting with certain letters are to be assumed to be single precision
floating point.

Variable or function types may also be explicitly given, and in this case the
type overrides any implicit type defined by the name. However, we strongly
recommend that you not use type specifiers like $ for variables (or functions)
that you give an explicit type to.

Examples:

dim a% ' defines an integer variable
dim a# ' defines a different floating point variable
dim a as string ' defines another variable, this time a string
dim a$ as integer ' NOT RECOMMENDED: overrides the $ suffix to make an integer variable

'' this function returns a string and takes a float and string as parameters
function f$(a#, b$)
...

end function

'' this function also returns a string from a float and string
function g(a as single, b as string) as string
...

end function

Arrays

Arrays must be declared with the dim keyword. FlexBASIC supports only one
and two dimensional arrays, but they may be of any type. Higher dimensional

LANGUAGE SYNTAX 11

arrays may be emulated by creating type definitions and making arrays of those,
i.e. arrays of arrays.

Examples of array declarations:

rem an array of 10 integers
rem note that dim gives the last index
dim a(9)
rem same thing but more verbose
dim c(0 to 9) as integer
rem an array of 10 strings
dim a$(9)
rem another array of strings
dim d(9) as string
rem a two dimensional array of strings
dim g$(9, 9)

Arrays are by default indexed starting at 0. That is, if a is an array, then a(0)
is the first thing in the array, a(1) the second, and so on. This is similar to
other languages (such as Spin and C), where array indexes start at 0. The value
given in the dim is the last array index. This is different from Spin and C, where
arrays are declared with their sizes rather than last array index.

Code to initialize an array to 0 could look like:

dim a(9) as integer
sub zero_a

for i = 0 to 9
a(i) = 0

next i
end sub

It is possible to change the array base by using

option base 1 ' make arrays start at 1 by default

The array definition may have an explicit lower bound given, for example:

dim a(1 to 10) ' array of 10 items
dim b(0 to 10) ' array of 11 items

For two dimensional arrays both dimensions must have the same lower bound.

Note that pointer dereferences (using array notation) always use the last value
set for option base in the file, since we cannot know at run time what the
actual base of the pointed to object was. So it is best to set this just once.

Global, Member, and Local variables.

There are three kinds of variables: global variables, member variables, and local
variables.

12 FLEXBASIC

Global (shared) variables may be accessed from anywhere in the program, and
exist for the duration of the program. They are created with the dim shared
declaration, and may be given an initial value. For example,

dim shared x = 2

creates a global variable with an initial value of 2.

A global variable is shared by all instances of the object that creates it. For
example, if "foo.bas" contains

dim shared ctr as integer

function set_ctr(x)
ctr = x

end function
function get_ctr()
return ctr

end function
function inc_ctr()
ctr = ctr + 1

end function

then a program like:

dim x as class using "foo.bas"
dim y as class using "foo.bas"

x.set_ctr(0)
y.set_ctr(1)
print y.get_ctr()
y.inc_ctr()
print x.get_ctr()

will print 1 and then 2, because x.ctr and y.ctr are the same (shared) global
variable.

Member variables, on the other hand, are unique to each instance of a class.
They are created with regular dim outside of any function or subroutine. If we
modified the sample above to remove the shared from the declaration of ctr,
then the program would print 1 and then 0, because the y.inc_ctr() invocation
would not affect the value of x.ctr.

Member variables are not automatically initialized to any value. Due to the
way classes are implemented, it’s not possible to write an initialization in the
declaration of a member variable. They must be explicitly set with an assignment
statement before being used.

Local variables are only available inside the function or subroutine where they
are declared, and only exist for as long as that function or subroutine is running.
When the routine returns, the variables lose any values they had at the time.

LANGUAGE SYNTAX 13

They are re-created afresh the next time the function is called. Local variables
may be initialized to values, but this initialization is done at run time so it has
some overhead.

Operators
FlexBASIC contains a number of built in operators.

Unary operators

-x is the negative of x, basically the same as 0-x. It is defined for both integers
and floats.

NOT x is the bitwise inverse of x. It is defined only for integers; when applied to
a float the float will be converted to an integer first, and then the result will be
an integer.

@x takes the address of x, producing a pointer to the variable x,

Binary arithmetic operators

+, -, *, /

These are the usual arithmetic operations. * is used for multiplication, and /
for division. If both arguments to the operators are integers, then the result is
an integer. If any argument is a float, the result is a float. This is particularly
important for division, since integer division will truncate (round towards 0).
For example, 3/2 produces the result 1, whereas 3.0/2.0 produces the result
1.5.

MOD

This is the integer modulo operator; a mod b is the remainder when a is divided
by b. It is only well defined for integers. The sign of the result is the same as
the sign of a. mod and / are related: if x = a / b and y = a mod b then x *
b + y will equal a (this assumes that all of the values are integers, of course).

Any floating point arguments will be converted to integer before mod is applied.

^

xˆy means x raised to the power y. The result is always a floating point value,
and is evaluated using floating point arithmetic.

Bitwise logical operators

All of the bitwise logical operators work only on integers. If given a float
argument, the float will be converted to a signed 32 bit integer before the
operator is applied.

a and b is the bitwise and of a and b.

14 FLEXBASIC

a or b is the bitwise (inclusive) or of a and b.

a xor b is the bitwise exclusive or of a and b.

a << b shifts a left by b places, filling the new bits with 0. The result is undefined
if b is greater than or equal to 32 (in practice only the bottom 5 bits of b are
used, but it is better not to rely on this).

a shl b is a synonym for a << b

a >> b shifts a right by b places. If a is a signed integer then its sign bit is used
to fill in the new bits, otherwise 0 is used.

a shr b is a synonym for a >> b

Comparison operators

In general for all of the comparison operators, if either a or b is a float, the
comparison is done in floating point. If both a and b are strings then the
comparison is done on the usual lexicographical ordering of strings. Comparisons
produce 0 if false, and -1 (all bits set) if true.

a=b compares a and b for equality. a<>b compares for inequality. != means the
same as <>, and == means the same as =.

a<b and a<=b compare for a less than or less than or equal to b.

a>b and a>=b compare for a greater than or greater than or equal to b.

=< means the same as <=; similarly => means the same as >=.

Boolean operators

a andalso b evaluates a, and then only if a is true (nonzero) it evaluates b. It
is similar to and but avoids evaluating one argument if it is not necessary. This
is useful if the second argument is an expression which is only valid if the first
argument is true, e.g. something like:

if a <> nil andalso a(0) == 2 then
' do something

end if

a orelse b evaluates a, and then only if a is false (zero) it evaluates b. It is
similar to or but avoids evaluating one argument if it is not necessary.

String operators

The + operator normally means addition, but for strings it means concatentation.
That is,

"hello, " + "world"

LANGUAGE SYNTAX 15

produces the string "hello, world".

As noted above, comparison operators work as expected on string values, which
are compared greater than or less than according to the UTF-8 values of the
characters in the strings.

Assignment operators

Normally assignment is performed with the = symbol:

a = b

It is possible to combine assignment and the basic arithmetic operators (+, -, /,
*) or some logic operators (and, or, xor). That is, the assignments:

a = a + b
x = x and y

may also be written as

a += b
x and= y

Multiple assignment

The plain assignment operator = may be applied to multiple values. For example,
to set three variables x, y, and z to 1, 2, and 3 respectively, one may write:

x,y,z = 1,2,3

The values on the right hand side of the = are evaluated before any assignments
are performed. This means that:

x, y = y, x

works, and will swap x and y.

Extending lines
It is possible to extend a long expression or array initializer over several lines.
To do this, add a single _ immediately before the end of the line. This causes
the compiler to treat the end of line like a space rather than an end of line. For
example:

x = y + _
z

is parsed like x = y + z. This is especially useful for array initializers, which
can often be quite long:

dim shared as integer a(5) = { _
1, 2, 3, _
4, 5 _

16 FLEXBASIC

}

Note that only shared arrays may be initialized like this.

IMPORTANT: the _ character must be the last thing on the line. Nothing can
come after it, not even space or comments.

Multiple statements per line
Generally speaking, you may place multiple statements on one line if you separate
them with a colon (:). For example, these two bits of code are the same:

x = 1
y = 2

and

x = 1 : y = 2

Data Types
There are a number of data types built in to the FlexBASIC language.

Numeric Data types
Unsigned integer types

ubyte, ushort, and uinteger are the names for 8 bit, 16 bit, and 32 bit unsigned
integers, respectively. The Propeller load instructions do not sign extend by
default, so ubyte and ushort are the preferred names for 8 and 16 bit integers
on the Propeller.

ulong is an alias for uinteger. ulongint is reserved for 64 bit integers (which
are not implemented yet).

Signed integer types

byte, short, and integer are 8 bit, 16 bit, and 32 bit signed integers. long
is an alias for integer. longint is reserved for 64 bit integers (which are not
implemented yet).

Floating point types

single is, by default, a 32 bit IEEE floating point number. There is an option
to use a 16.16 fixed point number instead; this results in much faster calculations,
but at the cost of much less precision and range.

double is reserved for future use as a double precision (64 bit) floating point
number, but this is not implemented yet.

DATA TYPES 17

Numeric data types summary

Type Storage size Range
ubyte 1 byte 0 to 255
byte 1 byte -128 to 127
short 2 bytes 0 to 65,535
ushort 2 bytes -32,768 to 32,767
integer 4 bytes -2,147,483,648 to 2,147,483,647
uinteger 4 bytes 0 to 4,294,967,295
long 4 bytes -2,147,483,648 to 2,147,483,647
ulong 4 bytes 0 to 4,294,967,295
longint 8 bytes -9,223,372,036,854,775,808 to 9,223,372,036,854,775,807
ulongint 8 bytes 0 to 18,446,744,073,709,551,615
single 4 bytes 1.2E-38 to 3.4E+38 (~6 decimal places of precision)
double 8 bytes 2.3E-308 to 1.7E+308 (~15 decimal places of precision)

Notes: Types INTEGER and LONG are synonyms and may be used inter-
changably. Types UINTEGER and ULONG are synonyms and may be used
interchangably. Types LONGINT, and ULONGINT are not yet fully unimple-
mented/reserved for future use. Type DOUBLE is not implemented yet, instead
being a synonym for the SINGLE type at this time

Pointer types
Pointers to any other type may be declared. T pointer is a pointer to type T.
Thus ushort pointer is a pointer to an unsigned 16 bit number, and ubyte
pointer pointer is a pointer to a pointer to an unsigned 8 bit number.

String type
The string type is a special pointer. Functionally it is almost the same as a
const ubyte pointer, but there is one big difference; comparisons involving a
string compare the pointed to data, rather than the pointer itself. For example:

sub cmpstrings(a as string, b as string)
if (a = b) then
print "strings equal"

else
print "strings differ"

end if
end sub

sub cmpptrs(a as const ubyte pointer, b as const ubyte pointer)

18 FLEXBASIC

if (a = b) then
print "pointers equal"

else
print "pointers differ"

end if
end sub

dim x as string
dim y as string

x = "hello"
y = "he" + "llo"
cmpstrings(x, y)
cmpptrs(x, y)

will always print "strings equal" followed by "pointers differ". That is because
the cmpstrings function does a comparison with strings (so the contents are
tested) but cmppointers does a pointer comparison. While the pointers point
at memory containing the same values, they are located in two distinct regions
of memory and hence have different addresses.

Classes
FlexBASIC supports classes, which are similar to records or structs in other
languages. There are two ways to define classes. A whole BASIC (or Spin, or C)
file may be included as a class with the using keyword:

dim ser as class using "FullDuplexSerial.spin"

declares the variable ser as a class, using the Spin variables and methods from
the given file. This also works for .bas or .c files. Any functions declared in
the file become methods of the new class.

Classes may also be declared directly, with the variables and methods of the
class specified between class and end class

class counter
dim as integer c
sub inc()
c = c + 1

end sub
function get() as integer
return c

end function
end class

dim x as counter
...

LANGUAGE FEATURES 19

x.inc
print x.get()

Note that end class must be spelled out in full (unlike many "end x" pairs
which may be abbreviated as just end).

Type Aliases
An alias for an existing type may be declared with the type keyword. For
example:

type numptr as integer pointer
type fullduplexserial as class using "FullDuplexSerial.spin"

Language features
TRUE and FALSE
In general false is the value 0, and true is normally the value with all bits set
($FFFFFFFF). These are the "canonical" values that are returned from comparisons
like x < y.

However, note that any non-zero value can act as true. For example, in an IF
statement if the condition evaluates to non-zero then it will be regarded as true.

Function declarations
Function names follow the same rules as variable names. Like variable names,
function names may have a type specifier appended, and the type specifier gives
the type that the function returns.

function Add(a, b)
return a+b

end function

This could be written more verbosely as

function Add(a as integer, b as integer) as integer
return a+b

end function

It is often useful for documentation to explicitly specify all types like this, even
when the default types specified by the variable names would work.

Multiple return values

Functions may return multiple values; for example, a function to compute both
the quotient and remainder of division could be defined as:

20 FLEXBASIC

function quotrem(a as integer, b as integer) as integer,integer
return a/b, a mod b

end function

This may be used like:

q, r = quotrem(x, y)

Default arguments

Parameters to functions or subroutines may be given default arguments:

function incr(x, n=1)
return x + n

end function
print incr(2, 2)
print incr(2)

prints 4 and then 3; the invocation of incr(2) behaves the same as incr(2,
1), because the second parameter (n) has a default value of 1.

Parameter passing

Parameters to functions (and subroutines) may be passed "by value" or "by
reference". The default for integer, floating point, and string variables is for them
to be passed by value. Classes and arrays are passed by reference by default.
The defaults may be overridden with the byref and byval keywords.

Memory allocation
FlexBASIC supports allocation of memory and garbage collection. Memory
allocation is done from a small built-in heap. This heap defaults to 256 bytes
in size on Propeller 1, and 4096 bytes on Propeller 2. This may be changed by
defining a constant HEAPSIZE in the top level file of the program.

Garbage collection works by scanning memory for pointers that were returned
from the memory allocation function. As long as references to the original
pointers returned by functions like left$ or right$ exist, the memory will not
be re-used for anything else. The memory is treated purely as binary blocks; no
special interpretation of strings is performed, for example.

Note that a CPU ("COG" in Spin terms) cannot scan the internal memory of
other CPUs, so memory allocated by one CPU will only be garbage collected
by that same CPU. This can lead to an out of memory situation even if in fact
there is memory available to be claimed. For this reason we suggest that all
allocation of temporary memory be done in one CPU only.

LANGUAGE FEATURES 21

new and delete

The new operator may be used to allocate memory. new returns a pointer to
enough memory to hold objects, or nil if not enough space is available for the
allocation. For example, to allocate 40 bytes one can do:

var p = new ubyte(40)
if p then

'' do stuff with the allocated memory
...
'' now free it (this is optional)
delete p

else
print "not enough memory"

endif

The memory allocated by new is managed by the garbage collector, so it will be
reclaimed when all references to it have been removed. One may also explicitly
free it with delete.

String functions

String functions and operators like left$, right$, and + (string concatenation)
also work with allocated memory. If there is not enough memory to allocate for
a string, these functions/operators will return nil.

Function pointers

Pointers to functions require 8 bytes of memory to be allocated at run time (to
hold information about the object to be called). So for example in:

'' create a Spin FullDuplexSerial object
dim ser as class using "FullDuplexSerial.spin"
'' get a pointer to its transmit function
var tx = @ser.tx

the variable tx holds a pointer both to the ser object and to the particular
method tx within it. Since this is dynamically allocated, it is possible for the @
operator to fail and return nil.

__builtin_alloca

Instead of new, which allocates persistent memory on the heap, it is possible to
allocate temporary memory on the stack with the __builtin_alloca operator.
Memory allocated in this way may only be used during the lifetime of the function
which allocated it, and may not be returned from that function or assigned to a
global variable. Almost always it is better to use new than __builtin_alloca,
but the latter is more efficient (but dangerous, because the pointer becomes
invalid after the function that uses __builtin_alloca exits).

22 FLEXBASIC

_gc_alloc_managed

The low-level function used by new is _gc_alloc_managed. You may call it
directly, although it is rare that you will need to do this:

ptr = _gc_alloc_managed(size)

_gc_alloc

The _gc_alloc function allocates memory on the heap, but unlike
_gc_alloc_managed the memory will not be reclaimed by garbage col-
lection. It must be explicitly freed with _gc_free.

_gc_free

_gc_free frees memory previously allocated by _gc_alloc or _gc_alloc_managed.
Its use for managed memory is optional (the garbage collector can usually
reclaim the memory when it is unused).

_gc_collect

The _gc_collect function forces garbage collection to be run

Templates
FlexBASIC supports polymorphic programming via templates. These are like pa-
rameterized function or class declarations. Only function templates are supported
at this time.

Templates are introduced by the keyword any followed by a parenthesized list of
identifiers which are the types to be subsituted in the declaration. That is, each
identifier in the list represents a type, which may vary at compile time.

Function Templates

A function to find the smaller of two items with the same type t, which can be
string, integer, single, or any other type that supports the < operator, may be
declared as:

any(t) function mymin(x as t, y as t) as t
if x < y then
return x

else
return y

end if
end function

This declares a family of functions mymin__T, where T can be any type. When-
ever the compiler sees mymin(some_expr) it checks the type of some_expr and

LANGUAGE FEATURES 23

changes the function call to mymin__xxx(some_expr), where xxx is the type of
some_expr. So for example:

print mymin(1.7, 2.4), mymin("zzz", "aaa")

will create functions mymin__single and mymin__string which will be called
and ultimately cause 1.7 and aaa to be printed.

Selecting code based on type properties
Within a template the builtin functions _SameTypes and _HasMethod may be
used to check properties of the types passed to the templates. For example, a
templated function to concatenate values as strings might be written:

any(T) function concat(a as T, b as T) as string
if _SameTypes(T, string) then
return a+b

else if _SameTypes(T, integer) then
return strInt$(a)+strInt$(b)

else if _HasMethod(T, asString) then
return a.asString() + b.asString()

else
return "do not know how to concatenate these"

end if
end function

We could use this like:

class point
dim x, y as single
function asString() as string
return "(" + str$(x) + ", " + str$(y) + ")"

end function
sub set(x0 as single, y0 as single)
x, y = x0, y0

end sub
end class

dim as point P, Q

P.set(-9.1, +2.0)
Q.set(0.5, 0.1)

print concat(1, 2)
print concat("hi ", "there")
print concat(P, Q)

which will print:

24 FLEXBASIC

12
hi there
(-9.1, 2)(-0.5, 0.1)

Libraries
There are two ways to create and use libraries of useful functions.

Classes
Probably the cleanest way to create libraries is to use classes. For each group of
related functions, put them into a .bas file, and then instantiate a class using
that file. For example:

' mylib.bas
' simple library with just one entry point, greet
sub greet(msg as string)
print msg

end sub
' test program
greet "hello, world"

This file may be compiled on its own, in which case it will run as a normal BASIC
program would (and will print "hello, world". To use it in another program, for
example "main.bas", create a class from it:

' main.bas
dim G as class using "mylib.bas"
G.greet("hello")
G.greet("goodbye")

If you compile this program, it will print "hello" and then "goodbye". Note that
the main program code of mylib.bas is not executed in this case. In general
the statements in a BASIC file outside of any sub or function are placed into a
subroutine called program. So in the above case if we called G.program it would
print "hello, world". However, if the program subroutine is never called it will
automatically be removed by the compiler.

Include files
A .bas file may also be included with the #include directive. This places all of
the code in the included file directly into the main file, as if it had been typed in
by the user. The downside of this is that there is no namespace protection, and
any test code outside of sub and function will be executed. To avoid this, use
#ifdef TEST or something similar around such code.

The above example as an include file would be:

PROPELLER HARDWARE FEATURES 25

' mylib.bas
' simple library with just one entry point, greet
sub greet(msg as string)
print msg

end sub
#ifdef TEST
' test program
greet "hello, world"
#endif

which may be compiled for testing with -DTEST on the command line; to use it,
do:

' main.bas
#include "mylib.bas"
greet "hello"
greet "goodbye"

Propeller Hardware Features
Input, Output, and Direction
For the Propeller we have some special pseudo-variables direction, input,
and output. These may be used to directly control pins of the processor. For
example, to set pin 1 as output and then set it high do:

direction(1) = output
output(1) = 1

Similarly, to set pin 2 as input and read it:

direction(2) = input
x = input(2)

On the Propeller 1 pins 0-31 may be used. On Propeller 2 this expands to 0-63.

Pin Ranges

Ranges of pins may be specified with hi,lo or lo,hi. The first form is preferred;
if you do

output(2, 0) = x

then the bottom 3 bits of x are copied directly to the first 3 output pins. If you
use the other form

output(0, 2) = x ' note: x is reversed!
output(0, 2) = &b110 ' sets bits 0 and 1 to 1, and bit 2 to 0

then the lower 3 bits are reversed; this is useful if you’re directly coding a binary
constant, but otherwise is probably not what you want.

26 FLEXBASIC

A pin range should not extend over pin 32. That is, each range must fit into
either 0 to 31 or 32 to 63.

Hardware registers
The builtin Propeller hardware registers are available with their usual names,
unless they are redeclared. For example, the OUTA register is available as "outa"
(or "OUTA", or "Outa"; case does not matter).

The hardware registers are not keywords, so they are not reserved to the system.
Thus, it is possible to use dim to declare variables with the same name. Of
course, if that is done then the original hardware register will not be accessible
in the scope of the variable name.

Alphabetical List of Keywords and Built In Func-
tions
ABS
y = abs x

Returns the absolute value of x. If x is a floating point number then so will be
the result; if x is an unsigned number then it will be unchanged; otherwise the
result will be an Integer.

ACOS
Predefined function. acos(x) returns the inverse cosine of x. The result is a
floating point value given in radians (not degrees). To convert from degrees to
radians, multiply by 3.1415926536 / 180.0.

ALIAS
Keyword used in DECLARE to declare variable aliases.

AND
a = x and y

Returns the bit-wise AND of x and y. If x or y is a floating point number then
it will be converted to integer before the operation is performed.

Also useful in boolean operations. The comparison operators return 0 for false
conditions and all bits set for true conditions, so you can do things like:

if (x < y AND x = z) then
' code that runs if both conditions are true

end if

ALPHABETICAL LIST OF KEYWORDS AND BUILT IN FUNCTIONS 27

ANDALSO
if a andalso b then
dosomething

end if

Evaluates a, and if it is true then it evaluates b and returns b; otherwise it
returns false. This is similar to and, but avoids evaluating its second argument
if the first is false.

ANY
dim x as any

Declares x as a generic 32 bit variable compatible with any other type. Basically
this is a way to treat a variable as a raw 32 bit value. Note that no type checking
at all is performed on variables declared with type any, nor are any conversions
applied to them. This means that the compiler will not be able to catch many
common errors.

any should be used only in exceptional circumstances.

Example: a subroutine to print the raw bit pattern of a floating point number:

sub printbits(x as single)
dim a as any
dim u as uinteger
'' just plain u=x would convert x from single to unsigned
'' instead go through an ANY type, which will do no conversion
a = x
u = a
print u

end sub

APPEND
Reserved word. For now, its only use is in open statements to specify that an
existing file should be opened in append mode.

AS
as is a keyword that introduces a type for a function, function parameter, or
dimensioned variable.

' declare a function with an integer parameter that returns a string
function f(x as integer) as string
...

28 FLEXBASIC

ASC
i = ASC(s$)

returns the integer (ASCII) value of the first character of a string. If the argument
is not a string it is an error.

ASIN
Predefined function. asin(x) returns the inverse sine of x. The result is a
floating point value given in radians (not degrees). To convert from degrees to
radians, multiply by 3.1415926536 / 180.0.

ASM
Introduces inline assembly. The block between asm and end asm is parsed
slightly differently than usual; in particular, instruction names are treated as
reserved identifiers. There are two kinds of asm blocks. A regular asm block
introduces some assembly code to be executed when the block is reached. An
asm shared block declares some assembly code and/or data that exists outside
of any function. Such code is typically executed with a cpu directive. Another
use for asm shared is to declare static data.

ASM

A normal ASM block specifies some code to be executed when the block is
reached. If it is outside of any function or subroutine, then it Inside inline
assembly any instructions may be used, but the only legal operands are integer
constants, registers, and local variables (or parameters) to the function which
contains the inline assembly. Labels may be defined, and may be used as the
target for goto elsewhere in the function. Any attempt to leave the function,
either by jumping out of it or returning, will cause undefined behavior. In other
words, don’t do that!

If you need temporary variables inside some inline assembly, dim them as locals
in the enclosing function.

Example: to implement a wait (like the built-in waitcnt) on Propeller 1:

sub wait_until_cycle(x as uinteger)
asm
waitcnt x, #0

end asm
end sub

Example: to create a function that rotates an unsigned integer x left by y:

function rotleft(x as uinteger, y as uinteger)
asm
rol x, y

ALPHABETICAL LIST OF KEYWORDS AND BUILT IN FUNCTIONS 29

end asm
return x

end function

CONST ASM

If a const keyword appears before asm then the optimizer will leave untouched
all code within the asm block. Normally this code is optimized along with the
generated code, and this is usually what is desired, because often the compiler
can make helpful changes like re-using registers for arguments and local variables.
asm const should thus be avoided in general, but if there is some particular
sequence that you need to have compiled exactly as-is, then you may use it.

CPU ASM

cpu asm is like const asm but as well as leaving the code unoptimized it will
copy it to the internal FCACHE area (rather than executing it from HUB
memory). This can be useful if precise timing is required for loops.

SHARED ASM

A shared asm block declares some static code and/or data which is not intended
to be executed immediately, but may be invoked with cpu. In this respect it is
like a Spin language DAT block.

The main difference between asm and shared asm is that the shared asm blocks
are kept separate, outside of all functions and subroutines, whereas asm blocks
are always part of a function or subroutine (or the main program). asm blocks
are executed when control flow reaches them; code within shared asm must be
explicitly invoked via cpu.

shared asm blocks, like const asm, are not optimized by the optimizer.

ATAN
Predefined function. atan(x) returns the inverse tangent of x. The result is a
floating point value given in radians (not degrees). To convert from degrees to
radians, multiply by 3.1415926536 / 180.0.

ATAN2
Predefined function. atan2(y, x) returns the angle (in radians) that the line
from the origin to (x, y) makes with the x-axis. Note the order of arguments
to atan2 (the y comes first!)

BIN$
s = bin$(x, n)

30 FLEXBASIC

t = bin$(x)

Returns a string representing the unsigned integer x in binary notation. Only
the lowest n digits of the representation are included; use 32 if you want to get
all of the digits. If n is omitted or is 0 then the returned string is the minimum
length needed to represent the unsigned value.

BITREV
x = bitrev(y)

Returns the bits of the 32 bit unsigned integer y in reverse order. For example,
bitrev(1) will give $80000000, and bitrev($5555) will give $aaaa0000.

__BUILTIN_ALLOCA
Allocates memory on the stack. The argument is an integer specifying how much
memory to allocate. For example:

sub mysub
dim as integer ptr x = __builtin_alloca(256)
...

end sub

creates an array of 64 integers (which needs 256 bytes) and makes x into a
pointer to it, which may be used anywhere within the subroutine or function.

The pointer returned from __builtin_alloca will become invalid as soon as the
current function returns (or throws an exception), so it should never be assigned
to a global variable, a member variable (one declared outside of functions or
subroutines), or be returned from a function.

__builtin_alloca is awkward to work with, and dangerous. In most cases you
should use new instead. The only advantages of __builtin_alloca is that it is
more efficient than new, and does not use up heap space (but uses stack space
instead).

BYREF
Specifies that a parameter is to be passed by reference. This means that changes
to the parameter inside the subroutine or function are reflected in the variable
outside, so for example in:

sub incr(byref a as integer)
a += 1

end sub

var x = 2
incr(x)

ALPHABETICAL LIST OF KEYWORDS AND BUILT IN FUNCTIONS 31

the final value of x is 3. Normally simple parameters (integers and floats) are
passed by value, which means that changes inside the function do not affect
the caller’s variables. However, classes and arrays default to being passed by
reference, so the byref declaration is optional for these. Strings and pointers
are a special case: the pointers themselves are typically passed by value, but the
underlying memory area is not copied. This means that changes to the pointer
value itself do not propagate back to the caller, but changes to memory pointed
to by the pointer do.

Note that if a parameter is specified as byref then literal constants like 1 or
-2.0 cannot be passed to it; only variables (or pointers to values) may be passed
as byref parameters.

BYTE
A signed 8 bit integer, occupying one byte of computer memory. The unsigned
version of this is ubyte. The difference arises with the treatment of the upper
bit. Both byte and ubyte treat 0-127 the same, but for byte 128 to 255 are
considered equivalent to -128 to -1 respectively (that is, when a byte is copied to
a larger sized integer the upper bit is repeated into all the other bits; for ubyte
the new bytes are filled with 0 instead).

BYTEFILL
bytefill(p as ubyte pointer, val as ubyte, count as long)

Fills a block of memory with the count copies of the byte val.

BYTEMOVE
bytemove(dst as ubyte pointer, src as ubyte pointer, count as long)

Copies count bytes from src to dst. Will work correctly even if src and dst
overlap.

BYVAL
Specifies that a parameter is to be passed by value. This is the default for
simple integers, floats, and strings, but arrays and classes are normally passed
by reference. If byval is specified for such a parameter, a copy will be made of
the array or class and that copy will be passed in to the function. This can be
expensive if the parameter is large.

Note that strings and pointers that are passed byval do not cause the underlying
memory to be copied. Changes to the pointer value itself do not affect the caller,
but changes to the pointed to memory are globally visible.

32 FLEXBASIC

CALL
Used to explicitly signify a subroutine call. Its use is optional, and in fact
deprecated; call is included mainly for compatibility with older BASIC dialects.
If foo is a subroutine that expects one argument, the following statements are
basically equivalent:

call foo(x)
foo(x)
foo x

CASE
Used in a select statement to indicate a possible case to match. Only a subset
of FreeBasic’s case options are available. After the case can be a list of items,
seperated by commas. Each item is either else (which always matches), an
expression (which matches if the original expression equals the case one), or an
inclusive range a to b which will match if the original expression is between a
and b (inclusive).

Example:

select case x
case 1, 9
print "it was 1 or 9"

case 2 to 4, 12 to 16
print "it was between 2 and 4 or 12 and 16"
print "sorry for being vague!"

case 8
print "it was 8"

case else
print "it was something else"

end select

All of the statements between the case and the next case (or end select) are
executed if the case is the first one to match the expression in the select case.

CAST
Used to convert between types. cast(type1, expr) will calculate expr and
then convert it to type type1. This could involve calculation (if expr has an
integer type, for example, and type1 is single then the bit pattern of expr is
changed) or could just mean a different way of interpreting the bits in a value.

For example, to get a pointer to the Propeller 1 LOG table, located in ROM at
address 0xC000, you could do:

dim logptr as ushort ptr
logptr = cast(ushort ptr, 0xC000)

ALPHABETICAL LIST OF KEYWORDS AND BUILT IN FUNCTIONS 33

CATCH
Used in a try statement to indicate the start of an error handling block.

CHR$
Not actually a reserved word, but a built-in function. Converts an ascii value to
a string (so the reverse of ASC). For example:

print chr$(65)

prints A (the character whose ASCII value is 65)

CLASS
A class is an abstract collection of variables and functions. If you’ve used the
Spin language, a class is like a Spin object.

Class Using

Spin objects may be directly imported as classes:

#ifdef __P2__
dim ser as class using "spin/SmartSerial"

#else
dim ser as class using "spin/FullDuplexSerial"

#endif

creates an object ser based on the Spin file "SmartSerial.spin" (for P2) or
"FullDuplexSerial"; this may then be used directly, e.g.:

ser.str("hello, world!")
ser.tx(13) ' send a carriage return
ser.dec(100) ' print 100 as a decimal number

BASIC files may also be used as classes. When they are, all the functions and
subroutines in the BASIC file are exposed as methods (there are no private
methods in BASIC yet). Any BASIC code that is not in a function or subroutine
is gathered into a method called program.

Abstract classes

Another way to define an object is to first declare an abstract class with a
name, and then use that name in the dim statement:

' create abstract class fds representing Spin FullDuplexSerial
' NOTE: use SmartSerial.spin instead if trying on P2
class fds using "FullDuplexSerial.spin"
' create a variable of that type
dim ser as fds

34 FLEXBASIC

This is more convenient if there are many references to the class, or if you want
to pass pointers to the class to functions.

Inline Classes

Finally, the functions, subroutines, and variables associated with a class may be
defined directly inline, between the class and a finishing end class. In this
case the class name may be used as a type name. For example:

class counter
dim x as integer

sub reset
x = 0

end sub

sub inc(n = 1)
x = x + n

end sub

function getval()
return x

end function
end class

dim cnt as counter

cnt.reset
cnt.inc
cnt.inc
print cnt.getval() ' prints 2
cnt.inc
print cnt.getval() ' prints 3

Interoperation with Spin

Using Spin objects with class using is straightforward, but there are some
things to watch out for:

• Spin does not have any notion of types, so most Spin functions will return
type any and take parameters of type any. This can cause problems if you
expect them to return something special like a pointer or float and want
to use them in the middle of an expression. You can either use explicit
cast operations, or assign the results of Spin methods to a typed variable,
and then use that variable in the expression instead.

• Spin treats strings differently than BASIC does. For example, in the Spin
expression ser.tx("A"), "A" is an integer (a single element list). That

ALPHABETICAL LIST OF KEYWORDS AND BUILT IN FUNCTIONS 35

would be written in BASIC as ser.tx(asc("A")). Conversely, in Spin
you have to write ser.str(string("hello")) where in BASIC you would
write just ser.str("hello").

Interoperation with C

C files may be used as classes, but there are some restrictions. BASIC and
Spin are both case insensitive languages, which means that the BASIC symbols
AVariable, avariable, and AVARIABLE are all the same, and all are translated
internally to avariable. In C the case of identifiers matters. This makes
accessing C symbols from BASIC somewhat tricky. Only C symbols that are all
lower case may be accessed from BASIC.

CHAIN
Replaces the currently running program with another one loaded from a file
system (which must previously have been set up using mount. For example,
something like:

mount "/sd", _vfs_open_sdcard()
chain "/sd/prog.bin"

will start the program "prog.bin" from the SD card. The new program completely
replaces the currently running program, and will not return to it (although it
may itself use chain to start the original again.

Alternatively, chain may be used to run a program from a previously opened
file descriptor, e.g.:

' this example uses a made up myspi class
' which has methods 'init' and 'rx'
' rx() reads a single byte
dim spi as class using("myspi.spin")
' start the SPI class
spi.init(pin1, pin2, pin3, pin4)
open SendRecvDevice(nil, @spi.rx, nil) as #4
chain #4

Limitations of CHAIN

chain has a number of significant limitations:

(1) The most significant is memory. Both the original program and the new
program must (briefly) both be in memory together, so the total size of both
programs cannot exceed the memory available. Note that once the new program
has started it will have access to all of HUB memory, as usual, it’s just during
the transition that both programs must fit. This makes chain of very limited
utility on P1.

36 FLEXBASIC

(2) chain does not automatically stop any other running cpus (COGs). This
is a feature, but a dangerous one, since HUB memory is about to be replaced
by the contents of the new program. In practice it will be difficult to craft a
stand-alone routine that can survive its HUB memory being replaced. Usually
you should manually stop any processes running in other CPUs before calling
chain.

(3) On P2, the clock frequency is reset to its default boot value (RCFAST) before
the chained program starts.

CHDIR
Changes the current (default) directory for the program. Note that using this
function requires that the "dir.bi" header be included. For example:

#include "dir.bi"
...
chdir("/host/dir")

_CLKFREQ
const _clkfreq = 200_000_000

Declares a default value for the clock frequency. If this constant is not defined,
the program will default to 160 MHz. This may be overridden by an explicit
clkset call, or by changing the initial clkfreq and clkmode values in the program
binary (at 0x14 and 0x18), e.g. via loadp2 -PATCH.

CLKFREQ
current_freq = clkfreq

Propeller built in variable which gives the current clock frequency.

CLKSET
clkset(mode, freq)

Propeller built in function. On the P1, this acts the same as the Spin clkset
function. On P2, this does two hubset instructions, the first to set the oscillator
and the second (after a short delay) to actually enable it. The mode parameter
gives the setup value for the oscillator. For backwards compatibility, if the xsel
field (bottom 2 bits) is 0b00 then 0b11 is used instead.

For example:

clkset(0x010c3f04, 160_000_000) ' set P2 Eval board to 160 MHz

After a clkset it is usually necessary to call _setbaud to reset the serial baud
rate correctly.

ALPHABETICAL LIST OF KEYWORDS AND BUILT IN FUNCTIONS 37

Also note that no sanity check is performed on the parameters; it is up to the
programmer to ensure that the frequency actually matches the mode on the
board being used.

CLOSE
Closes a file previously opened by open. This causes the closef function specified
in the device driver (if any) to be called, and then invalidates the handle so that
it may not be used for further I/O operations. Any attempt to use a closed
handle produces no result.

close #2 ' close handle #2

Note that handles 0 and 1 are reserved by the system; closing them may produce
undefined results.

CONST
At the beginning of a statement, const declares a constant value. For example:

const x = 1, msg = "hello", y = 2.0

declares x to be the integer 1, msg to be the string "hello", and y to be the
floating point value 2.0. Only numeric values (integers and floats) and strings
may be declared with const.

Inside a type name, const signifies that variables of this type may not be
modified. This is mainly useful for indicating that pointers should be treated as
read-only.

sub trychange(s as const ubyte ptr)
s(1) = 0 '' illegal, s points to const ubytes
if (s(1) = 2) then '' OK, s may be read
print "it was 2"

end if
end sub

CONTINUE
Used to resume loop execution early. The type of loop (FOR, DO, or WHILE)
may optionally be given after CONTINUE. However, note that only the innermost
containing loop may be continued. This is different from FreeBasic, where for
example continue for may be placed in a while loop that is itself inside a for
loop. In FlexBasic this will produce an error.

Example:

for i = 1 to 5
if (i = 3) then
continue for

38 FLEXBASIC

end if
print i

next i

will print 1, 2, 4, and 5, but will skip the 3 because the continue for will cause
the next iteration of the for loop to start as soon as it is seen.

The example above could be written more succinctly as:

for i = 1 to 5
if i = 3 continue
print i

next

COS
Predefined function. cos(x) returns the cosine of x, which is a floating point
value given in radians (not degrees). To convert from degrees to radians, multiply
by 3.1415926536 / 180.0.

COUNTSTR
Predefined function. countstr(x$, s$) counts the number of occurences of
substring s$ in the string x$. If x$ is an empty string, returns 0. If s$ is an
empty string returns the length of x$.

CPU
Used to start a subroutine running on another CPU. The parameters are the
subroutine call to execute, and a stack for the other CPU to use. For example:

' blink a pin at a given frequency
sub blink(pin, freq)
direction(pin) = output
do
output(pin) = not output(pin)
waitcnt(getcnt() + freq)

loop
end sub
...
dim stack(8) ' small stack, blink does not call many other functions

' start the blinking up on another CPU
var a = cpu(blink(LED, 80_000_000), @stack(1))

Note that cpu is not a function call, it is a special form which does not evaluate
its arguments in the usual way. The first parameter is actually preserved and
called in the context of the new CPU.

ALPHABETICAL LIST OF KEYWORDS AND BUILT IN FUNCTIONS 39

cpu returns the CPU id ("cog id") of the CPU that the new function is running
on. If no free CPU is available, cpu returns -1.

Using CPU to run shared ASM

The cpu directive may also be used to execute shared assembly code, that is,
assembly code started with asm shared. In this case the first parameter to cpu
is the address of a label in the assembly code, where the program should start,
and the second parameter is the parameter to be passed to the assembly code.
This parameter is passed in the par register in P1, and in ptra in P2.

CPUCHK
i = cpuchk(n)

Checks to see if the CPU whose id is n is running. Returns true (-1) if running,
false (0) if not.

CPUID
i = cpuid()

Finds the ID of the currently running CPU.

CPUSTOP
cpustop(id)

Stops a specific CPU. If the CPU is not currently running, then does nothing.

CPUWAIT
This builtin subroutine waits for a CPU started via cpu to finish. For example,
to launch 4 helper programs and then wait for them you could do:

const STACKSIZE = 64
dim taskid(3)
' start the tasks
for i = 0 to 3
taskid(i) = cpu(helperfunc, new ulong(STACKSIZE))

next i
' wait for them
for i = 0 to 3
cpuwait(taskid(i))

next i

40 FLEXBASIC

CURDIR$
curdir$() returns a string containing the name of the current directory. This
may be changed via chdir. Before using this function, make sure to #include
"dir.bi":

#include "dir.bi"
print "current directory is: "; curdir$()

DATA
Introduces raw data to be read via the read keyword. This is usually used
for initializing arrays or other data structures. The calculations for converting
values from strings to integers or floats are done at run time, so consider using
array initializers instead (which are more efficient).

In contrast to some other BASICs, no parsing at all is done of the information
following the data keyword; it is simply dumped into memory as a raw string.
Subsequent read commands will read the bytes from memory and convert them
to the appropriate type, as if they were input by the user.

Unlike most other statements, the data statement always extends to the end of
the line; any colons (for example) within the data are treated as data.

dim x as integer
dim y as string
dim z as single
read x, y, z
print x, y, z
data 1.1, hello
data 2.2

will print 1 (x is an integer, so the fractional part is ignored), hello, and 2.2000.

The order of data statements matters, but they may be intermixed with other
statements. data statements should only appear at the top level, not within
functions or subroutines.

DECLARE
Used to declare an alias, or a function or subroutine in another file. Only a
subset of the usual FreeBasic declare keyword is supported.

DECLARE function in another file

The syntax is:

DECLARE FUNCTION ident1 LIB "path/to/file1" (parameters) AS type
DECLARE SUB ident2 LIB "path/to/file2" (parameters)

ALPHABETICAL LIST OF KEYWORDS AND BUILT IN FUNCTIONS 41

The string following lib specifies the path to the file containing the implementa-
tion of the routine (subroutine or function). Note that with declare the type
of a function must be explicitly given with as.

External Spin and C routines may be declared in this fashion. Note however
that C is a case sensitive language, whereas BASIC is not. BASIC identifiers are
converted to all lower case, so C functions containing upper case letters cannot
be accessed via declare.

DECLARE ALIAS

This form of declare defines an alias for an existing identifier or address. The
simple form is just:

DECLARE newIdent ALIAS oldIdent

With this form, every reference to newIdent in the code is translated behind the
scenes to oldIdent. This will work for any kind of identifier, including functions,
subroutines, and constants.

For identifiers that represent variables, it is also possible to have the alias
represent a different "view" of the variable (using a different type). For example,
after:

DIM x as single
DECLARE xi ALIAS x AS integer

then both x and xi point to the same variable; when referred to as x the data is
interpreted as a single, but when referred to as xi it is interpreted as an integer.
Note that no type checking or conversion is performed, so this is potentially a
dangerous way to alias variables, and should be used with care.

For global variables and members of classes, it is also possible to alias the
individual bytes of the variable:

DIM x as single
DECLARE xa ALIAS x AS ubyte(4)

Then the individual bytes of the variable x may be addressed as xa(0), xa(1),
and so forth. There are some big caveats associated with this:

(1) Again, no type checking is performed (including checking of the size of the
array), so it is the programmer’s responsibility to make sure the array is of the
appropriate size.

(2) This form of ALIAS will not usually work as expected with local variables
and subroutine/function parameters, which are placed in registers.

Finally, it is possible to use DECLARE ALIAS to declare references to parts of
memory, although this is something that should be used with great care indeed:

DECLARE xa ALIAS 0x12300 AS uinteger

42 FLEXBASIC

declares xa to be a uinteger stored at address 0x12300. With this form of
declare the aliased value must be a literal integer, and the AS type clause must
be present.

DECUNS$
s = decuns$(x, n)
t = decuns$(x)

Returns a string representing the unsigned integer x in decimal notation (base
10). Only the lowest n digits of the representation are included; use 10 if you
want to get all of the digits. If n is omitted or is 0 then the returned string is
the minimum length needed to represent the unsigned value.

DEF
Define a simple function. This is mostly intended for porting existing BASIC
code, but could be convenient for creating very simple functions. The syntax
consists of the function name, parameter list, =, and then the return value from
the expression. All of the types are inferred from the names. So for example to
define a function sum to return the sum of two integers we would do:

DEF sum(x, y) = x+y

DEFINT
Dictates the default type for variable names starting with certain letters.

defint i-j

says that variables starting with the letters i through j are assumed to be
integers.

The default setting is defint a-z (i.e. all variables are assumed to be integer
unless given an explicit suffix or type in their declaration). A combination of
defsng and defint may be used to modify this.

DEFSNG
Dictates the default type for variable names starting with certain letters.

defsng a-f

says that variables starting with the letters a through f are assumed to be
floating point.

The default setting is defint a-z (i.e. all variables are assumed to be integer
unless given an explicit suffix or type in their declaration). A combination of
defsng and defint may be used to modify this.

ALPHABETICAL LIST OF KEYWORDS AND BUILT IN FUNCTIONS 43

Putting defsng a-z at the start of a file may be useful for porting legacy BASIC
code.

DELETE
Free memory allocated by new or by one of the string functions (+, left$, right$,
etc.).

Use of delete is a nice hint and makes sure the memory is free, but it is not
strictly necessary since the memory is garbage collected automatically.

DELETE$
Deletes part of a string.

x$ = delete$(t$, off, len)

sets x$ to a string that is the same as t$ except that the characters starting at
offset off and continuing for len are removed.

DIM
Dimension variables. This defines variables and allocate memory for them. dim
is the most common way to declare that variables exist. The simplest form just
lists the variable names and (optionally) array sizes. The variable types are
inferred from the names. For example, you can declare an array a of 10 integers,
a single integer b, and a string c$ with:

dim a(10), b, c$

It’s also possible to give explicit types with as:

dim a(10) as integer
dim b as ubyte
dim s as string

Only one explicit type may be given per line (this is different from FreeBASIC).
If you give an explicit type, it will apply to all the variables on the line:

' this makes all the variables singles, despite their names
' (probably NOT a good idea!)
dim a(10), b%, c$, d as single

If you want to be compatible with FreeBASIC, put the as first:

dim as single a(10), b%, c$, d

Variables declared inside a function or subroutine are "local" to that function
or subroutine, and are not available outside or to other functions or subrou-
tines. Variables dimensioned at the top level may be used by all functions and
subroutines in the file.

44 FLEXBASIC

See also VAR.

DIR$
Scan the current directory for files. The first call to dir$ should have the form
r = dir$(patrn, attrib), where patrn is a simple file name pattern, and
attrib is either 0 (to match all files or directories), or some combination of the
bits:

Bit Meaning
fbDirectory find directories
fbReadOnly find read only files
fbArchive find writable files
fbHidden find hidden files
fbSystem find system files
fbNormal find read only or writable files

patrn is a very simple file pattern, such as * to match any names, *.txt to
match all files ending in .txt, foo.txt to match only the file named foo.txt,
or abc* to match files starting with abc. The pattern is case insensitive, so *.c
will match both files ending in .c and .C.

The dir$ call will return the first file name matching both the string pattern and
the requested attributes. Subsequent dir$ calls without patterns will continue
matching the pattern and attributes set up by the first call. An empty string
"" will be returned when there are no more matches. A nil will be returned if
there is an error.

Example:

#include "dir.bi"
...
dim filename as string
chdir("/host/dir") ' set working directory
filename = dir$("*", 0) ' start scan for all files and directories
while filename <> "" and filename <> nil
print filename
filename = dir$() ' continue scan

end while

Note that dir$ is not thread-safe: it should always be called from one CPU /
thread at a time, and if multiple CPUs try to call it at the same time then the
results are utterly unpredictable.

ALPHABETICAL LIST OF KEYWORDS AND BUILT IN FUNCTIONS 45

DIRECTION
Pseudo-array of bits describing the direction (input or output) of pins. In
Propeller 1 this array is 32 bits long, in Propeller 2 it is 64 bits.

direction(2) = input ' set pin 2 as input
direction(6,4) = output ' set pins 6, 5, 4 as outputs

Note that pin ranges may not cross a 32 bit boundary; that is,

direction(33, 30) = input

is illegal and produces undefined behavior.

DO
Main loop construct. A do loop may have the loop test either at the beginning
or end, and it may run the loop while a condition is true or until a condition is
true. For example:

do
x = input(9)

loop until x = 0

will wait until pin 9 is 0.

The various forms are discussed below

DO / LOOP

do
' do stuff here

loop

This is the basic form, which loops forever (unless an exit statement is invoked
within the loop).

DO UNTIL / LOOP

do until (condition)
' do stuff here

loop

Code within the loop is executed until a specific condition is met. If the condition
is true before entry to the loop, the loop is never executed.

DO / LOOP UNTIL

do
' do stuff here

loop until (condition)

46 FLEXBASIC

In this variant the code within the loop is always executed at least once, and
will continue to be executed until the specified condition is met.

DO WHILE / LOOP

do while (condition)
' do stuff here

loop

Similar to do until but the sense of the condition is reversed; as long as the
condition is true the loop is executed. If the condition is false the first time the
loop is encountered, then the loop body is never executed.

DO / LOOP WHILE

do
' do stuff here

loop while (condition)

Executes the loop body at least once, and continues to execute it as long as the
condition remains true.

DOUBLE
The type for a double precision (64 bit) floating point number. double is not
actually implemented in the compiler, and is treated the same as single (so it
occupies only 32 bits).

ELSE
See IF

END
Used to mark the end of most blocks. For example, end function marks the
end of a function declaration, and end if the end of a multi-line if statement.
In most cases the name after the end is optional.

END ASM

Closes an asm (inline assembly) block.

END CLASS

Closes a class definition.

END FUNCTION

Closes a function definition.

ALPHABETICAL LIST OF KEYWORDS AND BUILT IN FUNCTIONS 47

END IF

Marks the end of an if statement. As a special exception to the normal rules,
this may also be written without the space (as endif). This is for compatibility
with some other BASIC dialects.

END SELECT

Closes a select case block.

END SUB

Closes a subroutine definition.

END TRY

Closes a try/catch error handling block.

END WHILE

Marks the end of a while loop; this may be used in place of wend.

ENDIF
Marks the end of a multi-line if statement. Same as end if. Note that this is
the only special form of end. For example, it is not legal to write endasm; only
end asm will work.

ENUM
Reserved for future use.

EXIT
Exit early from a loop, function, or subroutine.

Just plain exit on its own will exit early from the innermost enclosing loop, and
will produce an error if given outside a loop.

The exit may also have an explicit do, for, or while after it to say what kind
of loop it is exiting. In this case the innermost loop must be of the appropriate
type. This is different from FreeBasic, where for example exit while may be
used in a for loop that is inside a while loop; we do not allow that.

Finally exit function and exit sub are synonyms for return.

EXIT DO

Exit from the innermost enclosing loop if it is a do loop. If it is not a do loop
then the compiler will print an error.

48 FLEXBASIC

EXIT FOR

Exit from the innermost enclosing loop if it is a for loop. If it is not a for loop
then the compiler will print an error.

EXIT FUNCTION

Returns from the current function (just like a plain return). The value of the
function will be the last default value established by assigning a value to the
function’s name, or 0 if no such value has been established. For example:

function sumif(a, x, y)
sumif = x + y
if (a <> 0) then
exit function

end if
sumif = 0

end function

returns x+y if a is nonzero, and 0 otherwise.

EXIT LOOP

Exit from the innermost enclosing loop if it is a do loop. If it is not a do loop
then the compiler will print an error. (This is the same as exit do)

EXIT SUB

Returns from the current subroutine. Same as the return statement.

EXIT WHILE

Exit from the innermost enclosing loop if it is a while loop. If it is not a while
loop then the compiler will print an error.

EXP
Predefined function. exp(x) returns the natural exponential of x, that is e ˆ x
where e is 2.71828...

FALSE
A predefined constant 0. Any value equal to 0 or nil will be considered as false
in a boolean context.

FIXED
Reserved for future use as a fixed point data type.

ALPHABETICAL LIST OF KEYWORDS AND BUILT IN FUNCTIONS 49

FOR
Repeat a loop while incrementing (or decrementing) a variable. The default step
value is 1, but if an explicit step is given this is used instead:

' print 1 to 10
for i = 1 to 10
print i

next i
' print 1, 3, 5, ..., 9
for i = 1 to 10 step 2
print i

next i

If the variable given in the loop is not already defined, it is created as a local
variable (local to the current sub or function, or to the implicit program function
for loops outside of any sub or function).

As a function modifier

for placed after function or sub may be used to specify some attributes of that
function or subroutine. For example, to place a function in COG memory one
may write:

function for "cog" add(x, y)
return x+y

end

Note that there are some restrictions on functions placed in COG or LUT
memory. See the general FlexSpin documentation for details.

The following attributes are supported:

cog: places the function in COG memory

lut: places the function in LUT memory

noinline: specifies that the function should not be inlined

opt(xxx): specifies explicitly which optimizations should be applied to the
function; see the general compiler documentation for details. For example, if
a subroutine starts with sub for "opt(0,peephole)" it will be compiled with
no optimization (like -O0) except for peepholes.

Attributes may be grouped together in the same string, e.g. to compile a function
for LUT and with all optimizations always enabled regardless of the compiler
setting, you can do:

function for "lut,opt(all)" fastfunc()
...
end function

50 FLEXBASIC

FUNCTION
Defines a new function. The type of the function may be given explicitly with
an as type clause; if no such clause exists the function’s type is deduced from its
name. For example, a function whose name ends in $ is assumed to return a
string unless an as is given.

Functions have a fixed number and type of arguments, but the last arguments
may be given default values with an initializer. For example,

function inc(n as integer, delta = 1 as integer) as integer
return n + delta

end function

defines a function which adds two integers and returns an integer result. Since
the default type of variables is integer, this could also be written as:

function inc(n, delta = 1)
return n+delta

end function

In this case because the final argument delta is given a default value of 1, callers
may omit this argument. That is, a call inc(x) is exactly equivalent to inc(x,
1).

Anonymous functions

function may also be used in expressions to specify a temporary, unnamed
function. There are three forms for this. The long form is very similar to ordinary
function declarations. For example, suppose we want to define a function "plusn"
which itself returns a function which adds one to its argument. This would look
like:

' define an alias for the type of a function which takes an integer
' and returns another; this isn't strictly necessary, but saves typing
type intfunc as function(x as integer) as integer

' plusn(n) returns a function which adds n to its argument
function plusn(n as integer) as intfunc
return function(x as integer) as integer

return x + n
end function

end function

dim as intfunc f, g
f = plusn(1) ' function which returns 1 + its argument
g = plusn(7) ' function which returns 7 + its argument

' this will print 1 2 8

ALPHABETICAL LIST OF KEYWORDS AND BUILT IN FUNCTIONS 51

print 1, f(1), g(1)

The long anonymous form is basically the same as an ordinary function definition,
but without the function name. The major difference is that an explicit definition
of the return type (e.g. as integer) is required, since the compiler cannot use
a name to determine a default type for the function.

For simple functions which just return a single expression, an abbreviated
anonymous form is available. This omits the return type, which is determined
by the expression itself, and puts the expression on the same line. This means
we could write the plusn function above as:

function plusn(n as integer) as intfunc
return (function(x as integer) x+n)

end function

The long and abbreviated forms are compatible with QBasic and some other
PC BASICs. FlexBasic also supports a much more convenient short form. This
short form starts with [, followed by the function parameter list, followed by ’:’,
the statements in the anonymous function, and finally => and a result expression.
This sounds more complicated than it is. The above plusn function in short
notation is:

function plusn(n as integer) as intfunc
return [x:=>x+n]

end function

This short form is much easier to write for many inline uses, and is very flexible,
but is not compatible with other BASICs.

Closures

You’ll note in the examples of anonymous functions that the anonymous function
inside plusn is accessing the parameter n of its parent. This is allowed, and the
value of n is in fact saved in a special object called a "closure". This closure is
persistent, and functions are allowed to modify the variables in a closure. For
example, we can implement a simple counter object as follows:

type intfunc as function() as integer

' makecounter returns a counter with a given initial value and step
function makecounter(value = 1, stepval = 1) as intfunc
return (function () as integer

var r = value
value = value + stepval
return r

end function)
end function

52 FLEXBASIC

var c = makecounter(7, 3)

' prints 7, 10, 13, 16
for i = 1 to 4
print c()

next

Using the more compact notation for functions this may be written as:

type intfunc as function() as integer

function makecounter(value = 1, stepval = 1) as intfunc
return [:var r = value : value = value + stepval : => r]

end function

var c = makecounter(7, 3)
for i = 1 to 4
print c()

next

Declaring external functions

The declare and lib keywords may be used to declare functions from other
files ("libraries"), for example:

declare function rename lib "libc/unix/rename.c" (oldpath as string, newpath as string) as integer

Declares that the function rename(oldpath, newpath) may be found in the file
"libc/unix/rename.c". See declare for more details.

Placing functions in internal memory

If for "cog" follows the function keyword, the function will be placed in CPU
internal memory rather than main memory. This memory is generally much
faster, but is a very limited resource. This directive should be used only for small
leaf functions (which do not call other functions) and should be used sparingly.

function for "cog" toupper(c as ubyte) as ubyte
if c >= asc("a") and c <= asc("z") then
c = c + (asc("A") - asc("a"))

end if
return c

end function

FUNCTION
__FUNCTION__ is a special symbol that is replaced with the name of the currently
enclosing function or subroutine. It is similar to a preprocessor macro, but not

ALPHABETICAL LIST OF KEYWORDS AND BUILT IN FUNCTIONS 53

actually implemented that way (because the preprocessor doesn’t know about
functions or subroutines). Mainly used for reporting errors, e.g.:

print "Error found in subroutine "; __FUNCTION__

GET
get #handle, pos, var [,items [,r]]

get is used to read binary data from the open file whose handle is handle,
starting at position pos in the file (where pos is 1-based). The position is
optional, but if omitted a comma must still be placed to indicate that it is
missing. var is the first variable into which to read the binary data, and items
is the number of variables to read starting at var. items is often omitted, in
which case just one variable is read. r is an optional return value with, if present,
is a variable which is set to the number of items actually read.

For example, to read 128 bytes into an array x from the current position in file
handle 3 one would use:

dim x(128) as ubyte
...
get #3,, x(0), 128

Note the two commas indicating a missing position argument. To read the first
4 bytes of the file into a long variable y, regardless of where we currently are in
the file, we could do:

dim y as long
...
get #3, 1, y

Several important caveats apply:

(1) The bytes are read as binary data, not ASCII. (2) Strings may not be read
in this way. The compiler will not throw an error for using a string type, but
what is read is the 4 byte pointer for the string, not the string data itself. (3)
The return value r is "items read" rather than "bytes read" as it is in FreeBasic.
(4) If an error occurs, r is set to -1.

GETCNT
Propeller specific builtin function.

function getcnt() as uinteger
x = getcnt()

Returns the current cycle counter. This is an unsigned 32 bit value that counts
the number of system clocks elapsed since the device was turned on. It wraps
after approximately 54 seconds on propeller 1 and 27 seconds on propeller 2.

54 FLEXBASIC

GETERR
Propeller specific builtin function.

function geterr() as integer
e = geterr()

Returns the error number e corresponding to the last system error. (This is the
same as errno in C.) This number may be converted to a user-displayable string
via strerror$(e).

GETMS
function getms() as uinteger
x = getms()

Builtin function. Returns the number of milliseconds since the device was turned
on. On the Propeller 1 this wraps around after approximately 54 seconds. On
the P2 the system counter has 64 bits, so it will work for about 49 days.

GETRND
function getrnd() as uinteger
x = getrnd()

Builtin function. Returns a 32 bit random number (unsigned integer).

GETSEC
function getsec() as uinteger
x = getsec()

Builtin function. Returns the number of seconds since the device was turned on.
On the Propeller 1 this wraps around after approximately 54 seconds. On the
P2 the system counter has 64 bits, so it will work for millions of years.

GETUS
function getus() as uinteger
x = getus()

Builtin function. Returns the number of microseconds since the device was
turned on. On the Propeller 1 this wraps around after approximately 54 seconds.
On the P2 the system counter has 64 bits, so it will work for about an hour.

GOSUB
gosub x pushes a return value on the stack and jumps to the label x (which
may be a numeric label). A return statement will pop the return value off the
stack and resume execution after the original gosub.

ALPHABETICAL LIST OF KEYWORDS AND BUILT IN FUNCTIONS 55

gosub may not be used inside a subroutine or function, it may only be used in
top level code.

gosub is supported for compatibility with old BASIC code, but should not be
used in new code. In new code you should create a subroutine or function instead.
See sub.

GOTO
goto x jumps to a label x, which must be defined in the same function. Labels
are defined by giving an identifier, followed by a :, followed by an end-of-line;
that is, a label is the only thing which may be on a line.

For example:

if x=y goto xyequal
print "x differs from y"
goto done

xyequal:
print "x and y are equal"

done:

Note that in most cases code written with a goto could better be written with
if or do (for instance the example above would be easier to read if written with
if ... then ... else). goto should be used sparingly.

Also note that a label must be the only thing on the line; that is:

foo: bar

is interpreted as two statements

foo
bar

whereas

foo:
bar

is a label foo followed by a statement bar.

In old source code integers may also be used as labels. The integer must be at
the start of the line, followed by white space. This form of label is supported for
legacy use only and may not work as expected in all circumstances (e.g. before
an END or LOOP keyword).

_HASMETHOD
A special keyword which may be used to check whether a types has a particular
method. This is mainly useful for checking the types passed to template functions

56 FLEXBASIC

and selecting alternatives. For example, a template for showing data in a class
might be written:

any(T) sub show(x as T)
if _SameTypes(T, long) or _SameTypes(T, short) then
print "integer: "; x

else if _HasMethod(T, asInt) then
print "object as integer: "; x.asInt()

else if _HasMethod(T, asString) then
print "object as string: "; x.asString()

else
print "do not know how to show values of this type"

end if
end function

Then if x is a value of some class which contains either an asInt or asString
method, then show(x) may be used to print x out. If the class has both methods,
the first one chosen (in this case (asInt)) will be used.

HEAPSIZE
const HEAPSIZE = 256

Declares the amount of space to be used for internal memory allocation by things
like string functions. The default is 256 bytes for P1 and 4096 bytes for P2. If
your program does a lot of string manipulation and/or needs to hold on to the
allocations for a long time, you may need to increase this by explicitly declaring
const HEAPSIZE with a larger value.

HEX$
s = hex$(x, n)
t = hex$(x)

Returns a string representing the unsigned integer x in hexadecimal notation
(base 10). Only the lowest n digits of the representation are included; use 8 if
you want to get all of the digits. If n is omitted or is 0 then the returned string
is the minimum length needed to represent the unsigned value.

IF
An IF statement introduces some code that should be executed only if a condition
is true:

if x = y then
print "x and y are the same"

else
print "x and y are different"

end if

ALPHABETICAL LIST OF KEYWORDS AND BUILT IN FUNCTIONS 57

There are several forms of if.

A "simple if" executes just one statement if the condition is true, and has no
else clause. Simple ifs do not have a then:

' simple if example
if x = y print "they are equal"

A one line if executes the rest of the statements on the current line if the condition
is true. This form of if has a then that is followed by one or more statements,
seperated by :. For example:

if x = y then print "they are equal" : print "they are still equal"

which will print "they are equal" followed by "they are still equal" if x equals y,
but which will print nothing if they are not equal. This form of if is provided
for compatibility with old code, but is not recommended for use in new code.

Compound if statements have a then which ends the line. These statements
continue on until the next matching else or end if. If you want to have an
else condition then you will have to use this form of if:

if x = y then
print "they are equal"

else
print "they differ"

end if

You may also put an if statement after an else:

if x = y then
print "x and y are the same"
print "I don't know about z"

else if x = z then
print "x and z are the same, and different from y"

else
print "x does not equal either of the others"

end if

IMPORT
Keyword reserved for future use.

INPUT
Used for reading data

The input keyword when used as a command acts to read data from a handle.
It is followed by a list of variables. The data are separated by commas.

print "enter a string and a number: ";

58 FLEXBASIC

input s$, n
print "you entered: ", s, "and", n

The input may optionally be preceded by a prompt string, so the above could
be re-written as:

input "enter a string and a number: ", s$, n
print "you entered: ", s, "and", n

If the prompt string is separated from the variables by a semicolon ; rather than
a comma, then "? " is automatically appended to the prompt.

A file handle may be specified after the input keyword with a # and an integer,
for any of these variations:

input #2, "enter a string and a number: ", s$, n

Used for accessing pins

input may also be used to refer to a pseudo-array of bits representing the state
of input pins. On the Propeller 1 this is the 32 bit INA register, but on Propeller
2 it is 64 bits.

Bits in the input array may be read with an array-like syntax:

x = input(0) ' read pin 0
y = input(4,2) ' read pins 4,3,2

Note that usually you will want to read the pins with the larger pin number
first, as the bits are labelled with bit 31 at the high bit and bit 0 as the low bit.

Also note that before using a pin as input its direction should be set as input
somewhere in the program:

direction(4,0) = input ' set pins 4-0 as inputs

INPUT$
A predefined string function. There are two ways to use this.

The first, and simpler way, is just as input$(n), which reads n characters from
the default serial port and returns a string made of those characters. input$(1)
is thus a kind of getchar to read a single character.

The second form, input$(n, h) reads up to n characters from handle h, as
created by an open device as #h statement. If there are not enough characters
to fulfil the request then a shorter string is returned; for example, at end of file
an empty string "" will be returned.

Example:

file$ = "" ' initialize read data
do

ALPHABETICAL LIST OF KEYWORDS AND BUILT IN FUNCTIONS 59

s$ = input$(80, h) ' read up to 80 characters at a time
file$ = file$ + s$ ' append to the data

loop until s$ = "" ' stop at end of file
' now the whole file is in file$

INSERT$
a$ = insert$(b$, y$, pos)

insert$ inserts string y$ into (a copy of) b$ at position pos. If pos is greater
than the length of b$ then it is appended to b$. Note that string positions start
at 1.

INSTR
n = instr(off, src$, target$)

Returns the position (with 1 being the first character) of the first occurance of
the string target$ in the string src$. The search begins at offset off. If the
string is not found, then 0 is returned.

INSTRREV
n = instrrev(off, src$, target$)

Returns the position of the last occurance of the string target$ in the string
src$. The search begins at offset off. If the string is not found, then 0 is
returned. Positions count from 1 up.

INT
Convert a floating point value to integer. Any fractional parts are truncated.

i = int(3.1415) ' now i will be set to 3

Warning: truncation will sometimes result in surprising results (e.g.
int(23.99999) will produce 23 rather than 24). For many purposes the round
function is preferable to int.

INTEGER
A 32 bit signed integer type. The unsigned 32 bit integer type is uinteger.

LCASE$
y$ = lcase$(x$)

Returns a new string which is the same as the original string but with all
alphabetical characters converted to lower case.

60 FLEXBASIC

LEFT$
A predefined string function. left$(s, n) returns the left-most n characters of
s. If n is longer than the length of s, returns s. If n =< 0, returns an empty
string. If a memory allocation error occurs, returns nil.

LEN
A predefined function which returns the length of a string.

var s$ = "hello"
var n = len(s$) ' now n = 5

LET
Variable assignment:

let a = b

sets a to be equal to b. This can usually be written as:

a = b

the only difference is that in the let form if a does not already exist it is created
as a member variable (one accessible in all functions of this file). The let
keyword is deprecated in some versions of BASIC (such as FreeBASIC) so it’s
probably better to use var or dim to explicitly declare your variables.

LIB
Keyword used with DECLARE to define functions in other files.

LINE
Reserved for future use.

_LOCKCLR
_lockclr(lockNum)

Clears (releases) a lock previously claimed by _locktry.

_LOCKNEW
dim lockNum as integer
lockNum = _locknew()

Allocates a new hardware lock. If no more locks are available (there are only 8
of them) returns -1.

ALPHABETICAL LIST OF KEYWORDS AND BUILT IN FUNCTIONS 61

_LOCKREL
_lockrel(lockNum)

Frees (returns to inventory) a lock previously allocated by _locknew.

_LOCKTRY
do
x = _locktry(n)

while x = 0

Tries to capture a lock previously allocated by _locknew; returns 0 on failure, -1
on success.

LOG
Predefined function. log(x) returns the natural logarithm of x, that is the
logarithm base e where e is 2.71828...

LONG
A signed 32 bit integer. An alias for integer. The unsigned version of this is
ulong.

LONGINT
A signed 64 bit integer. The unsigned version of this is ulongint. This type is
not yet fully implemented.

LONGFILL
longfill(p as long pointer, val as long, count as long)

Fills a block of memory with the count copies of the 32 bit value val. Note that
a total of 4*count bytes will be written.

LONGMOVE
longmove(dst as long pointer, src as long pointer, count as long)

Copies count 32 bit values from src to dst.

LOOP
Marks the end of a loop introduced by do. See DO for details.

62 FLEXBASIC

LPAD$
y$ = lpad$(x$, w, ch$)

Returns a new string which is like the original string but padded on the left
so that it has length w. If w is less than the current length of the string, the
function returns the rightmost w characters, otherwise it prepends enough copies
of ch$ to make the string w characters long.

LTRIM$
y$ = ltrim$(x$)

Returns a new string which is like the original string but with leading spaces
removed.

MID$
A predefined string function. mid$(s, i, j) returns (up to) j characters of s,
starting at position i. The first position is position 1. This function allocates
memory from the heap, and if it is unable to do so it will return nil.

Example:

a$="abcde"
print mid$(a$, 3, 2)

prints "cd".

MOD
x mod y finds the integer remainder when x is divided by y.

Note that if both the quotient and remainder are desired, it is best to put the
calculations close together; that way the compiler may be able to combine the
two operations into one (since the software division code produces both quotient
and remainder). For example:

q = x / y
r = x mod y

MOUNT
Gives a name to a file system. For example, after

mount "/host", _vfs_open_host()
mount "/sd", _vfs_open_sdcard()

files on the host PC may be accessed via names like "/host/foo.txt",
"/host/bar/bar.txt", and so on, and files on the SD card may be accessed by
names like "/sd/root.txt", "/sd/subdir/file.txt", and so on.

ALPHABETICAL LIST OF KEYWORDS AND BUILT IN FUNCTIONS 63

This only works on P2, because it requires a lot of HUB memory, and also needs
the host file server built in to loadp2.

Available file systems are:

• _vfs_open_host() (for the loadp2 Plan 9 file system)
• _vfs_open_sdcard() for a FAT file system on the P2 SD card.
• _vfs_open_sdcardx(clk, sel, di, do) is the same, but allows explicit

specification of which pins to use for the SD card

NEW
Allocates memory from the heap for a new object, and returns a pointer to it.
May also be used to allocate arrays of objects. The name of the type of the new
object appears after the new, optionally followed by an array limit. Note that as
in dim statements, the value given is the last valid index, so for arrays starting
at 0 (the default) it is one greater than the number of elements.

var x = new ubyte(10) ' allocate 11 (not 10) bytes and return a pointer to it
x(1) = 1 ' set a variable in it

class FDS using "FullDuplexSerial.spin" ' Use "SmartSerial.spin" on P2
var ser = new FDS ' allocate space for a new full duplex serial object
ser.start(31, 30, 0, 115_200) ' start up the new object

See the discussion of memory allocation for tips on using new. Note that the
default heap is rather small, so you will probably need to declare a larger
HEAPSIZE if you use new a lot.

Memory allocated by new may be explicitly freed with delete; or, it may left to
be garbage collected automatically.

NEXT
Indicates the end of a for loop. The variable used in the loop may be placed
after the next keyword, but this is not mandatory. If a variable is present though
then it must match the loop.

See FOR.

NIL
A special pointer value that indicates an invalid pointer. nil may be returned
from any string function or other function that allocates memory if there is not
enough space to fulfil the request. nil is of type any and may be assigned to
any variable. When assigned to a numeric variable it will cause the variable to
become 0.

64 FLEXBASIC

NOT
a = NOT b

Inverts all bits in the destination. This is basically the same as b xor -1.

In logical (boolean) conditions, since the TRUE condition is all 1 bits set, this
operation has its usual effect of reversing TRUE and FALSE. Beware though that
not x will behave differently if x is neither the canonical TRUE nor canonical
FALSE value; in this case, x will act like TRUE (since it is non-zero) but not x
may as well (the inverted bits may not all be 0 if x wasn’t the usual TRUE).

NUMBER$
s = number$(x, d, base)

Convert x into a string with d digits in base base. If x is too big to fit in d
digits then only the lower d digits are returned.

OCT$
s = oct$(x, n)
t = oct$(x)

Returns a string representing the unsigned integer x in base 8. Only the lowest n
digits of the representation are included. If n is omitted or is 0 then the returned
string is the minimum length needed to represent the unsigned value.

ON X GOTO
For compatibility only, FlexBASIC accepts statements like:

on x goto 100, 110, 120

This is equivalent to

select case x
case 1
goto 100

case 2
goto 110

case 3
goto 120

end select

This construct is deprecated, and should not be used in new programs.

OPEN
Open a handle for input and/or output. There are two forms. The most general
form is:

ALPHABETICAL LIST OF KEYWORDS AND BUILT IN FUNCTIONS 65

open device as #n

where device is a device driver structure returned by a system function such
as SendRecvDevice, and n evaluates to an integer between 2 and 7. (Handles 0
and 1 also exist, but are reserved for system use.)

Example (for P1):

' declare ser as an object based on a Spin object
dim ser as class using("spin/FullDuplexSerial.spin")
' initialize the serial device
ser.start(31, 30, 0, 115_200)
' now connect it to handle #2
open SendRecvDevice(@ser.tx, @ser.rx, @ser.stop) as #2

Here SendRecvDevice is given pointers to functions to call to send a single
character, to receive a single character, and to be called when the handle is
closed. Any of these may be nil, in which case the corresponding function
(output, input, or close) does nothing.

For P2 you would replace "FullDuplexSerial.spin" with "SmartSerial.spin" and
adjust the pins and baud rates accordingly.

The second form of open uses a file name:

open "/host/file.txt" for input as #2
open name$ for output as #3
open name$ for append as #4

This opens the given file for input, output, or append. A file opened for output
will be created if it does not already exist, otherwise it will be truncated to 0
bytes long. A file opened for append will be created if it does not exist, but if it
does exist it will be opened for output at the end of the file.

This second form of open is only useful after a mount call is used to establish a
file system.

Note that file data is buffered internally, and may not actually be written to the
disk until close is called for the file; if close is never called then the data may
never be written.

Error Handling

The open command will throw an integer error corresponding to one of the error
numbers in the C errno.h header file. This may be caught using the usual try
/ catch paradigm. Alternatively, if no try / catch block is in effect, the error
may be checked with _geterr().

OPTION
Gives a compiler option. The following options are supported:

66 FLEXBASIC

OPTION BASE

option base N, where N is an integer constant, causes the default base of arrays
to be set to N. After this directive, arrays declared without an explicit base will
start at N. Typically N is either 0 or 1. The default is 0.

dim a(9) as integer ' declares an array with indices 0-9
option base 0 ' note: changing option base after declarations is not recommended, but works
dim b(5) as integer ' declares an array with indices 1-5 (5 elements)

It is possible to use option base more than once in a file, but we do not
recommend it. Indeed if you do use option base it is probably best to use it at
the very beginning of the file, before any array declarations

OPTION EXPLICIT

Requires that all variables be explicitly declared with DIM or VAR before use.
The default is to allow variables in LET and FOR statements to be implicitly
declared.

OPTION IMPLICIT

Allows variables to be automatically declared in any assignment statement, read,
or input. The type of the variable will be inferred from its name if it has not
already been declared.

OR
a = x or y

Returns the bit-wise inclusive OR of x and y. If x or y is a floating point number
then it will be converted to integer before the operation is performed.

Also useful in boolean operations. The comparison operators return 0 for false
conditions and all bits set for true conditions, so you can do things like:

if (x < y OR x = z) then
' code that runs if either condition is true

end if

However, the orelse operator is more efficient for boolean operations (see below).

ORELSE
if a orelse b then
dosomething

end if

Evaluates a, and if it is true then it returns true; otherwise it evaluates b and
returns b. This is similar to or, but avoids evaluating its second argument if the
first is true.

ALPHABETICAL LIST OF KEYWORDS AND BUILT IN FUNCTIONS 67

OUTPUT
A pseudo-array of bits representing the state of output bits. On the Propeller 1
this is the 32 bit OUTA register, but on Propeller 2 it is 64 bits (comprising both
OUTA and OUTB).

Bits in output may be read and written an array-like syntax which gives a range
of pins to set:

output(0) = not output(0) ' toggle pin 0
output(4,2) = 1 ' set 4,3,2: pins 4 and 3 to 0 and pin 2 to 1

Note that usually you will want to access the pins with the larger pin number
first, as the bits are labelled with bit 31 at the high bit and bit 0 as the low bit.

Also note that before using a pin as output its direction should be set as output
somewhere in the program:

direction(4,0) = output ' set pins 4-0 as outputs

PAUSEMS
A built-in subroutine to pause for a number of milliseconds. For example, to
pause for 2 seconds, do

pausems 2000

PAUSESEC
A built-in subroutine to pause for a number of seconds. For example, to pause
for 60 seconds, do

pausesec 60

PAUSEUS
A built-in subroutine to pause for a number of microseconds. For example, to
pause for 1/2 millisecond, do

pauseus 500

PI
Predefined single precision constant 3.1415926.

PINFLOAT
Force a pin to be an input

pinfloat(p)

68 FLEXBASIC

PINLO
Force a pin to be output as 0.

pinlo(p)

PINHI
Force a pin to be output as 1.

pinhi(p)

PINREAD
b = pinread(p)

Reads a bit from a pin. The pin is not necessarily forced to be an input (so this
function can read the current output state of a pin); use pinflt or some other
mechanism to set it as input if desired.

PINRND (P2 only)
Forces a pin to be an output, and sets its value randomly to either 0 or 1. This
function is only available on P2.

PINSET
Force a pin to be an output, and set its value (new value must be either 0 or 1).

pinset(p, v)

PINSTART (available on P2 only)
Set up and start a P2 smart pin. This is similar to the Spin2 function:

pinstart(pin, mode, xval, yval)

pin is the pin to start, mode is the smart pin mode, and xval and yval are the
(mode dependent) initial values for the smartpin X and Y registers. See the P2
documentation for details on the smart pins.

PINTOGGLE
Force a pin to be an output, and invert its current value.

pintoggle(p)

ALPHABETICAL LIST OF KEYWORDS AND BUILT IN FUNCTIONS 69

POINTER
pointer is a keyword used in type declarations to declare a pointer, for example:

dim x as ulong pointer

declares x as a pointer to an unsigned long value.

PRINT
print is a special subroutine that prints data to a serial port or other stream.
The default destination for print is the pin 30 (pin 62 on P2) serial port, running
at 115_200 baud (230_400 baud on P2).

More than one item may appear in a print statement. If items are separated
by commas, a tab character is printed between them. If they are separated by
semicolons, nothing is printed between them, not even a space; this differs from
some other BASICs.

If the print statement ends in a comma, a tab is printed at the end. If it ends
in a semicolon, nothing is printed at the end. Otherwise, a newline (carriage
return plus line feed) is printed.

As a special case, if a backslash character \ appears in front of an expression,
the value of that expression is printed as a single byte character.

Examples

' basic one item print
print "hello, world!"
' two items separated by a tab
print "hello", "world!"
' two items with no separator
print "hello"; "world"
' an integer, with no newline
print 1;
' a string and then an integer, nothing between them
print "then "; 2

prints

hello, world!
hello world
helloworld
1then 2

print may be redirected. For example,

print #2, "hello, world"

prints its message to the device previously opened as device #2.

70 FLEXBASIC

PRINT USING
Formats output using a string. The general form of this is:

print [#n] using STRING; expr [,expr...] [;]

where STRING is a string literal and expr is one or more expressions. To use it
with an opened file, put the using after the file number, like:

print #2 using "##.# Degrees"; x#

Within the string literal output fields are specified by special forms, which are
replaced by the various expressions.

& indicates a variable width field, within which the numbers or strings are printed
with the minimum number of characters.

starts a numeric field with space padding; the number of # characters indicates
the width of the field. The numeric value is printed right-justified within the
field. If it cannot fit, the first digit which will fit is replaced with ’#’ and the
rest are printed normally. If the field is preceded by a - or + the sign is printed
there; otherwise, if the value is negative then the - sign is included in the digits
to print.

% starts a numeric field with 0 padding; the number of % characters indicates the
width of the field. Leading zeros are explicitly printed. If the number cannot fit
in the indicated number of digits, the first digit which will fit is replaced with
’#’ and the rest are printed normally.

+ indicates that a place should be reserved for a sign character (+ for non-
negative, - for negative). + must immediately be followed by a numeric field. If
the argument is an unsigned integer, instead of + a space is always printed.

- indicates that a place should be reserved for a sign character (space for non-
negative, - for negative). - must immediately be followed by a numeric field. If
the argument is an unsigned integer, a space is always printed.

! indicates to print a single character (the first character of the string argument).

\ indicates a string field, which continues until the next \. The width of the field
is the total number of characters, including the beginning and ending \. The
string will be printed left justified within the field. Centering or right justification
may be achieved for fields of length 3 or more by using = or ’>’ characters,
respectively, as fillers between \. If the string is too long to fit within the field,
only the first N characters of the string are printed.

_ (underscore) indicates that the next character is to be escaped; this prevents
the usual interpretation of characters like % and # and allows them to be inserted
into the format string.

' print x with 4 digits (including leading 0's)
print using "%%%%"; x

ALPHABETICAL LIST OF KEYWORDS AND BUILT IN FUNCTIONS 71

PRIVATE
This keyword is reserved for future use.

PROGRAM
This keyword is reserved for future use.

The statements in the top level of the file (not inside any subroutine or function)
are placed in a method called program. This is only really useful for calling them
from another language (for example a Spin program using a BASIC program as
an object).

PTR
ptr is a synonym for pointer used for compatibility with FreeBasic. Please use
the longer pointer form; ptr may go away in future versions of FlexBASIC.

PUT
put #handle, pos, var [,items [,r]]

put is used to write binary data to the open file whose handle is handle, starting
at position pos in the file (where pos is 1-based). The position is optional, but
if omitted a comma must still be placed to indicate that it is missing. var is the
variable containing the first binary data to write, and items is the number of
variables to write starting at var. items is often omitted, in which case only 1
item is written. Note that the total number of bytes written is items times the
size of each variable.

The optional variable r, if present, is set to the number of items actually written.

For example, to write the 128 bytes from an array of ubytes into the current
position in file handle 3 one would use:

dim a(128 as ubyte
dim r as integer
...
put #3,, a(0), 128, r
if r <> 128
print "unable to write all of the bytes"

end if

To write a single long integer x to the first 4 bytes of the file, regardless of where
we currently are in the file, we could do:

put #3, 1, x

In this case, if x contains 0xabcd then the 4 bytes 0xcd, 0xab, 0x00, and 0x00
are written to the file (the Propeller is a little endian chip, and the data is
written directly).

72 FLEXBASIC

Several important caveats apply:

(1) The bytes are written as binary data, not ASCII. (2) Strings may not be
written in this way. The compiler will not throw an error for using a string type,
but what is written is the 4 byte pointer for the string, i.e. the address of the
string data, which is not generally useful. (3) The optional variable r is set to
the number of items written, not to the number of bytes. This is different from
FreeBasic. (4) If an error occurs, r is set to -1.

RDPIN (available on P2 only)
rdpin(p) reads the current value of the smartpin Z register for pin p. Do not
confuse this with pinread, which reads the value of the underlying pin itself.
Use rdpin with pins configured as smartpins, and pinread for pins configured
for bit-banged I/O.

READ
read reads data items declared by data. All of the strings following data
keywords are lumped together, and then parsed by read in the same way as
input parses data typed by the user.

_REBOOT
_reboot is a built in function which will reset the P2. It is not used very often.

REM
Introduces a comment, which continues until the end of the line. A single quote
character ' may also be used for this.

REMOVECHAR
y$ = removechar$(x$, c$)

Returns a new string which is like the original, but with all occurances of the
single character c$ removed. If the string c$ is longer than one character, only
the first character is removed.

REPLACECHAR
y$ = replacechar$(x$, o$, n$)

Returns a new string which is like the original, but with all occurances of the
single character o$ replaced by the first character of n$. Only the first characters
of o$ and n$ are significant.

ALPHABETICAL LIST OF KEYWORDS AND BUILT IN FUNCTIONS 73

RESTORE
Resets the internal pointer for read so that it starts again at the first data
statement.

RETURN
Return from a subroutine or function. If this statement occurs inside a function,
then the return keyword may be followed by an expression giving the value to
return; this expression should have a type compatible with the function’s return
value.

A return with a value sets the function’s result value and exits. If the return
does not have a value (or indeed if there is no return), then the function’s result
value is the last value assigned to the pseudo-variable that has the same name
as the function. That is, two equivalent ways of writing a sum function are:

function sum(x, y)
sum = x+y

end function

or

function sum(x, y)
return x+y

end function

REVERSE$
y$ = reverse$(x$)

Returns a new string which has the same characters as the original, but in the
reverse order (so for example reverse$("abc") would return "cba").

RIGHT$
A predefined string function. right$(s, n) returns the right-most n characters
of s. If n is longer than the length of s, returns s. If n =< 0, returns an empty
string. If a memory allocation error occurs, returns nil.

RND
A predefined function which returns a random floating point number x such that
0.0 <= x and x < 1.0. A single argument n is given. If n is negative, then it
is used as the seed for the random number sequence. If n is 0, a new sequence is
started with a random seed. If n is positive, the next value in the sequence is
returned.

f = rnd(0) ' start a new sequence
i = int(rnd(1)*6) + 1 ' generate random between 1 and 6

74 FLEXBASIC

ROUND
A predefined function which takes a floating point number and converts it to an
integer, doing rounding towards the nearest integer.

RPAD$
y$ = rpad$(x$, w, ch$)

Returns a new string which is like the original string but padded on the right
so that it has length w. If w is less than the current length of the string, the
function returns the leftmost w characters, otherwise it appends enough copies
of ch$ to make the string w characters long.

RTRIM$
y$ = rtrim$(x$)

Returns a new string which is like the original string but with trailing spaces
removed.

_SAMETYPES
A special keyword which may be used to check whether two types are the same.
This is especially useful for checking the types passed to template functions, e.g.:

any(T) function checkType(x as T) as string
if _SameTypes(T, long) or _SameTypes(T, short) then
return "integer"

else if _SameTypes(T, string) then
return "string"

else if _SameTypes(T, single) then
return "float"

else if _SameTypes(T, any) then
return "generic"

else
return "unknown type"

end if
end function

SELECT CASE
Selects between alternatives. The expression after the initial select case is
evaluated once, then matched against each of the case statements (in order)
until one matches or end select is reached. case else will match anything
(and hence should be placed last, since no case after it can ever match).

In case of a match, all of the statements between the matching case and the
next case (or end select) will be executed.

ALPHABETICAL LIST OF KEYWORDS AND BUILT IN FUNCTIONS 75

var keepgoing = -1
do

print "continue? ";
a$ = input$(1)
print
a$ = input$(1)
select case a$
case "y"

keepgoing = 1
print "great!"

case "n"
keepgoing = 0
print "ok, not continuing "

case else
print "I did not understand your answer of "; a$

end select
loop while keepgoing = -1

SELF
Indicates the current object. Not implemented yet.

SENDRECVDEVICE
A built-in function rather than a keyword. SendRecvDevice(sendf, recvf,
closef) constructs a simple device driver based on three functions: sendf to
send a single byte, recvf to receive a byte (or return -1 if no byte is available),
and closef to be called when the device is closed. The value(s) returned by
SendRecvDevice is only useful for passing directly to the open statement, and
should not be used in any other context (at least not at this time).

_SETBAUD
Set up the serial port baud rate, based on the current clock frequency.

_setbaud(115_200) ' set baud rate to 115_200

The default serial rate on P1 is 115_200 baud, and assuming a clock frequency
of 80_000_000 (on P2 both defaults are doubled). If these are changed, it is
necessary to call _setbaud again in order for serial I/O to work.

SHARED
The shared keyword may be applied to variables and to assembly code.

When applied to a variable, it means that a single version of the variable exists
for all instances of a class. In this respect it is like static in C++, or putting
data in the dat block of Spin. Shared variables are also called "global".

76 FLEXBASIC

When applied to assembly code, it indicates that the code is "global" code
intended to be executed by a cpu directive. Again, this is similar to putting
code in a dat block in Spin.

SHL
Operator for shifting left. For example:

x shl 3

is the same as x << 3 and returns x multiplied by 8 (2 raised to the power 3).

SHORT
A signed 16 bit integer, occupying two bytes of computer memory. The unsigned
version of this is ushort. The difference arises with the treatment of the upper
bit. Both short and ushort treat 0-32767 the same, but for short 32768 to
65535 are considered equivalent to -32768 to -1 respectively (that is, when a
short is copied to a larger sized integer the upper bit is repeated into all the
other bits; for ushort the new bits are filled with 0 instead).

SHR
Operator for shifting bits right. For example:

x shr 3

is the same as x >> 3 and returns the bits of x shifted right by 3. If x is unsigned
the new bits are filled with 0, otherwise they are filled with the sign bit of x.
Note that the original value of x is left unchanged.

SIN
Predefined function. sin(x) returns the sine of x, which is a floating point value
given in radians (not degrees). To convert from degrees to radians, multiply by
3.1415926536 / 180.0.

SINGLE
Single precision floating point data type. By default this is an IEEE 32 bit single
precision float, but compiler options may change this (for example to a 16.16
fixed point number).

SIZEOF
Returns the size of a variable or type, in bytes. Note that for strings this is not
the length of the string, but rather the size of the string descriptor (pointer).

ALPHABETICAL LIST OF KEYWORDS AND BUILT IN FUNCTIONS 77

SPACE$
y$ = space$(n)

Returns a string consisting of n space characters.

SQR
An alias for sqrt, for compatibility with older BASICs.

SQRT
Calculate the square root of a number.

x = sqrt(y)

This is not a true function, but a pseudo-function whose result type depends on
the input type. If the parameter to sqrt is an integer then the result will be an
integer as well. If the parameter is a single then the result is a single.

STEP
Gives the increment to apply in a FOR loop.

for i = 2 to 8 step 2
print i

next

will print 2, 4, 6, and 8 on separate lines.

STR$
Convert a number to a string. The input is a floating point number (integers will
automatically be converted to single) and the output is a string representing
the number. Unlike the format used for regular print, str$ tries to avoid
trailing zeros, so the output is somewhat more compact than print.

STRERROR$
msg$ = strerror$(e)

Find an error message corresponding to the integer error number e. e is either
the value thrown as an error by open (or a similar function), or else the system
error returned by the geterr() function.

STRING$
a$ = string$(cnt, x$)

Returns a new string consisting of cnt copies of the first character of x$.

78 FLEXBASIC

STRINT$
Convert an integer to a string. This is similar to str$ but faster since the input
is known to be an integer.

SUB
Defines a new subroutine. This is like a function but with no return value.
Subroutines have a fixed number and type of arguments, but the last arguments
may be given default values with an initializer. For example:

sub say(msg$="hello")
print msg$

end sub

If you call say with an argument, it will print that argument. If you call say
with no argument it will print the default of hello:

say("hi!") ' prints "hi!"
say "hi!" ' the same
say ' prints "hello"

Subroutines may be invoked with function notation (arguments enclosed in
parentheses) or with the arguments separated from the subroutine name by
white space, as in the example above.

Anonymous subroutines

sub may also be used in expressions to specify a temporary, unnamed subroutine.
The syntax for this is very like anonymous functions. For example, here is a way
to construct a subroutine which executes another subroutine n times:

' define an alias for a subroutine with no arguments
type voidsub as sub()

' execute subroutine S n times
sub doit(s as voidsub, n as integer)
if n > 0 then
s()
doit(s, n-1)

end if
end sub

dim f as voidsub
f = sub()

print "hello"
end sub

' print hello 4 times
doit(f, 4)

ALPHABETICAL LIST OF KEYWORDS AND BUILT IN FUNCTIONS 79

There is also a short form of subroutine definitions, starting with [followed by
the subroutine parameters, :, and then the subroutine statements. So the above
example could be written more compactly as:

' define an alias for a subroutine with no arguments
type voidsub as sub()

' execute subroutine S n times
sub doit(s as voidsub, n as integer)
if n > 0 then
s()
doit(s, n-1)

end if
end sub
doit([: print "hello"], 4)

TAN
Predefined function. tan(x) returns the tangent of x, which is a floating point
value given in radians (not degrees). To convert from degrees to radians, multiply
by 3.1415926536 / 180.0.

THEN
Introduces a multi-line series of statements for an if statement. See IF for
details.

THROW
Throws an error which may be caught by a caller’s try/catch block. If none of
our callers has established a try / catch block, the program is ended. To avoid
ending the program, use throwifcaught instead.

The argument to throw must (for now) be an integral type, or any. Earlier
versions of FlexBASIC allowed other types, but this is deprecated and a warning
will be issued. To pass a string or similar message, use cast to cast the pointer
to any.

Example:

if n < 0 then
throw "illegal negative value"

endif

THROWIFCAUGHT
Like throw, throws an exception which may be caught by try / catch. Unlike
regular throw, if there is no try / catch handler, throwifcaught continues

80 FLEXBASIC

execution instead of terminating the program.

TO
A syntactical element typically used for giving ranges of items.

TRIM$
y$ = trim$(x$)

Returns a new string which is like the original string but with both leading and
trailing spaces removed.

TRUE
A predefined constant equal to $ffffffff (all bits set). This is the official result
returned by comparison operators if they evaluate to true. However, note that
any non-zero result will be considered "true" in the context of a boolean test. So
the constant true is not unique, and you should never write if a = true or
anything like that.

TRY
Example:

dim errmsg as integer
try

' run sub1, sub2, then sub3. If any one of them
' throws an error, we will immediately stop execution
' and jump to the catch block
sub1
sub2
sub3

catch errmsg
print "a subroutine reports error number: " errmsg

end try

TYPE
Creates an alias for a type. For example,

type uptr as ubyte ptr

creates a new type name uptr which is a pointer to a ubyte. You may use the
new type name anywhere a type is required.

ALPHABETICAL LIST OF KEYWORDS AND BUILT IN FUNCTIONS 81

UBYTE
An unsigned 8 bit integer, occupying one byte of computer memory. The signed
version of this is byte. The difference arises with the treatment of the upper
bit. Both byte and ubyte treat 0-127 the same, but for byte 128 to 255 are
considered equivalent to -128 to -1 respectively (that is, when a byte is copied to
a larger sized integer the upper bit is repeated into all the other bits; for ubyte
the new bytes are filled with 0 instead).

UCASE$
y$ = ucase$(x$)

Returns a new string which is the same as the original string but with all
alphabetical characters converted to upper case.

UINTEGER
An unsigned 32 bit integer.

ULONG
An unsigned 32 bit integer, occupying four bytes of computer memory. The
signed version of this is long.

ULONGINT
An unsigned 64 bit integer, occupying eight bytes of computer memory. The
signed version of this is longint. This type is not yet fully implemented.

USHORT
An unsigned 16 bit integer, occupying two bytes of computer memory. The
signed version of this is short. The difference arises with the treatment of the
upper bit. Both short and ushort treat 0-32767 the same, but for short 32768
to 65535 are considered equivalent to -32768 to -1 respectively (that is, when a
short is copied to a larger sized integer the upper bit is repeated into all the
other bits; for ushort the new bits are filled with 0 instead).

USING
Keyword intended for use in PRINT statements, and also to indicate the file to
be used for a CLASS.

VAL
Predefined function to convert a string to a floating point number.

82 FLEXBASIC

dim x as single
x = val(a$) ' convert a$ to a float

If you know the input string represents an integer, consider using the more
efficient val% instead.

VAL%
Predefined function to convert a string to an integer.

VAR
Declare a local variable:

VAR i = 2
VAR msg$ = "hello"

var creates and initializes a new local variable (only available inside the function
in which it is declared). The type of the new variable is inferred from the type of
the expression used to initialize it; if for some reason that cannot be determined,
the type is set according to the variable suffix (if any is present).

var is somewhat similar to dim, except that the type isn’t given explicitly (it is
determined by the initializer expression) and the variables created are always
local, even if the var is in the main program (in the main program dim creates
member variables that may be used by functions or subroutines in this file).

WAITCNT
Propeller specific builtin function. Waits until the cycle counter is a specific
value

waitcnt(getcnt() + clkfreq) ' wait one second

WAITPEQ (only available on P1)
Propeller specific builtin function. Waits for pins to have a specific value (given
by a bit mask). Same as the Spin waitpeq routine. Note that the arguments
are bit masks, not pin numbers, so take care when porting code from PropBasic.

WAITPNE (only available on P1)
Propeller specific builtin function. Waits for pins to not have a specific value
(given by a bit mask). Same as the Spin waitpne routine. Note that the
arguments are bit masks, not pin numbers, so take care when porting code from
PropBasic.

ALPHABETICAL LIST OF KEYWORDS AND BUILT IN FUNCTIONS 83

WEND
Marks the end of a while loop; this is a short form of end while.

WITH
Keyword reserved for future use.

WHILE
Begins a loop which continues as long as a specified condition is true.

' wait for pin to go low
loopcount = 0
while input(1) <> 0
loopcount = loopcount + 1

wend
print "waited "; loopcount; " times until pin went high"

The end of the repeated code may be terminated either with wend or with end
while.

The while loop may also be written as do while:

do while input(1) <> 0
loopcount = loopcount + 1

loop

or

do until input(1) = 0
loopcount = loopcount + 1

loop

WORD
Reserved for use in inline assembler.

WORDFILL
wordfill(p as ushort pointer, val as ushort, count as long)

Fills a block of memory with the count copies of the 16 bit value val. Note that
a total of 2*count bytes will be written.

WORDMOVE
wordmove(dst as ushort pointer, src as ushort pointer, count as long)

Copies count 16 bit values from src to dst.

84 FLEXBASIC

WRPIN (only available on P2)
Writes a value to a smartpin register. wrpin(pin, val) writes the value val to
the smartpin.

WXPIN (only available on P2)
Writes a value to a smartpin X register. wxpin(pin, val) writes the value val
to the smartpin.

WYPIN (only available on P2)
Writes a value to a smartpin Y register. wypin(pin, val) writes the value val
to the smartpin.

XOR
a = x xor y

Returns the bit-wise exclusive or of x and y. If x or y is a floating point number
then it will be converted to integer before the operation is performed. xor is
often used for flipping bits.

Tips and Tricks
Including binary data
Initialized Arrays

There are a variety of ways to include binary data in a BASIC program. You
can use an initialized array. So for example to declare an array mydata with
bytes from 1 to 8 you could do:

dim shared as ubyte mydata(8) = { _
0x01, 0x02, 0x03, 0x04, _
0x05, 0x06, 0x07, 0x08 _

}

Data in inline assembly

Another alternative is to use the asm shared directive, and the assembler byte,
word, and long directives. There is an important difference between the asm
shared way and the initialized array. The initialized array has an array type.
The asm shared declares a plain label which isn’t intrinsically an array. That
means that in practice you will usually want to use a pointer to the label.

asm shared
mydata

SAMPLE PROGRAMS 85

byte 0x01, 0x02, 0x03, 0x04
byte $05, $06, $07, $08

end asm
...
' declare a pointer for the initialized data
dim p as ubyte pointer
p = @mydata
' now we can access the data as p(0), p(1), and so on

Note that BASIC is pretty forgiving about the syntax for hex constants, more
so than Spin.

Finally, the PASM FILE directive may be used inside asm shared to include a
file full of binary data:

asm shared
mydata

file "mydata.bin"

Sample Programs
Toggle a pin
This program toggles a pin once per second.

rem simple program to toggle a pin

const pin = 16

direction(pin) = output

do
output(pin) = not output(pin)
pausems 1000

loop

86 FLEXBASIC

	FlexBASIC
	Introduction
	Command Line compilation

	Preprocessor
	Directives
	Predefined Symbols

	Language Syntax
	Comments
	Integers
	Keywords
	Predefined functions and variables
	Variable, Subroutine, and Function names
	Operators
	Extending lines
	Multiple statements per line

	Data Types
	Numeric Data types
	Pointer types
	String type
	Classes
	Type Aliases

	Language features
	TRUE and FALSE
	Function declarations
	Memory allocation
	Templates
	Selecting code based on type properties

	Libraries
	Classes
	Include files

	Propeller Hardware Features
	Input, Output, and Direction
	Hardware registers

	Alphabetical List of Keywords and Built In Functions
	ABS
	ACOS
	ALIAS
	AND
	ANDALSO
	ANY
	APPEND
	AS
	ASC
	ASIN
	ASM
	ATAN
	ATAN2
	BIN$
	BITREV
	__BUILTIN_ALLOCA
	BYREF
	BYTE
	BYTEFILL
	BYTEMOVE
	BYVAL
	CALL
	CASE
	CAST
	CATCH
	CHR$
	CLASS
	CHAIN
	CHDIR
	_CLKFREQ
	CLKFREQ
	CLKSET
	CLOSE
	CONST
	CONTINUE
	COS
	COUNTSTR
	CPU
	CPUCHK
	CPUID
	CPUSTOP
	CPUWAIT
	CURDIR$
	DATA
	DECLARE
	DECUNS$
	DEF
	DEFINT
	DEFSNG
	DELETE
	DELETE$
	DIM
	DIR$
	DIRECTION
	DO
	DOUBLE
	ELSE
	END
	ENDIF
	ENUM
	EXIT
	EXP
	FALSE
	FIXED
	FOR
	FUNCTION
	FUNCTION
	GET
	GETCNT
	GETERR
	GETMS
	GETRND
	GETSEC
	GETUS
	GOSUB
	GOTO
	_HASMETHOD
	HEAPSIZE
	HEX$
	IF
	IMPORT
	INPUT
	INPUT$
	INSERT$
	INSTR
	INSTRREV
	INT
	INTEGER
	LCASE$
	LEFT$
	LEN
	LET
	LIB
	LINE
	_LOCKCLR
	_LOCKNEW
	_LOCKREL
	_LOCKTRY
	LOG
	LONG
	LONGINT
	LONGFILL
	LONGMOVE
	LOOP
	LPAD$
	LTRIM$
	MID$
	MOD
	MOUNT
	NEW
	NEXT
	NIL
	NOT
	NUMBER$
	OCT$
	ON X GOTO
	OPEN
	OPTION
	OR
	ORELSE
	OUTPUT
	PAUSEMS
	PAUSESEC
	PAUSEUS
	PI
	PINFLOAT
	PINLO
	PINHI
	PINREAD
	PINRND (P2 only)
	PINSET
	PINSTART (available on P2 only)
	PINTOGGLE
	POINTER
	PRINT
	PRINT USING
	PRIVATE
	PROGRAM
	PTR
	PUT
	RDPIN (available on P2 only)
	READ
	_REBOOT
	REM
	REMOVECHAR
	REPLACECHAR
	RESTORE
	RETURN
	REVERSE$
	RIGHT$
	RND
	ROUND
	RPAD$
	RTRIM$
	_SAMETYPES
	SELECT CASE
	SELF
	SENDRECVDEVICE
	_SETBAUD
	SHARED
	SHL
	SHORT
	SHR
	SIN
	SINGLE
	SIZEOF
	SPACE$
	SQR
	SQRT
	STEP
	STR$
	STRERROR$
	STRING$
	STRINT$
	SUB
	TAN
	THEN
	THROW
	THROWIFCAUGHT
	TO
	TRIM$
	TRUE
	TRY
	TYPE
	UBYTE
	UCASE$
	UINTEGER
	ULONG
	ULONGINT
	USHORT
	USING
	VAL
	VAL%
	VAR
	WAITCNT
	WAITPEQ (only available on P1)
	WAITPNE (only available on P1)
	WEND
	WITH
	WHILE
	WORD
	WORDFILL
	WORDMOVE
	WRPIN (only available on P2)
	WXPIN (only available on P2)
	WYPIN (only available on P2)
	XOR

	Tips and Tricks
	Including binary data

	Sample Programs
	Toggle a pin

