
P2XCForth and
CCForth
for P2

and RP Pico

Contents

1 Overview...3

2 Comparison to Taqoz...6

3 Setup for P2..9

4 Setup for RPI Pico..10

5 How it works...11

5.1 Stacks...11

5.2 Coding and the Inner Interpreter of CCForth...11

5.3 Coding and the Inner Interpreter of P2XCForth...11

5.4 The Dictionary..12

5.5 The Outer Interpreter..13

5.6 The User Area..13

6 Concept for Online- Help..15

7 Defining a new Primitive Word...16

8 Startup Definitions of Compound Words – Block File System...................................17

9 Compound Words in First Blocks 2…5..18

10 Some Useful Words...19

11 Multitasking...20

11.1 Defining a User Area..20

11.2 A single Background Task in the Main COG 0..20

11.3 A Task in another COG..20

11.4 Cooperative Tasks with “pause” in main COG 0..20

12 Local Variables...22

12.1 Using Standard Names..22

12.2 Using Named Locals..22

13 Macros..23

14 The Editor FED for CCForth and XCForth...24

15 Some Remarks about XCForth..25

16 ToDo...27

17 Wordlist of CCForth..28

1 Overview

So why would we need another Forth?

There have been some main reasons for me to create CCForth and then P2X-
CForth:

 We already have got Taqoz, which is a very impressive Forth, hand-optim-
ized for P2, compact and fast. But it lives in it’s own world, completely sep-
arate from what has evolved over the last years. For example, it might be
interesting to combine a Forth with an USB-driver or HDMI output, or any
other code from Obex. Forth can be seen as a fast scripting language.
And/or a mighty communication protocol.

 It would be nice to have the same Forth, or nearly the same one for differ-
ent microcontrollers. This CCForth is written in C, so we can hope, that it
will be not too difficult to port it to other 32bit controllers. To see if this is
true, PicoCCForth.ino is included.

 This Forth provides some structural means, which make the implementation
of some advanced features easy: cooperative multitasking, a help system,
local variables, a nice source code editor.

 Last not least it has been said, that at some point, every Forth friend will
want to do their own. So, this is my first take. From Scratch. 😊

After CCForth was somewhat completed, it became clear, that it’s benefits come
with the price of significantly lower speed in comparison to Taqoz. So the question
was, if the special XBYTE mechanism of P2 could be used to go the other direction
and make a Forth for P2, which is even faster than Taqoz. XBYTE is a mechanism
for an assembler program sitting in COG or LUT RAM. It uses the fast STREAMER
cache to read an instruction code byte from HUB RAM, looks up where to find the
right assembler routine in COG or LUT and executes it. Then this cycle is repeated.
XBYTE is fast. I think, that during the development of P2, XBYTE came relatively
late, when Taqoz and it’s word-code mechanism had already been fixed. CCForth
uses a 32bit-code, and the inner interpreter is executed from C so the XBYTE code
mechanism is a different world.
When I had a more close look into XBYTE, I discovered, that using Flex there could
be a way to combine a small XBYTE machine executing a core wordset with a
mechanism to execute words written in C. So the hybrid P2XCForth was born.

Core Features of P2CCForth and of P2XCForth:

 32bit.
 Can access all HUB memory of P2
 Strings are handled C-style, ending with NULL.
 Can run “pause” style cooperative multitasking.
 Can run words in other cogs on P2.
 Uses a FAT file system on SD card to host a block file system. Also boots

from SD card via _BOOT_P2.BIX.
 Uses large 32kByte blocks. The tiny 1k blocks of the past have been a main

reason, that code was squeezed with scarce comments and was therefore

not well readable. With the immense storage room of a SD card, there is no
longer any need for this.

 Provides named local variables. Too many swap rot dup -rot drops have
been the second reason for bad readability, so local variables come handy
and still keep the code reentrant.

 Uses the dictionary as main database. There is a field for each word, which
can hold a link to the source for fast access to the definition. Also there is a
field which holds information about the type of the word. For example “re-
peat” is tagged as ISLOOP. These loop words are printed in red.

 You are free to add new words not only on the Forth side but also as “prim-
itives”, written in C or it’s inline assembler, or even calling SPIN routines.

P2XCForth:

 In P2XCForth there is a second level of inner interpreter, the XBYTE ma-
chine, written in assembler. This is loaded into the first half of LUT, where it
stays. XBYTE is started from the inner interpreter and it will run a small
Forth of core words. It has the capabilities of conditional and unconditional
branching, looping and calling other Forth words. For example the Byte
Sieve Benchmark is executed completely within this inner-inner XBYTE in-
terpreter. However, when it encounters a TRAP instruction, the XBYTE ma-
chine stores it’s status, quits to the calling inner interpreter, written in C,
which will execute the TRAP-code instruction (another byte code) and then
restart the XBYTE machine to go on.

 So with P2XCForth we have 3 types of instructions. XBYTE-words, TRAP-
words and compound words, written in Forth. Actually most TRAP-words
are identical to their counterparts in CCForth. The encoding of words in the
dictionary has to be different though.

 TRAP-words are written in FlexC, can use inline assembler and can also
call routines written in SPIN2 or FlexBasic.

There is a lot of heritage in P2CCForth. I have read lots of papers about Forth and
have been inspired by a lot of good ideas. A main influence has been Dr. Tings
books describing F83 or his own cForth. Forth-books - Dr.Tings Collection15 They
have encouraged me to do the project.

This text is neither intended to be a booklet to learn Forth nor to be a glossary of
P2CCForth. To learn Forth just grab a tutorial or a book. For example, have a look
at Simple Forth. A glossary is available in the system online.

This text contains a comparison to Taqoz. Also it intents to describe the internals
of CCForth and P2XCForth. This might be interesting, even if you don’t intend to
use P2*CForth.

At the time of writing, P2CCForth has a much lower number of words in compar-
ison to Taqoz. I wanted to have a strong backbone of core elements. As a first ap-
plication, I have begun to port FED, my editor from Taqoz to P2CCForth. At the
moment FED begins to be sufficiently attractive to be used.

http://www.murphywong.net/hello/simple.htm
https://sites.google.com/view/forth-books/home/forth-books/dr-tings-collection15

When I had a working version of P2CCForth with FED, I wanted to try to port it to a
different processor. I choose RPI Pico, because it makes sense to use a simpler
lower cost board sometimes. I also choose to implement this in the Arduino envir-
onment, to bring this more easily over to other machines later. During the port I
learned, that the ARM M0+ processor can only access aligned 32bit longs. So I
had to add alignment and also I had to go to a 32 bit Flags fields from 8 bits only.

I want to express, that I am very thankful for all the open sources and for all the
help I get! Especially for Kiss boards, for FlexC, for the helpful people at the Paral-
lax Forum!

Have Fun!

Christof Eberspächer

2 Comparison to Taqoz

Taqoz is a hand-optimized Forth written entirely in assembler and taking into ac-
count the specific architecture of P2. It is written to be fast and also to be compact.

Taqoz (P2)CCForth, P2XCForth

Written in assembler C; XBYTE: assembler, TRAPs: C

Usage of
COG and
LUT

Forth Registers and Core
words reside in COG

Stacks reside in LUT

Forth registers are register vari-
ables in COG

FlexC uses COG for Fast Cache of
little loops.

TOS and NOS and the stackpoint-
ers are register variables.

Stacks are in HUB

Code is in HUB

XBYTE machine in LUT

pause-
style co-
operative
multitask-
ing

As stacks reside in LUT and
many registers in COG are
used, it is slow to swap tasks.
Therefore “pause” is not
provided.

Included.

For each task there is a “user area”
in HUB, which holds the stacks and
to which the Forth registers are
saved, when the task is swapped.

Forth
codes

Taqoz uses 16bit word codes.
This leads to compact code.

Code can also include some
data. For example small literals
can be included in a code word
and also short relative jumps.
This leads to restrictions of
jump distances. Because 16bit
codes are used as addresses,
a paging mechanism has to be
used.

Code is 32bit and straight forward.
“Primitives” written in C are coded
as positive numbers. Negative num-
bers indicate compound words. The
inner interpreter is simple.

XBYTE: 8bit

TRAP: 8bit

compound words start with XBYTE
wcall.

Usage of
SD-card

A simplified FAT is given. It can
hold the bootfile and give ac-
cess to other files which must
have consecutive sectors. An
opened file can be accessed as
virtual storage.

FAT is fully compatible. It holds the
bootfile and a single file named
“blocks.blk” which holds all the
blocks. Blocks are large to avoid
frequent writes.

One disadvantage of P2CCForth in comparison to Taqoz is, that it is about 3.8
times slower than Taqoz. The following picture shows a comparison of the Byte
sieve benchmark. Why do we compare to these historic machines? The reason is,

that you can see, that while P2CCForth is well slower than Taqoz or FlexC, it is
also blazing fast in comparison to Forths of the time, when Forth was popular and
considered fast.

You may conclude, that working with P2CCForth is not spoilt because of speed
problems. 😊

P2XCForth beats Taqoz in this test, which does not contain any TRAPs in it’s loops.
The faster variant does not use the constant “size” and the field “flags” directly but
here their addresses are compiled as literals.

It seems, that FlexC can take full advantage in this comparison of caching the in-
nermost loop. The diagram also shows, that the old claim “nearly as fast as as-
sembler” was never true, while a huge advantage against interpreted BASIC is
visible. There have been two advantages against compilers: Until Ram for ram-
disks became affordable, you had to wait much longer (minutes) to compile. And
until Turbo Pascal, compilers have been very expensive.

The Forth benchmark code for Sieve is shown in the next picture.

Figure 1 Byte Sieve Benchmark. P2CCForth coloured listing.

3 Setup for P2

P2CCForth is compiled with FlexC, from 7.1.0.

I use a P2 kiss board, which has a 25MHz resonator, with SD card and led at P57.

SD card is FAT32 and contains file block.blk. To get started, there must be any file
with this name. This file will then be extended, when you flush blocks.

The SD card also holds _BOOT_P2.BIX . Unfortunately at the moment the booting
does only work after power cycle.

PC Tera Term is used as Terminal, LF is used to mark line end.

Words are written in lower case. For longer word names I like to structure them
like “doLineUpdate“. At the moment P2CCForth is fully case sensitive.

Before FlexC 7.1.0, settings HAVE to be set to 1 stopbit, otherwise the serial input
routine of FlexC loses sync and destroys chars, if you try to paste text.

To build up the blocks, we first copy the contents of block2.fth to P2. Then we use
mkBlocks to initialise the empty blocks. Then “2 gu” which starts gettext for block
2. Depending on your version of Teraterm you will have to signal the end of the
text pressing ESC. GlosBasA.txt goes into block 1.

In block 5 the right pin number has to be set for the blinking led of your board.

4 Setup for RPI Pico

The setup for RPI Pico is very similar to the one with P2. So here we focus on dif-
ferences. The source file has to be renamed to *.ino and to be compiled with the
Arduino environment for RPI Pico with the option 1MB Sketch+1MB FS to give
room for the file system.

#define pico

//#define P2

It turns out, that LittleFS in the flash chip seems to have difficulties to handle a big
file for all the blocks with seek commands. Therefore there is one file for each
block. Block size of 32k is big, if you have only 1MB of space available. We only
have a low number of blocks here.

As serial connection we use the builtin USB serial with Teraterm.

After compilation and upload we use the “format” command to clear the file sys-
tem.

For the time being only one core is used in RPI Pico. But you still have Cooperat-
ive Multitasking!

Be aware, that RPI pico needs aligned addresses for 32bit accesses like @ or ! ! It
will simply crash otherwise.

5 How it works

COG 0 is used as main COG. COG1 is used to buffer the serial console terminal
input in a 4kB ring buffer. This allows to copy and past a block of text in TeraTerm.

5.1 Stacks
There are three stacks in P2CCForth.

The parameter stack holds data.

The return stack holds return addresses for subroutine calls. Do..loop also uses
the return stack and it can be used as a temporary storage.

Third stack is the auxiliary stack, which is used for frames of 5 local variables
a,b,c,d,e. With loc and endloc the frame is moved by 5 longs.

5.2 Coding and the Inner Interpreter of CCForth
If a word is written in C as a function, it is called a “primitive”. Each primitive has
got it’s code number, defined in an enum statement.

If a word is built from primitives, it is called a compound word. It’s code is the neg-
ated address of it’s code field.

A compound word is a row of primitive-codes and compound-address-codes end-
ing with “exit”.

The Inner Interpreter is the Forth virtual processor. It has an instruction pointer IP
which points to the next code position. It’s contents is read into W. If W is negative,
then we know, that abs(W) is the code field address of a compound word. So we
push IP to the return stack and load IP=abs(W).

If W is positive a long SWITCH CASE structure decides, which primitive routine
must be executed. FlexC compiles this to a fast indirect jump.

If the primitive word “exit” is found, then IP is popped from the return stack. This
way execution will continue at the calling word.

5.3 Coding and the Inner Interpreter of P2XCForth
The interpreter of P2XCForth consists of two levels: The Inner Interpreter and the
XBYTE machine.

The XBYTE loop written in assembler and loaded permanently in LUT memory
loads, interpretes and executes XBYTE-Instructions (8bit). If it encounters a
TRAP-XBYTE $00 instruction, it loads the next byte as TRAP-code (8bit), pre-
serves it’s status and returns to the Inner Interpreter. The Inner Interpreter, written
in C, interprets und executes TRAP-codes given to it by the XBYTE loop. After
each TRAP, the XBYTE loop is resumed. Only exeption is a zero TRAP-code. In
this case the Inner Interpreter returns to the Outer Interpreter.

Examples:

Word example XBYTE

Simple XBYTE 1+ $05 XBYTE will execute «1+»

literal lit $03,
$12345678

XBYTE will push the number
$12345678 onto the parameter
stack

Call a word wcall $26,

$aaaaaaaa

XBYTE will save the IP on the
return-stack and set
IP=$aaaaaaaa, the code-field
address of the word

Exit from word wexit $25 pop(IP) from return stack, if not
zero. If zero then TRAP texit to
end the interpreters.

Trap-code emit $00=TRAP,

$02=trap-code

XBYTE will return the trapcode
$02 for «emit» to the Inner In-
terpreter, which executes it

5.4 The Dictionary
The dictionary is the single central database of P2CCForth. While in Taqoz we
have two structures, here we only have one. The database is made as a linked list
of entries.

The entry for each word has the following structure in ascending order:

 1 Long 32bit Link Field points to previous link field

 1 Long Source Field contains Blocknumber + Lineposition

 1 Long, LSB: 8bit Flags

 1 bit 128 immediate flag

 lower Bits type for color

 enum { ISNORMAL, ISLOOP, ISSTRUCT, ISDATA, ISIO,
ISASS };

 5 Longs = 19+1 zero bytes namefield

 Start of Codefield

 Parameter Field variable length, the Parameter Field can contain program
code or data or both. For CCForth Codefield and Parameterfield are a se-
quence of longs. In XCForth they are a mixture of bytes and longs.

To be able to use the same XBYTE instruction for constants, variables and fields
created by create, in P2XCForth these use the same structure in the Parameter
Field. The data address can be fetched with “dataddr” at an offset of 6 bytes.

A fixed length for the name filed was chosen for several reasons: With this we do
not need to calculate the code field address if we know the linkfield address. The
second reason is, that named local variables can be implemented rather easily:
The name of a local must be defined, when the compilation of the routine, where it
shall be used, has already begun. The new variable name can be patched instead
of the standard name of the variable. So the compiler can then find the new name
immediately.

Originally for P2 the flags field was only 8 bits. To have aligned addresses for Arm
M0+, this was expanded to 32 bit.

5.5 The Outer Interpreter
The outer interpreter translates text input into Forth codes searching the dictionary
from the newest entry to the oldest. If the outer interpreter is not in compile state,
then the code found is executed directly. If it is in compile state, normal codes are
written into the dictionary forming a new word. Only words, tagged as IMMEDI-
ATE, will be executed directly in compile state. If a word is not found, it’s text will
be translated to a number. Hex numbers start with $. The text can come from the
serial connection to a terminal or from a text buffer. The compiler state is held in
the COG register variable status.

5.6 The User Area
Together with COG Register Variables, user areas are used to keep tasks separ-
ate from each other. Every task has it’s own 1kByte HUB ram space. The stacks
reside all the time in this user area. COG registers are saved in the user area,
when tasks are swapped via “pause”. You need to have a separate user area for
both types of tasks: Running in a separate COG or running as cooperative task in
the main COG. The COG Register variable UStart, which is accessible via UP@
and UP!, points to the start of the area of the active task.

 0 Task-Link links to next USER Area, used by “pause”

 1 taskState, 1 for ready, 0 for suspended

 2 EABORT (register)

 3 status (register)

 4 SP (register)

 5 RP (register)

 6 AuxP (register)

 7 IP (register)

 8 W (register)

 9 23 User Registers

 9 variable for switch….case…break

 32 64 Stack

 98 64 Rack

 162 50 Aux Stack for locals

 212 End

The name “user” area stems from a time, when Forth systems have been used for
multi users.

6 Concept for Online- Help

When a Forth system grows, I find it difficult to remember all the words. Therefore,
a concept for a help function at your fingertips is nice to have. It is some work to
maintain a glossary, so it would be nice to generate it from the actual sources.

The concept for Online Help of P2CCForth consists of the following elements:

1. First line of a word definition: When source code is written, the first line of
a word definition starting with : directly after LF contains the name of the
word, a stack diagram and a comment. This can be used as the relevant
information for a glossary. For “primitive” words, written in C, in block 1 in-
formation is given in lines of the same format.

2. A source field in the directory can be filled with the block number and the
position in the block, where to quickly find the first line of the definition.

3. Different help words can look up -via dictionary- and display the first line
of a word definition or the complete definition.

scanDefs

will fill the source fields in the dictionary from the open block.

This information can be used then:

gwords print glossary for the words in the dictionary.

prtDef (< word> --) print first line of definition of a specific word.

prtSource (< word> --) print source until ; in color

^W will in the editor FED display the glossary entry of the word under the cursor.
^G can be used to jump to the word’s definition, if this is in the open block.

7 Defining a new Primitive Word

Primitives are words, written in C. To include a new one, P2*CForth has to be
compiled newly.

The new word has to be introduced at more than one places:

1. A code and a name for it has to be defined. This is done in the ENUM
statement at the beginning of the source file. For P2XCForth in the
TRAPs. The order there is arbitrary. Some names like “while” cannot be
used, because FlexC will become confused.

2. A function void _name(void) has to be written, which will perform the
desired action. It’s header is defined via the macro PRIMI, when the
word name can be used to name the function. For words like “+!” the
macro PRIMS is used. Actually PRIMI and PRIMS do two things, be-
sides forming the header of a C function they also define the name of
the word.

3. In the inner interpreter void inner(void) the macro CAS(name) will insert
a case … brake structure for the new primitive.

4. The routine void compPrimitives() will build up the dictionary using the
macro COP(name,flags).

If a word is not implemented for a machine, an empty dummy word is given in-
stead.

8 Startup Definitions of Compound Words –
Block File System

As the outer interpreter can evaluate text not only from the terminal, but also from
a buffer of chars, this feature can be used to form the first compound words from a
const char builtinWords[]=”…..”;

This is used to construct the block file system.

bBuf (-- address) give the address of the (single) block buffer

load (blocknumber --) evaluate block

block (blocknr -- buffer_address) flush if updated and then load new block into
bBuf

update mark block buffer to be written

flush write block back if updated

9 Compound Words in First Blocks 2…5

At the moment the blocks have the following structure:

 1 \ block 1 glossary of builtins glosbasA.txt https: //esp32forth.forth2020.org/docu-
ments

 2 \ block 2 Blocks words

 3 \ block 3 Named locals, switch...case...break

 4 \ Block 4 Help

 5 \ Block 5 Cooperative Multitasking

 7 \ Block 7 Fed1A readblock, saveblock, print

 8 \ Block 8 Fed4A.fth

 9 \ Block 9 Fed5A

 10 \ Block 10 Prime Benchmark

2 load will compile blocks 2…5 and then load the editor FED from blocks 7...9.

10 Some Useful Words

see <name> decompile a word

dump4 (address --) dump 4 lines (16 longs)

evaluate (string_address --) evaluate words in string

: mystring s” This is Text” ; define a string constant, will leave address

print$ (address --) print null terminated string

conkey (-- char) get char from console terminal, 0 for none

words, cword, lwords show contents of dictionary

colBuf (--) display bBuf in color

index (--) display first lines of blocks

gettext (--) sample text from Console into bBuf, end with
ESC

To use gettext, first load the old block and clear it “15 block drop wipe gettext” .
After ESC: “update flush”

scanSource will fill the source fields in the dictionary from the first blocks, where to
find the source. This information can be used then:

gwords print glossary of first lines.

prtDef (< word> --) print first line of definition

prtSource (< word> --) print source until ; in color

‘ word trace! Set the IP limit to activate tracing, (use singletask first!)

untrace to switch off tracing

11 Multitasking

11.1 Defining a User Area
Cooperative Tasks and Tasks in own COGs both need their own User Area.

11.2 A single Background Task in the Main COG 0
While the outer interpreter is waiting for a line input ending with lf, it can do one
polled task in background. This has to be a state machine which is called and
completely done. The mechanism is the same as in Taqoz. We write the code-
fieldaddress of the task into a variable called background.

57 constant ledPin
: simpleBlink
 getms 9 >> 1 and ledPin pin! ;
' simpleBlink background !

To stop it: 0 background !

11.3 A Task in another COG
COG 0 is used as main COG, COG1 is used to buffer the serial console terminal
input. Here we use a separate COG 2 to run an endless task.

57 constant ledPin
: simpleBlink
 getms 9 >> 1 and ledPin pin! ;

: blinkCog begin simpleBlink again ;
create user1 1000 allot
2 user1 ' blinkCog cogstart \ (COGnr userArea instruction --)

For the time being, for RPI pico only one core is supported.

11.4 Cooperative Tasks with “pause” in main COG 0
The mechanism of cooperative tasks brings the advantage, that the programmer
sets the point in time, when a task switch can occur. This can be relevant, if
shared resources are to be used.

For a cooperative task, we need to have a dedicated user area. Create an endless
task, which has at least one pause command. Then this task has to be inserted in
the linked list of tasks. From this point, the task will be activated in a round robin
scheme, when another task reaches it’s pause command.

The pause mechanism can be inserted as background task, with “multitask”. Un-
like a simple background task, cooperative multitasking preserves the state of that
task, as it will go on from the position after any pause, it had reached. Swapping
the task needs less than 10 µs.

57 constant ledPin
create blinkerT 1024 allot \ create user area
500 value bFreq#

: blinkTask \ example for multitasker
 begin
 getms bFreq# / 1 and ledPin pin!
 pause
 again
;

blinkerT ' blinkTask addTask \ insert task into linked list
multitask

12 Local Variables

12.1 Using Standard Names
There are 5 local variables a, b, c, d, e, which are stored in a frame on the auxili-
ary stack.

a> copy the contents of a onto the parameter stack

>a move the contents of TOS to a, consuming TOS

+>a add TOS to a, consuming TOS

Normally at the beginning of word definition we need to prepare space for the loc-
als

loc move stack frame for locals

loc_a move stack frame for locals with one parameter, which will be moved from
TOS to a.

At the end of the routine we must release the space and move back the stack
frame using “endloc”.

12.2 Using Named Locals
The same 5 local variables can have individual names.

The brace starts the definition of named variables. The ones before the comma
will be filled from the parameter stack. The ones following the comma will not be
filled. Between -- and the closing brace, text is comment.

The semicolon takes care to execute endloc, but if you want to exit otherwise, you
have to insert it manually to move back the stack frame.

To access the local variable “name#”, 3 different names are created. 1. “name#”,
2. “to_name#” and 3. “+to_name#”.

: calcCheck { last# , check# -- endvalue } \ checksum of first
bytes
 0 to_check# \ clear checksum
 begin
 last# c@
 +to_check# \ add byte to check#
 -1 +to_last# \ count down
 last# 0= until
 check# \ bring the sum to TOS
; forgetLocals \ end word and forget the local-names.
100 calcCheck .

13 Macros

A macro inserts text into the outer interpreter. This can be used during compila-
tion, if the macro is marked as immediate. The compiler will then inline the text of
the macro into the new definition. The following example will be faster because no
jump or return/exit has to be executed. Especially useful have been macros for the
definition of “case” and “break”.

: >= s" < 0=" eval$; immediate \ defining a macro

: mtst \ test for the macro
 0
 begin
 1+ dup .
 dup 5 >= until \ using the macro
 drop
;
0 0 0 0 > mtst
 mtst 1 2 3 4 5
0 0 0 0 > see mtst
 see mtst: 1bacd
 1baea 11 lit
 0
 1baf2 4e 1+
 1baf6 8 dup
 1bafa e .
 1bafe 8 dup
 1bb02 11 lit
 5
 1bb0a 55 <
 1bb0e 57 0=
 1bb12 52 0branch
 -36
 1bb1a 5 drop
 1bb1e 2 exit

14 The Editor FED for CCForth and XCForth

FED is a modified port from FED for Taqoz. See Blocks 7...9. Some key elements:

 Works with 32kB blocks as fixed file size
 Uses it’s own fedBuf$ to hold the text in RAM
 Has fixed line length of 99+LF, therefore 326 lines per file.
 Is somewhat line orientated. ^X and ^V work for whole lines. Inserting chars

will not spill over into next line.
 Uses the dictionary as fast database for coloured printing. Unknown words

are yellow.
 Has syntax highlight.
 No mouse, but ^G will offer all word-definitions to Goto.
 Is intended to be used with Teraterm with a large Terminal Window, see

chapter Setup. Copy and Paste of Teraterm can be used as long as the 4kB
input buffer of P2CCForth is big enough.

Starting fed:

eFed (blocknr --) \ start fed with block, line lengths will be expanded first, sets
fedBlock#

nFed (blocknr --) \ start fed with blocknumber, sets fedBlock#

fed \ forth editor restarts editing the block in fedBlock#

^G fill source fields from actual block file, which has to be loaded first, then display
line numbers of words to Goto. ESC to leave.

^K Mark a line

^N Jump to 4 marks, set with ^K, in round robin fashion.

^W display glossary entry of word under cursor. Displays first lines of word defini -
tions. Uses source fields and therefore might need ^G first.

^R will shut off line numbers and right margins. Good for copy and paste.

^X cut line into cut-buffer

^V insert line from cut-buffer above actual line

^Q Quit editor, will ask, if file shall be written to SD

After leaving FED, reload will load fedBlock#.

15 Some Remarks about XCForth

At the time of writing P2XCForth is still quite new to me. The code of the XBYTE
machine is far from polished but seems to work. I do not like the concept of in-
struction skipping in the XBYTE mechanism, because I think it makes the source
code rather obscure.

I was astonished to find, that it is possible to load permanently a XBYTE machine
into a COG, that is also executing FlexC or SPIN2. The machine together with it’s
code table is loaded into the first 256 longs of LUT, where it can be found by the
calling routine. This space is reserved in FlexProp for cog-code routines, so these
cannot be used in parallel. 256 longs is not too much, at the moment 188 longs
are used for 43 core words. Enough for example to run the Sieve Benchmark com-
pletely in XBYTE without any TRAPs. I am wondering, what I should squeeze into
the XBYTE machine. Value-type variables? Local variables? ?

The XBYTE machine is written in a SPIN2 file. Unfortunately the assembler there
does only support a small number of register variables PR0….PR7. So the rest of
the register variables are only available for the Inner Interpreter and not for the
XBYTE machine.

The XBYTE machine gets it’s speed from 3 elements:

• It runs from LUT memory, so the other COGs do not interfere memory ac-
cess. – The general rule for speed of P2 is to avoid HUB access.

• It uses the micro-cache of the Streamer to read the XBYTE-codes (and in-
line data) from HUB memory

• The XBYTE mechanism does in hardware a lookup of the XBYTE-code to
start the right routine.

For TRAP instructions the XBYTE machine has to be stalled and restarted and the
micro-cache has to be refilled. So TRAP instructions come with much overhead.
However when a routine for a TRAP instruction is longer, then the benefits of
FlexC come into action like optimised compiled code and automatic caching of
loops in COG memory.

Some timing examples:

Time needed

Fastest XBYTE like «1+» 8 cycles

Stack operation:

dup, drop

16 cycles

Empty loop:

1000 0 do loop

72 cycles per loop

Call and exit an empty
word

70 cycles

Trap «j» 167 cycles

Trap multiply «*» 280 cycles

16 ToDo

 At the moment there is no does> .
 Some more IO
 Find bugs
 …

17 Wordlist of CCForth

 0 0 0 0 > gwords

 gwords

prt2000 9 prt2000

eFed 9 eFed (blocknr --) \ start fed with block, will be expanded first, sets

fedBlock#

nFed 9 nFed (blocknr --) \ start fed with blocknumber, sets fedBlock#

fed 9 fed \ forth editor starts editing the block in fedBlock#

list 9 list (block --) \ list block in color

reload 9 reload \ load fedBlock#

findLastLine 9 findLastLine \ find last line of fedBuf$ to maxLines#

fedKey 9 fedKey \ react to key#

sedesc 9 sedesc \ ESC combinations

esc5b 9 esc5b (code --) \ ^[[n cursor movement

a>A 9 a>A (lower -- upper) \ convert case of char

insCutLine 9 insCutLine \ insert a line from cutBuf$

cutLine 9 cutLine \ delete actual line into cutBuf$

cutBuf$

insBlankLine 9 insBlankLine \ above

newBlankLine 9 newBlankLine \ under cursor

delChar 9 delChar (--) \ delete char

bsChar 9 bsChar (--) \ backspace

insChar 9 insChar (--) \ insert key#

key#

lineUpdate 9 lineUpdate \ mark to be updated

doLineUpdate 9 doLineUpdate \ print actual line newly

centerAddr 9 centerAddr (addr) \ if near borders center on screen

Forth_Editor5

prtCurGlos 8 prtCurGlos { , addr# } \ print glossary entry of word under cursor

fedFillDefs 8 fedFillDefs \ fill source field in dict from fedBuf$ and show defs

getPosNum 8 getPosNum { , k# num# -- number } \ get a positive number from keyboard

0 for none

fedWords 8 fedWords loc \ print words from dict for this file

setHold 8 setHold \ set marker and also blockMarker#

jumpHold 8 jumpHold \ jump to next marker round robin

centerAddr1 8 centerAddr1 (addr) \ center line on screen

cur2Add 8 cur2Add (-- addr) \ cursor to addresse

findEnd 8 findEnd (--) \ actCol# to last char of line

addrRange 8 addrRange (addr -- addr) \ limit to text buffer

Forth_Editor4

listFile 7 listFile \ mark screen update to be done

doListFile 7 doListFile { , i# } \ print the whole sceen newly

listLine 7 listLine (line --) \ number relative to startList#

.decs 7 .decs { n# dig# -- } \ print n# right justified

prtLineHigh 7 prtLineHigh loc_a (linestart$ --) \ display colored until CR

prtComment2 7 prtComment2 loc_a (pointer -- new pointer) \ prt comments green

fedExpand 7 fedExpand (block --) { , inch# col# line# p# } \ read text into bBuf

and expand into fedBuf$

fillLine 7 fillLine \ fill the actual line in fedBuf$ to lWidth# with BLANKS

fedBlock 7 fedBlock (block -- addr) \ load directly into fedBuf$

fedUpdate 7 fedUpdate \ mark as updated

fedFlush 7 fedFlush \ write back block if updated

updateLiFlag

key#

listFiFlag

actFedBlock

fedUpdated

fedBlock#

blockMarker#

actCol#

maxLines#

actLine#

lastLine#

startList#

iHold#

setHold#

holdBuf

marginsFlag#

fedHeight#

fedStartLine#

lWidth#

fedBuf$

magenta 7 magenta 5 fcolor ; \ set color

erline 7 erline \ Clear entire line ^[[2K

nload 7 nload (block --) \ force new load from SD card

gul 7 gul (block --) \ gettext update load

Forth_Editor

counterTask 5 counterTask \ example for multitasker

cnt1

blinkTask 5 blinkTask \ example for multitasker

bFreq#

blinkerT

ledPin

unlinkTask 5 unlinkTask { task# , link# } \ remove Task from link list

prtTasks 5 prtTasks { , link# -- } \ print Tasks and their status

multitask 5 multitask \ start cooperative multitasking

(pause)

singletask 5 singletask \ stop cooperative multitasking

addTask 5 addTask { ua# cfa# , unext# -- } \ add task into linked list at last be-

fore main task

Multitasking_Lib

prtSource 4 prtSource (< word> --) \ print source in color

colSource 4 colSource loc (cfa --) \ display source in color

gwords 4 gwords loc \ words with glossary

length$ 4 length$ loc_a (addr1 -- n) \ { give length of NULL terminated string

dots 4 dots (n --) \ emit n dots

spaces 4 spaces (n --) \ emit n spaces

prtDef 4 prtDef (< word> --) \ print definition

prtDefLine 4 prtDefLine (cfa --) \ print from dictionary

scanSource 4 scanSource \ fills source fields from first buffers

scanDefs 4 scanDefs loc \ fills source field from actual buffer

cmpWord$ 4 cmpWord$ { w1# w2# , c1# c2# flag# -- flag# } \ compare limited by

whitespace

findLineStart 4 findLineStart { addr# -- new_addr } \ scans until pos after CR, 0

for end

printLine 4 printLine { address# , char# -- } \ print to line end

Help_Lib

casetest 3 casetest (val --) \ a test for switch....case...break

break 3 break (--) \ case...break exits!

<case> 3 <case> (value1 value2 --) \ case....break compare within switchvar

case 3 case (value --) \ case....break compare with switchvar

switch 3 switch (value --) \ save in switchvar

eval$ 3 eval$ (stringaddr --) \ save inP evaluate restore inP

within 3 within { x# lo# hi# -- flag } \ true if n is within range of low and high

inclusive

locTest 3 locTest { l1# l2# , l3# -- } \ a test for named locals

; 3 ; \ new version with locals

isstruct! 3 isstruct! \ mark as structure word

{ 3 { \ begin locals Syntax { local1 local2 ... , nonInitLocal ... -- comment } \

forgetLocals 3 forgetLocals \ patch back the standard names

getWord 3 getWord (-- address) \ get next word of the input stream into lineBuf$

append$ 3 append$ (source dest --) \ append null terminated string

cpy$ 3 cpy$ loc_ab (source dest --) \ copy null terminated string

nextName$

cells 3 cells 4 * ;

NamedLocals_Lib

prtDefs 2 prtDefs loc \ prints 1st lines of buffer

MODULE 2 MODULE (addr1 addr2 --) ! (Ueberspringen der Def zwischen INTERNAL und

EXTERNAL) ;

EXTERNAL 2 EXTERNAL (-- addr) here@ (Start of visible definitions. Adresse des

aktuellen Linkfields) ;

INTERNAL 2 INTERNAL (-- addr) context @ (Start of hidden/local definitions) ;

colBuf 2 colBuf loc (--) \ display bBuf in color

prtComment 2 prtComment loc_a (pointer -- new pointer) \ prt comments green

from /_ or (_ to lf)

copyword 2 copyword loc_ab (source dest -- new_source)

cwords 2 cwords loc \ print words in color

prtCWord 2 prtCWord loc_a (lfa --) \ print word in color

colTab

index 2 index (--) \ display all first lines of blocks

lineBuf$

space 2 space 32 emit ;

cr 2 cr 10 emit ;

prtBuf 2 prtBuf (--) \ display bBuf

mkBlocks 2 mkBlocks (CLEARS BLOCKS)

bPoint

page 2 page (--) \ { clear page

at-xy 2 at-xy (col row --) \ { position cursor at col row, starting with 0 0

.3d 2 .3d (n --) \ { print 2 digits without blank

blue

yellow

green

red 2 red 1 fcolor ; : green 2 fcolor ; : yellow 3 fcolor ; : blue 4 fcolor ;

fcolor 2 fcolor (col) 27 emit 91 emit 51 emit 48 + emit 109 emit ;

normal

bold 2 bold 1 scolor ; : normal 0 scolor ;

scolor 2 scolor (color --) 27 emit 91 emit 48 + emit 109 emit ;

--> 2 --> \ load next block too

untrace 2 untrace 2000000 trace! ; \ stop tracing

clearstack 2 clearstack \ clear parameter stack

++ 2 ++ (addr) \ add one to variable

<> 2 <> = 0= ;

wkey 2 wkey (-- char) (wait for char)

?dup 2 ?dup dup if dup then ;

gu 2 gu (block --) (gettext update load)

wipe 2 wipe (clear the actual block buffer)

MarkBlock1

gu

wipe

load 1 load (blocknumber --) evaluate block

block 1 block (blocknr -- buffer_address) flush if updated and load new block

into bBuf

update 1 update mark block buffer

flush 1 flush write block back if updated

maxBlocks#

updated

dump4 1 dump4 (address --) dump 4 lines

fibo46

fibo

cogstart 1 cogstart (COGnr userArea instruction --) start word in new cog use

with ' word

getms 1 getms (-- milliseconds)

getus 1 getus (-- microseconds)

pin! 1 pin! (flag pinnumber --)

pin@ 1 pin@ (pinnumber -- flag)

bye 1 bye leave P2CCForth

cnt@ 1 cnt@ (-- counter)

cmove> 1 cmove> (source dest cnt --) move chars starting at source+cnt-1

cmove 1 cmove (source dest cnt --) move chars starting at source

trace! 1 trace! (value --) set trace flag 0 for all

up@ 1 up@ (-- address) get user area address

pause 1 pause \ pause active task and switch to next, if ready

background 1 background (-- varaddress) variable holds cfa of background task, 0

for nothing

>> 1 >> (n1 n2 -- n1>>n2) shift right

<< 1 << (n1 n2 -- n1<<n2) shift left

rdepth 1 rdepth (-- rdepth) find depth of return stack

depth 1 depth (-- depth) find depth of parameter stack

] 1] switch to compile

[1 [switch to execute

word 1 word (-- addr_of_wordBuf) get next word into wordbuf and return address

inP 1 inP (-- address_of_input_pointer)

context 1 context (-- address) start of link list of words

lineCnt 1 lineCnt (-- varaddress)

actBlock 1 actBlock (-- address) variable containing the actual block

bBuf 1 bBuf (-- address) get address of block buffer

bSize 1 bSize (-- size) constant 32768

dir 1 dir print directory

forget 1 forget forget following wordname

gettext 1 gettext get text into bBuf until ESC

conkey 1 conkey (-- char) get char from console terminal, 0 for none

format 1 format \ format file system delets all blocks

fwriteBlock 1 fwriteBlock (textbuf startpos length --)

freadBlock 1 freadBlock (textbuf startpos length -- length)

lastfree 1 lastfree (-- varaddress)

." 1 ." (--) print a string terminated by ''

print$ 1 print$ (address --) print null terminated string

s" 1 s" \ (-- address) Usage : mystring s" My String" ;

getstring 1 getstring \ internal

fill 1 fill (startaddress number byte --) \ fill buffer with n bytes

c@ 1 c@ (adr -- c) readc(1 byte) fromadr

c! 1 c! (c adr --) storec(1 byte) toadr

mod 1 mod (n1 n2 -- n3) remainder ofn1 / n2 (sign ofn1)

max 1 max (n1 n2 -- n3) leave greater of two numbers

min 1 min (n1 n2 -- n3) leave lesser of two numbers logical

xor 1 xor (x1 x2 -- x3) bitwise boolean xor

and 1 and (x1 x2 -- x3) bitwise boolean and

or 1 or (x1 x2 -- x3) bitwise boolean or

j 1 j (--n)get outer loop count

i 1 i (--n) get current loop count

+loop 1 +loop (n--) addnto loop count, terminate if end

doplusloop

loop 1 loop (--) increment loop count, terminate if end

doloop

do 1 do (n1 n2 --) counted loop structure do...loop (n2 = count start,n1 = count

end)

repeat 1 repeat (--) jump back to begin in a while loop

while 1 while (flag--) exit loop whenflag= false (begin..while..repeat)

again

else 1 else (--) false condition of an if structure

then 1 then (--) end of an if conditional structure

if 1 if (flag--) conditional structure if..(else)..then

until 1 until (flag--) loop untilflag= true (begin..until)

begin 1 begin (--) begin a while or until loop

negate 1 negate (n1 -- n2)n2 = -n1 (two's complement)

0= 1 0= (n -- flag) true ifn= 0

> 1 > (n1 n2 -- flag) true if n1 >n

< 1 < (n1 n2 -- flag) true if n1 < n2

= 1 = (n1 n2 -- flag) true if n1 =n2

immediate 1 immediate \ set immediate bit in flags of last word

0branch

branch

+! 1 +! (value address --) \ add value to contents at address

1- 1 1- (n1 -- n2)n2 = n1- 1

1+ 1 1+ (n1 -- n2)n2 = n1 + 1

*/ 1 */ (n1 n2 n3 -- n4)n4 = n1 * n2 / n3

/ 1 / (n1 n2 -- n3)n4 = n1 / n2

* 1 * (n1 n2 -- n3)n3 = n1 * n2

allot 1 allot (n --) reserve n bytes in dictionary

(

\

endloc 1 endloc release locals

loc_abcde

loc_abcd

loc_abc

loc_ab

loc_a 1 loc_a move stack frame for locals with one parameter in a

loc 1 loc move stack frame for locals

e>

+>e

>e

d>

+>d

>d

c>

+>c

>c

b>

+>b

>b

a>

+>a

>a

+to

to

value 1 value <name> (number --) define new value type variable

dovalue

constant

doconst

create

docreate

variable

dovar

evaluate 1 evaluate (string_address --) evaluate words in string

fnext 1 fnext end of fast for..next

ffor 1 ffor (number --) start of fast for loop

dofnext

;

: 1 : \ start word definition

c, 1 c, \ (byte --) compile a byte into dictionary at here

, 1 , \ (long --) complile long into dictionary at here

nip 1 nip (a b -- b) dump NOS

see 1 see <word> decompile word

prtword

execute 1 execute (adr--) execute word with compilationadr

' 1 ' (<word> -- cfa) \ get code field address of following word

find$ 1 find$ (string_address --) get link field address

words

lwords 1 lwords list words

over 1 over (x1 x2 -- x1 x2 x1) copy second on stack to top

rot 1 rot (x1 x2 x3 -- x2 x3 x1) rotate 3rdcell to top

swap 1 swap (x1 x2 -- x2 x1) exchange the two top cells

r@ 1 r@ (-- x) (r: x -- x) copy from return stack

r> 1 r> (-- x) (r: x --) retrieve from return stack

>r 1 >r (x --) (r: -- x) move tos to return stack

lit

exit 1 exit (--) exit current word execution

- 1 - (n1 n2 -- n3)n3 = n1- n2

+ 1 + (n1 n2 -- n3)n3 = n1 + n2

. 1 . (a --) print a decimal

emit 1 emit (c--) print ascii character

here@ 1 here@ (-- compilation_address)

@ 1 @ (adr -- x) readx(2 bytes) fromadr

! 1 ! (x adr --) storex2 bytes) toadr

2dup

dup 1 dup (x -- x x) duplicate tos

2drop

drop 1 drop (x --) discard tos (top of stack)

dump16 1 dump16 (address --) dump 16 bytes

prtS4 1 prtS4 print stacks

nop

 RDepth: 1 Depth: 0

 $0 $0 $0 $0

	1 Overview
	2 Comparison to Taqoz
	3 Setup for P2
	4 Setup for RPI Pico
	5 How it works
	5.1 Stacks
	5.2 Coding and the Inner Interpreter of CCForth
	5.3 Coding and the Inner Interpreter of P2XCForth
	5.4 The Dictionary
	5.5 The Outer Interpreter
	5.6 The User Area

	6 Concept for Online- Help
	7 Defining a new Primitive Word
	8 Startup Definitions of Compound Words – Block File System
	9 Compound Words in First Blocks 2…5
	10 Some Useful Words
	11 Multitasking
	11.1 Defining a User Area
	11.2 A single Background Task in the Main COG 0
	11.3 A Task in another COG
	11.4 Cooperative Tasks with “pause” in main COG 0

	12 Local Variables
	12.1 Using Standard Names
	12.2 Using Named Locals

	13 Macros
	14 The Editor FED for CCForth and XCForth
	15 Some Remarks about XCForth
	16 ToDo
	17 Wordlist of CCForth

