
TAQOZ Reloaded v2.8 - Writing
Inline Assembly Code

TAQOZ Reloaded is a powerful language, so why inline assembly code?

• When your TAQOZ Reloaded application still runs too slowly e.g. when streaming audio or
video. After measuring execution times of words in the critical path with LAP and .LAP,
converting some of those words to assembly language may get you within spec. Aim to do
the minimum necessary.

• TAQOZ Reloaded with it's inline assembler makes a highly interactive sandbox to
experiment with various functions, reducing development time.

• There is often no need to write a test harness around the function under test - just manual
entry from the TAQOZ command line is enough to check the function is working. Your edit-
compile-test cycle is much quicker than other languages - as each word comes to life. More
fun means you may be more productive.

There is a downside - each assembly language instruction consumes 32 bits of memory whereas
TAQOZ high level words only need 16 bits. The assembler takes up precious space in memory.

The TAQOZ Interactive Assembler (TIA) in TAQOZ Reloaded is intended for creating relatively
short pieces of assembly code, in line with good forth practice. No awful 'War and Peace' sized
functions, thank you very much.

The following notes were enough baby steps to get me writing inline code for a dsp project.

Obtaining the Assembler
Check that the assembler is already present in your tool set. If the TAQOZ Reloaded start up
message includes something like...

4890 *P2ASM* TAQOZ INTERACTIVE ASSEMBLER for the PARALLAX P2 - 210124-1200

...then the assembler is already there. Otherwise, from the Tachyon Forth dropbox, find
P2ASM.FTH in folder Tachyon/P2/TAQOZ/Forth. Upload this file to TAQOZ and check it compiles
with no errors. You can optionally keep the assembler resident in the tool set by typing BU <enter>
to back up the complete system.

P2 Reference Documents
The P2 i nstruction set , Assembly Language Manual and the Propeller 2 Documentation are
essential aids to inline assembly programming. A paper Tachyon Forth Model by Peter Jakacki is
also useful.

TIA Writing Inline Assembly Code version 15 page 1 of 24

https://u.pcloud.link/publink/show?code=kZg8GbXZeUueaWSMaefSL6FlIQADM4pnftJy
https://docs.google.com/document/d/e/2PACX-1vQt8RAeovex-PmajBMbZesdd4o04sWkq38J2AEl-CId-41nOMGHEELBrhSXR_4C3BP3YnAZmoxVQjaG/pub
https://docs.google.com/document/d/1gn6oaT5Ib7CytvlZHacmrSbVBJsD9t_-kmvjd7nUR6o/edit
https://docs.google.com/document/d/1gn6oaT5Ib7CytvlZHacmrSbVBJsD9t_-kmvjd7nUR6o/edit
https://docs.google.com/document/d/1gn6oaT5Ib7CytvlZHacmrSbVBJsD9t_-kmvjd7nUR6o/edit
https://docs.google.com/document/d/1EExI1c-vBqqn03w1yejr51EisjiPQp_w-R-UbvBa4aE
https://docs.google.com/spreadsheets/d/1_vJk-Ad569UMwgXTKTdfJkHYHpc1rZwxB-DcIiAZNdk/edit#gid=0
https://docs.google.com/spreadsheets/d/1_vJk-Ad569UMwgXTKTdfJkHYHpc1rZwxB-DcIiAZNdk/edit#gid=0

Instruction Syntax
P2 instructions in general are written as:-

 {_RET_} or
{ conditional }

ROR Destination, {#}Source {wc/wz/wcz}

optional return to
TAQOZ or a
conditional

Instruction
name

Optional #
denotes constant

value

Optional flags
affected as a
result of the
instruction

Any instruction may be made conditional with:-

Conditional name including aliases Flags

if_nz_and_nc
if_a
if_00
if_nc_and nz

nc & nz

if_z_and_nc
if_01
if_nc_and_z

nc & z

if_ae
if_0x
if_nc

nc

if_nz_and_c
if_10
if_c_and_nz

c & nz

if_ne
if_x0
if_nz

nz

if_z_ne_c
if_diff
if_c_ne_z

c <> z

if_nz_or_nc
if_not_11
if_nc_or nz

nc | nz

if_11
if_z_and_c
if_c_and_z

c & z

if_same
if_z_eq_c
if_c_eq_z

c = z

if_e
if_x1
if_z

z

TIA Writing Inline Assembly Code version 15 page 2 of 24

if_z_or_nc
if_not_10
if_nc_or_z

nc | z

if_b
if_1x
if_c

c

if_not_01
if_nz_or_c
if_c_or _nz

c | nz

if_not_00
if_be
if_z_or_c
if_c_or_z

c | z

N.B. Totally blank lines are not permitted within an assembly definition - Christof Eb reports they
cause 'stack mismatch' error messages from the Assembler.

Defining an inline assembly word
A simple inline assembly word is bracketed with code and end like this:-

code MYCODE 'keyword 'code' followed by the name of the new word
(assembly words)
ret 'return to the TAQOZ interpreter

end 'keyword 'end' signals the end of the assembly word

Back and Forth within the Definition
The words ASM: and FORTH: make possible the mixing of forth and assembly code in the same
definition. e.g.

pub MYWORD (ch --) --- N.B. This currently does not work – word FORTH: is buggy
... forth words ...

ASM:
... assembly language

FORTH:
.. forth words ...

;

or

pub MYWORD (ch --)
... forth words ...

ASM:
... assembly language
jmp #\@<forth word name> or ret

end

TIA Writing Inline Assembly Code version 15 page 3 of 24

Here’s a working example of this, created by Christof Eb on the Parallax forum, which should get
you going with your own ‘mixed’ words:-

FORTH ASSEMBLER
pri PCNEXT _pc @ 12 + ;
' CALL 8 + W@ 1- := doNEXT --- points to the start addr of the forth interpreter

pub FORTH: --- bug fix for FORTH: word
 end [C]] ;
FORTH

: testD (–) --- test word for mixed assembler and forth
 1 --- initialise a counter with the value 1 on the data stack
 begin
 ASM:
 add a,#1 --- counter now 1 + 1 = 2
 mov PTRA,##PCNEXT
 jmp doNEXT
 FORTH:
 crlf dup .
 ASM:
 add a,#1 --- add 1 to the counter
 mov PTRA,##PCNEXT
 jmp doNEXT
 FORTH:
 crlf dup . --- copy and display the counter
 1000 ms --- do nothing for 1 s
 dup 10 > until --- and loop to begin until counter = 11
 drop --- clean up the data stack
;

TIA Writing Inline Assembly Code version 15 page 4 of 24

TAQOZ register usage

The following registers are available for use within inline assembly language:-

xx
yy
zz also known as r0 or r1
r2
r3
r4
acc also known as ac

ptra useful for indexing arrays and strings
ptrb useful for indexing arrays and strings - used by TAQOZ so value needs preserving

During the reading or writing of data to hub memory, ptra and ptrb can incremented and
decremented by the correct number of bytes using the following keywords:-

ptra points to the address, no pointer increment or decrement
ptra++ after the instruction has executed, ptra is incremented by byte, word or long as appropriate
++ptra before the instruction executes, ptra is incremented by byte, word or long as appropriate
ptra-- after the instruction has executed, ptra is decremented by byte, word or long as appropriate
--ptra before the instruction executes, ptra is decremented by byte, word or long as appropriate

The same grammar applies to ptrb e.g ptrb++ or --ptrb

Kernel registers
Defined registers in the forth kernel are:-

_depth, _pin, sck, mosi, miso, ss, reg4, reg5, reg6

TIA Writing Inline Assembly Code version 15 page 5 of 24

Labels
To enable jumps in an assembly based word, TIA provides 8 fixed name labels l0 to l7 (lowercase
L) which is plenty, because they can all be reused once each definition is complete. This is the
syntax for labels:-

code MYWORD
... assembly language ..

.l2 ... assembly language ... ' this line has a label l2
... assembly language ...
djnz r1,#l2 ' this line includes a jump to l2
ret

end

N.B. Backward jumps can be made using any type of jump instruction. Forward jumps are only
supported for the DJNZ instruction. Thanks for that tip, Christof Eb. Christof also mentions that the
SKIP instruction can be useful for forward jumps e.g.

cmp d,#2 wz
if_z skip #%11111111 ' skips next 8 instructions

Looping Macros
As an aid to creating loops in a more high level fashion, these macros are aimed at easing a new
assembly language user into simple looping without fuss. They're not as versatile as the various
branching assembly language instructions and they don't translate to other languages that support
inline coding.

The FOR: NEXT: macros
Example code:-

code ffibo (n1 -- n2) ' n2=n1'th fibonacci number
mov xx,#0
mov yy,#1
FOR:

add yy,xx
djnz a,#l2

ret mov a,yy
.l2 add xx,yy

NEXT: a
ret mov a,xx

end

So the 'NEXT: a' statement decrements a (the top of data stack) and jumps back to the 'FOR:'
statement if a is non-zero.

TIA Writing Inline Assembly Code version 15 page 6 of 24

The BEGIN: AGAIN: UNTIL: macros

BEGIN: ... AGAIN: is an endless loop and is used like BEGIN ... AGAIN in high level Taqoz.
BEGIN: UNTIL: <condition> is a loop that ends, where <condition> is one of WC , WZ or WCZ

The Data Stack
top of stack is named as a
tos + 1 is named as b
tos + 2 is named as c
tos + 3 is named as d

Words that don't alter the stack depth
The less the stack is disturbed, the better from a speed point of view. If it can be arranged that the
stack depth doesn't change, then the inline word will run the fastest. So, a word to double the value
on the top of stack is:-

code MYDOUBLE (n1 -- n2) 'n2 = n1 * 2
ret shl a,#1 'shift tos one place left and return to TAQOZ

end

Notice that the ret to the TAQOZ interpreter is combined with the last instruction.

Here's a more complicated example that multiplies two 32 bit unsigned values together to produce
a 64 bit result. Notice there are two input parameters and one output parameter. However the
inputs take up the same space as the output, so the stack depth doesn't need to change:-

code MUL (b a -- a*b as a double)
getword xx,a,#1
getword yy,b,#1
mov zz,xx
mul zz,yy
mul xx,b
mul yy,a
add xx,yy wc
getword yy,xx,#1
bitc yy, #16
shl xx,#16
mul a,b
add xx,a wc
addx yy,zz
mov b,xx

 ret mov a,yy
end

TIA Writing Inline Assembly Code version 15 page 7 of 24

Dropping values from the stack
This example makes a jump to @DROP to drop the top value from the stack and return to the
TAQOZ interpreter. This example also shows two TAQOZ constants being used in the inline word:-

56 := SCL
57 := SDA

code MYTX16 '(word --)
rev a
shr a,#16
wypin a,#SDA
wypin #32,#SCL
jmp #@DROP 'an equivalent macro is DROP;

end

To drop the top two values, use relative address jmp #@2DROP
To drop the top three values use jmp #@3DROP
The @ is interpreted as "find the address of <forth definition>", so very useful.

To jump to an absolute address write this as "#\@DROP" :-

code WSTX
... assembler language ...
jmp #\@2DROP

end

These endings are used often, so there are three macros DROP; 2DROP; and 3DROP; that can
be substituted for the 'jmp #@DROP end' lines.

Pushing new values to the stack
When your word needs more space on the stack for results e.g. Here's a function that needs no
inputs, but just pushes the value 1 to top of stack:-

code ONEOFAKIND
>PUSHX ' make room for a new tos entry
ret mov a,#1 ' and set that entry = 1

end

TIA Writing Inline Assembly Code version 15 page 8 of 24

Other convenience words

Other convenience words used like >PUSHX are:-

>ROT (a b c -- b c a) move the third entry to top of stack

>SWAP (n1 n2 -- n2 n1) swap the top two stack entries

>I (-- n1) returns the current loop index n1

>SPIRD (n1 -- n2) Read 8-bits left into n1 so that n2 = n1<<8+new. Four
successive SPIRDs will receive 32-bits

>SPIWB (byte --) Shift 8 bits from data[0..7] out and leave data on stack (restored
with other bytes zeroed)

>SPICE (--)

Reading and Writing to hub Memory
There are three memory regions: cog RAM, lookup RAM, and hub RAM. Each cog has its own cog
RAM and lookup RAM, while the hub RAM is shared by all cogs. (RAM - random access memory)

Memory
Region

Memory
Width

Memory
Depth

Instruction D/S
Address Ranges

Program Counter
Address Ranges

COG 32 bits 512 $000..$1FF $00000..$001FF

LOOKUP(LUT) 32 bits 512 $000..$1FF $00200..$003FF

HUB 8 bits
1,048,576
(*)

$00000..$FFFFF $00400..$FFFFF

So this is writing and reading to a long variable in hub memory (read and write word or byte would
be very similar):-

long MYVARI

code MYWRITE (n1 --) ' writes n1 to variable MYVARI
wrlong a,#MYVARI
jmp #\@DROP ' you can just use DROP; here

end

code MYREAD (-- n1)
>PUSHX 'make room for the result

ret rdlong a,#MYVARI ' set tos=MYVARI
end

TIA Writing Inline Assembly Code version 15 page 9 of 24

Using indirect addressing to make a more useful function
Reading and writing to a specifically named variable is OK for accessing global variables, but more
usual is to read and write to an address supplied as an input on the stack. This makes for a more
useful word to access any variable:-

code MYINC (adr ---) ' increment long at adr
mov PTRA,a ' PTRA = adr
rdlong a,ptra ' read long at adr
add a,#1 ' increment the long
wrlong a,ptra ' write it back to the adr
DROP;

end

Using indirect addressing to work on arrays
This is where assembly language really starts to pay off in speed: e.g. A dsp application requires
numerous looped functions to work on arrays of signal data. These looped functions are written in
assembly code. The result is that most of the processors' time is spent in the loops doing the dsp
maths and very little time is spent in the TAQOZ interpreter between the dsp words. The
application is written in TAQOZ, but runs nearly as fast and efficiently as an all-Assembly
application. BUT, it's been written and tested one function at a time - so much less of a monster to
commission.
Here's an inline assembly word and identical forth word, working on a byte array:-

100 bytes KAKA

' increment all elements of byte array at adr
code MYINC '(arraysize array --)

mov PTRA,a ' PTRA = adr
.l0 ' start our array processing loop

rdbyte a,ptra ' read byte at adr
add a,#1 ' increment the byte
wrbyte a,ptra++ ' write it back to the adr and increment PTRA
djnz b,#l0 ' and do above for all array elements

2DROP;
end

' increment all elements of byte array at adr
pub MYINCFORTH (arraysize array --)

SWAP
FOR

DUP I + --- calculate the address
C++ --- increment array elements

NEXT
DROP --- and clean up

;

TIA Writing Inline Assembly Code version 15 page 10 of 24

Compare the speed of the forth versus inline assembly:-

TAQOZ# 100 KAKA LAP MYINC LAP .LAP --- 5,096 cycles= 25,480ns @200MHz ok
TAQOZ# 100 KAKA LAP MYINCFORTH LAP .LAP --- 38,136 cycles= 190,680ns @200MHz ok
TAQOZ# 38136 5096 / . --- 7 ok

So, around a 7x improvement in speed achieved using only 'rooky' code knowledge.

Running code from COG RAM

Christof Eb from the Parallax forum provided this very useful coding tip: If you really want a TAQOZ
word to run as fast as possible, then it can be run from COG Ram. This executes faster than Hub
Ram. Here we define a 'test' word to try it out:-

code test (value n -- value+3*n 0)
add b,#3
sub a,#1 wz
if_nz jmp #\@COGMOD ' loop from start
ret

end

Now we copy this 'test' word from Hub Ram to COG Ram with the command:-

AT test 2+ 4 LOADMOD \ loads the asm instructions of 'test' into COG Ram

Now we can execute the code from COG Ram with:-

10 5 COGMOD . . \ executes the loaded code

Nice one!

Currently, LOADMOD / COGMOD uses COG Ram starting at $1CB. When tested, a code word
containing up to 40 instructions can be transferred to COG Ram. Any more than that and TAQOZ
stops working.

Other Links
• MEDIA.FTH located in folder TAQOZ/Forth in the Tachyon Forth Files makes quite a lot of

use of inline code and is worth looking at for further examples.
• There is a T AQOZ Interactive Assembler thread in the Parallax forum. Be warned, early

examples of code won't run without editing, as the TIA syntax evolved.
• My C REATE DOES> inline code included in this SI5351 driver
• My Locks and WAITATN inline code

TIA Writing Inline Assembly Code version 15 page 11 of 24

https://forums.parallax.com/discussion/171742/try-these-taqoz-code-snippets-and-learn/p2
https://forums.parallax.com/discussion/173361/taqoz-reloaded-v2-8-si5351-dual-rf-signal-source-control
https://forums.parallax.com/discussion/173361/taqoz-reloaded-v2-8-si5351-dual-rf-signal-source-control
https://forums.parallax.com/discussion/171254/tia-an-interactive-inline-assembler-for-taqoz/p1
https://forums.parallax.com/discussion/171254/tia-an-interactive-inline-assembler-for-taqoz/p1
https://forums.parallax.com/discussion/171254/tia-an-interactive-inline-assembler-for-taqoz/p1
https://sourceforge.net/projects/tachyon-forth/files/TAQOZ/Forth/

Conclusion
The above has been a quick introduction to creating inline assembly words using TIA in TAQOZ
Reloaded. The paper was written as reminder notes whilst the author was getting familiar with the
subject. This will be revised from time to time, to jot down handy techniques as more is learned.

Bob Edwards, retired EMC engineer in SW U.K., ham radio call G4BBY April 2022

TIA Writing Inline Assembly Code version 15 page 12 of 24

Appendix 1 CREATE ... DOES>
These two words allow the user to expand the TAQOZ compiler – often useful around assembly language:-

 --- CREATE ... DOES> FOR TAQOZ V2.8 VER 2
{
CREATE / DOES> is the pearl of the Forth programming language, enabling the definition of new 'defining' words,
thus extending the compiler to suit the application - a very powerful feature. Here we test the new words out with a new data type,
WARRAY, a single dimension word array
}

--- create new dev with dummy cfa (save ptr to it)
pub CREATE(--)

[C] GRAB
[C] CREATE: --- Using the next word in the input stream as the name, create a VARIABLE type dictionary entry

 [C] GRAB --- make sure CREATE: has run before anything more
 HERE 2- 0 REG W! --- save the address of the code after DOES> in the REG scratchpad area
;

--- set new cfa to point back to DOES: code (skipped by DOES: itself)
pub DOES> (--)
 R> --- the first word location in the new word being defined
 0 REG W@ --- retrieve the address stored on scratchpad
 W! --- set the first word to execute as the address of the code after DOES>
;

TIA Writing Inline Assembly Code ver. 7 page 13 of 24

--- example definition of a new 'array of words' data type - no bounds checking
pre WARRAY
 CREATE (cnt --)
 FOR
 0 [C] ||
 NEXT --- Create cnt bytes set to 0
 DOES> (index -- addr)
 2* R> + --- the address of the first byte + index = the entry reqd
;

--- Create a new array MYARRAY1 which can hold 10 word sized values
10 WARRAY MYARRAY1

--- now lets check the array addresses are formed correctly
0 MYARRAY1 .
1 MYARRAY1 .
2 MYARRAY1 .
3 MYARRAY1 .

--- now check write and read data works
: TEST1 ---
10 FOR I I MYARRAY1 W! NEXT ---
10 FOR I MYARRAY1 W@ . SPACE NEXT ---
;

TIA Writing Inline Assembly Code ver. 8 page 14 of 24

Appendix 2 - Cog Synchronisation

--- Extension to Synchronising Execution between COGS ver1 for Taqoz Reloaded v2.8 - Bob Edwards May 2021

--- Pause execution waiting for an ATN flag from another cog
--- The cog waits for the ATN flag for up to 'clocks' ticks.
--- If ATN occurs before timeout, 'flag' = 1, else if timedout, 'flag' = 0
code WAITATN (clocks -- flag)

getct xx ' read the bottom half of the 64 bit system counter
add a,xx
setq a ' timeout set for when the system counter = a
waitatn wc ' wait for atn flag

ret wrnc a ' a = carry flag
end

--- Just loop until an ATN flag is received, using POLLATN
pub SLAVE1 (--)

BEGIN
POLLATN
IF

." Slave1 received ATN, thanks!" CRLF
ELSE

250 ms
." Slave1, no ATN seen this time" CRLF

THEN
AGAIN

;

TIA Writing Inline Assembly Code ver. 7 page 15 of 24

pub SLAVE2 (timeout --)
BEGIN

200000000 WAITATN
IF

." Slave2 received ATN, thanks!" CRLF
ELSE

." Slave2 timed out!" CRLF
THEN

AGAIN
;

--- Output a message to show the MASTER looping. Set cog 5 AND 6
 ATN flag on each pass
: MASTER (--)

BEGIN
200 ms
." Hello from the Master, wake up cog 5 & 6
" CRLF
%1100000 COGATN --- Send ATN to cog 5 and 6
KEY

UNTIL
;

TIA Writing Inline Assembly Code ver. 8 page 16 of 24

--- set master and both slaves going
pub DEMO (--)

%ERSCN %HOME
%BOLD ." Press any key to stop" %PLAIN CRLF
' SLAVE2 5 RUN
' SLAVE1 6 RUN
MASTER
5 s
5 COGSTOP
6 COGSTOP
%BOLD ." The Slave loops were synchronised to ATN flags from the Master, until it was stopped" CRLF
." after which, they free-ran because they were no longer receiving those flags" %PLAIN CRLF

;

TIA Writing Inline Assembly Code ver. 8 page 17 of 24

Appendix 3 - Patch for SETEDG and POLLEDG
--- SETEDG and POLLEDG use setse1, but this is already in use by the terminal input, so these two words don't work properly
--- this patch redefines the two words to use setse2 and pollse2 - Bob Edwards May 2021

--- useful edge definitions
1 := rising
2 := falling
3 := changing

--- sets event for 'edge' = rising, falling, changing, on SmartPin 'pin'
--- original SETEDG used se1 which is already used in the serial port
code SETEDG (edge pin --)

shl b,#6
add a,b
setse2 a
2DROP;

end
--- e.g. use as 'rising 6 SETEDG' etc

--- redefinition of POLLEDG - polls for the SETEDG event
--- flag = TRUE if event occurred, else flag = FALSE
code POLLEDG (-- flag)

>PUSHX
pollse2 wc
wrnc a

ret sub a,#1
end

TIA Writing Inline Assembly Code ver. 8 page 18 of 24

Appendix 4 - Locks
--- LOCKS v1 for Taqoz Reloaded v2.8 - Bob Edwards May 2021

--- If two or more cogs are writing to the same data in hub memory, that data would be in jeopardy from race conditions as each cog performs
--- its read-modify-write cycle. The outcome of two cogs writing to the same address at very nearly the same time is unknown - which of the
--- two values ends up at the address?

--- To fix that, the P2 has a pool of 16 semaphore bits called locks....

--- Allocate a lock, returning the lock number n. If n = 0-15, lock was allocated, if n=-1 then all locks were already allocated
code LOCKNEW (-- n)

>PUSHX 'make space on the stack
locknew a wc 't.o.s. new lock allocation number

if_nc ret 'successful allocation
ret mov a,#-1 'else signal all locks taken

end

--- Return lock number n (0-15) to the pool
code LOCKRET (n --)

lockret a
DROP;
ret

end

--- test LOCKNEW & LOCKRET

CRLF 17 FOR LOCKNEW . CRLF NEXT --- try allocating one too many locks
13 LOCKRET CRLF ." Did we release lock 13? - " LOCKNEW --- check we can release a lock
CRLF 16 FOR I LOCKRET NEXT --- return all locks

TIA Writing Inline Assembly Code ver. 8 page 19 of 24

--- Attempt to 'take' Lock n, flag = 0 if successful, else flag = 1
code LOCKTRY (n -- flag)

locktry a wc
ret wrnc a ' a = carry flag

end

--- Release Lock n (0-15) - only the cog that took the lock is permitted to do this
code LOCKREL(n --)

lockrel a
DROP;

end

--- Read lock n status, lock_status 1 = unlocked, 0 = locked - N.B. if lock is not owned, results invalid
code LOCK? (n -- lock_owner lock_status)

>PUSHX ' make room for status
lockrel b wc ' t.o.s.+1 = cog no. whose lock it is

ret wrnc a ' t.o.s. = lock status
end

long LOCKNUM1
long LOCKNUM2

pub SLAVE1 (--)
BEGIN

BEGIN
LOCKNUM1 @ LOCKTRY
30 ms

0= UNTIL
." Slave acquired lock" CRLF
500 ms
LOCKNUM1 @ LOCKREL
." Slave released lock" CRLF
500 ms

AGAIN ;

TIA Writing Inline Assembly Code ver. 8 page 20 of 24

pub SLAVE2 (--)
BEGIN

BEGIN
LOCKNUM2 @ LOCKTRY
30 ms

0= UNTIL
500 ms
LOCKNUM2 @ LOCKREL
500 ms

AGAIN
;

pub SLAVE3 (--)
BEGIN

BEGIN
LOCKNUM1 @ LOCKTRY
30 ms

0= UNTIL
750 ms
LOCKNUM1 @ LOCKREL
750 ms

AGAIN
;

pub MASTER (--)
BEGIN

BEGIN
LOCKNUM1 @ LOCKTRY
30 ms

0= UNTIL
." Master acquired lock" CRLF
1000 ms
LOCKNUM1 @ LOCKREL
." Master released lock" CRLF

TIA Writing Inline Assembly Code ver. 8 page 21 of 24

1000 ms
KEY UNTIL ;pub .LOCKS (--)
OFF %CURSOR
BEGIN

%ERSCN %HOME
%BOLD ." Press any key to stop scanning..." %PLAIN CRLF
16 FOR

." Lock number " I . SPACE
I LOCK? SWAP
." owned by cog #" . SPACE
." status is " . CRLF

NEXT
20 ms

KEY UNTIL
ON %CURSOR

;

--- Demo the use of LOCK? to monitor Lock status in the P2
pub DEMO1 (--)

LOCKNEW
LOCKNUM1 !
LOCKNEW
LOCKNUM2 !
' SLAVE2 5 RUN
' SLAVE3 6 RUN
.LOCKS
5 COGSTOP
6 COGSTOP
%BOLD ." So Cog 5 and 6 were monitored, by means of the LOCK? word, taking and releasing two locks" %PLAIN CRLF
LOCKNUM1 @ LOCKRET
LOCKNUM2 @ LOCKRET

;

TIA Writing Inline Assembly Code ver. 8 page 22 of 24

--- Demo two cogs using a lock - each waits to take the lock in turn, then releases it
pub DEMO2 (--)

LOCKNEW
LOCKNUM1 !
%ERSCN %HOME
%BOLD ." Press any key to stop the Master - 5s later the Slave will stop too" %PLAIN CRLF CRLF
' SLAVE1 5 RUN %ERLINE
MASTER
%BOLD ." Master stopped " CRLF %PLAIN
5 s
5 COGSTOP
%BOLD ." Slave also stopped" CRLF
." Any code sequence protected by the lock could only have been run BY ONE COG AT A TIME" CRLF
." so any read-modify-writes would run undamaged by the other cog. Enables race-free data" CRLF
." or orderly sharing of a subsystem - e.g. the console port" CRLF
%PLAIN
LOCKNUM1 @ LOCKRET

;

TIA Writing Inline Assembly Code ver. 8 page 23 of 24

Appendix 5 - Output to a Pin - high level code versus assembly language
With the cpu clock set to 200MHz this is high level code to toggle pin 10 high and low :-

: TEST BEGIN 10 HIGH 10 LOW AGAIN ;

Pin 10 goes high for 485nS and low for 675nS.

The equivalent in assembly language might be:-

code CTEST
mov a,#10 ' pin 10

.l1 drvh a
drvl a
drvh a
drvl a ' output two +ve pulses
jmp #l1
ret

end

Pin 10 goes high for ~10nS and low for the same time. The jump however takes around 120nS, so quite slow by comparison with the 'linear' instructions.

TIA Writing Inline Assembly Code ver. 8 page 24 of 24

	Obtaining the Assembler
	P2 Reference Documents
	Instruction Syntax
	Defining an inline assembly word
	Back and Forth within the Definition
	TAQOZ register usage
	Kernel registers

	Labels
	Looping Macros
	The FOR: NEXT: macros
	The BEGIN: AGAIN: UNTIL: macros

	The Data Stack
	Words that don't alter the stack depth
	Dropping values from the stack
	Pushing new values to the stack
	Other convenience words

	Reading and Writing to hub Memory
	Using indirect addressing to make a more useful function
	Using indirect addressing to work on arrays

	Running code from COG RAM
	Other Links
	Conclusion
	Appendix 1 CREATE ... DOES>
	Appendix 2 - Cog Synchronisation
	Appendix 3 - Patch for SETEDG and POLLEDG
	Appendix 4 - Locks
	Appendix 5 - Output to a Pin - high level code versus assembly language

