Document Status

Parallax Propeller 2
Spin2 Language Documentation

2024-03-13
v44

Version Date Progress
2020 _02_06 Started document.

v34t 2020 _07_15 DEBUG added, documentation up-to-date.

v34u 2020_07_19 DEBUG improved, documentation up-to-date.

v35 2020 _11_18 DEBUG improved with anti-aliasing throughout, QSIN / QCOS added.

v35e 2021 _01_06 DEBUG_BAUD symbol added. Spin2 stack-locating bug fixed.

v35f 2021 _01_29 DEBUG fixes. Was erring at 63 DEBUGS, now goes to 255. Was not always resetting the DEBUG.log file.

v35g 2021_02_13 DEBUG fixes. Line-clipping routine was causing floating-point exceptions and memory-access violations.

v35h 2021-02-15 e The first 16 LUT registers in the Spin2 interpreter were freed to allow for streamer 'imm-->LUT' usage. This is
intended to support 1/2/4-bit video, via interrupt, within the same cog that the interpreter is running in. The
inline-PASM limit went from $134 down to $124, in order to compensate.

e Anew DEBUG_WINDOWS_OFF symbol was added to inhibit any DEBUG windows from opening after a
download. DEBUG_BAUD can now be set to alter the baud rate that DEBUG uses with PNut.exe.

v35i 2021-02-20 e Added command-line DEBUG-only mode for presenting flash-programmed DEBUG data and displays.

e Fixed Floating-point error in SCOPE_XY.

v35j 2021-03-16 Fixed problem with DEBUG_BAUD <> 2_000_000 not working on some boards.

v35k 2021-03-19 Added DOWNLOAD_BAUD to existing DEBUG_BAUD for overriding default 2 Mbaud download and DEBUG.
v35L 2021-03-23 Added complete command-line interface to PNut.exe and included batch files for invoking PNut.exe and returning

error status to STDOUT, STDERR, and ERRORLEVEL. See "Command Line options for PNut.exe".
v35m 2021-05-03 e Improved command-line interface of PNut.exe to support compiling with/without DEBUG and with/without
flash loader, and saving .bin files without downloading.
e Added axis inversion to the PLOT display in DEBUG.
v35n 2021-05-23 e Sprites added to DEBUG PLOT window.
e REPEAT-var fixed so that var = final value after REPEAT (was final value +/- step).
v350,p 2021-09-22 Floating-point math operators added to Spin2 with normal precedence rules. Fixed FSQRT bug in v35p.
v35q 2021-10-13 Main symbol table increased from 64KB to 256KB, others from 4KB to 32KB.
v35r 2021-12-22 PC_KEY and PC_MOUSE added for keyboard and mouse feedback from the host computer to the DEBUG Displays.
v35s 2022-02-05 e Negative floating-point constants can be preceded with a simple '-', so that '-." is only needed for variables and
expressions.

e Fixed FSQRT() bugs in the compiler and the interpreter. Both were failing on FSQRT(-0.0) and the compiler
was generating a wrong result for FSQRT(0.0).

e Improved floating-point rounding operations in both the compiler and the interpreter, so that even mantissas
with fractions of 0.500 will not have the usual 0.500 added to them before truncation. This eliminates rounding
bias.

e Added BYTEFIT, which is like BYTE for use in DAT sections, but verifies byte data are -$80 to $FF.

e Added WORDFIT, which is like WORD for use in DAT sections, but verifies word data are -$8000 to $FFFF.

e Added @"Text", which is a shorthand version of STRING() that only allows text between quotes.

v35t 2022-08-12 o New PASM-level debugger added for single-stepping and breakpoints, invoked by "DEBUG" in Spin2/PASM.
e The DEBUG() command PC_MOUSE now reports a 7th long which contains the $00RRGGBB pixel color.
v35u 2022-08-26 Serial interface code now runs in a separate thread for better concurrency with the GUI. Should be more reliable.
v35v 2022-09-11 e The serial transmit pin (P62) is now held high before DEBUG, in case no pull-up resistor is present on P62.
This enables the PASM-level debugger to work on early P2 Edge modules which don't have serial pull-ups.

e PASM-only programs which use non-RCFAST clock modes now get prepended with a 16-long clock-setter
program which sets the clock mode, moves the PASM program down into position, and then executes it. This
means that the ASMCLK instruction is no longer needed at the start of PASM-only programs. This
harmonizes with the PASM-level debugger's operation, where the clock is automatically set.

v36 2022-09-18 e DEBUG now adapts to run-time clock frequency changes. This is done by using the serial receive pin (P63) in
long-repository mode to store the clock frequency outside of debug interrupts. The Spin2 CLKSET instruction
now supports this feature.

Parallax Spin2 Documentation Page 1 of 52

v37 2022-11-19 e Parameterization added to child-object instantiations.
o Up to 16 parameters are passable to each child object.

Spin2 local variables now get zeroed upon method entry.

o Parameters override CON symbols by the same name within the child object.
o Useful for hard-coding child objects with buffer sizes, pin numbers, etc.
o ObjName : "ObjFile" | ParameterA = 1, ParameterB = 2, ...

New “@variable returns a field pointer for any hub byte/word/long OR registers, including any bit field.
New FIELDIptr] variable alias uses *@variable pointers, making all variables passable as parameters.
New '..." can be used to ignore the rest of the line and continue parsing into the next line.

New Spin2 'GETCRC(dataptr,crcpoly,bytecount) method computes a CRC of bytes using any polynomial.
New Spin2 'STRCOPY (destination,source,maxsize)' method copies z-strings, including the zero.

DEBUG display BITMAP now has 'SPARSE color' to plot large round pixels against a background color.
GRAY, in addition to GREY, is now recognized as a color in DEBUG displays.

Debugger's Go/Stop/Break button now temporarily inverses when clicked.

v38 2023-02-03

Bug fixed from v37 that didn't allow parent-object CON blocks to use CON symbols from child objects.
Bug fixed in interpreter which caused ROTXY()/POLXY ()/XYPOL() to not work.

REPEAT-var returned to original behavior where var = (final value +/- step) after REPEAT.

All DEBUG displays now use gamma-corrected alpha blending for anti-aliasing.

v39 2023-03-05

Bug fixed from v37 that caused uniquely-parameterized child objects of the same file to all be the same.

No more ".obj" files generated automatically, as objects are now buffered in PC RAM to maintain uniqueness.
No more ".Ist" list files generated automatically, now only via Ctrl-L or Ctrl-I.

No more ".txt" documentation files generated automatically, now only via Ctrl-D.

No more ".bin" binary files generated automatically, now toggled via Ctrl-R.

Bug fixed from v38 that caused the PASM debugger's REG/LUT/HUB maps to be low-contrast.

PASM debugger now does more direct checksum on hub RAM, should improve visual change response.

v40 2023-09-21 e New smaller/faster REPEAT form added for iterating a variable from 0 to n-1, where n > 0.
o REPEAT n WITH i 'best way to iterate a variable from @ ton - 1
o REPEAT i from @ ton - 1 'general equivalent, though WITH needs n > @

v41 2023-09-24 Fixed a bug in the floating-point equality operators (<., >., <>., ==,, <=, >=)).

v42 2023-11-11 e Added BYTES()/WORDS()/LONGS() methods to declare strings of sized values that return a pointer.
Added LSTRING() method, similar to STRING(), but begins with a length byte and can contain zeros.

v43 2023-12-13

O O O O

Renamed BYTES()/WORDS()/LONGS() methods to BYTE()/WORD()/LONG() to conserve name space.
New AUTO keyword added to DEBUG SCOPE Display to auto-scale trace data.
New %"Text" added for expressing constants of up to four characters within a long, little-endian, zero-padded.
implemented Spin2 keyword gating to inhibit namespace conflicts as new keywords are added in the future.

o The comment {Spin2_v##} is sought before any Spin2 code, to enable new keywords.
{Spin2_v43}, for example, will enable the new LSTRING keyword (actually introduced in v42).
{Spin2_v41} is the default if no {Spin2_v##} comment was found.
As you enable newer keywords, you may need to change your symbol names to resolve conflicts.
This way, existing code is not automatically rendered uncompilable by Spin2 namespace growth.

v44 2024-03-13 e Data structures added to help simplify complex applications.

o Structures can be defined within CON blocks using simple syntax.

o Structures can be instantiated in VAR blocks and PUB/PRI headers.

o Structures and structure pointers work the same way for accessing structure members.

o FILL/COPY/SWAP/COMP methods added to perform bulk structure operations.
Added BYTESWAP()/WORDSWAP()/LONGSWAP() methods to quickly swap ranges of hub memory.
Added BYTECOMP()/WORDCOMP()/LONGCOMP() methods to quickly compare ranges of hub memory.
Added "TRIGGER channel AUTO {offset}" to DEBUG SCOPE Display for auto-triggering.
Added BOOL/BOOL __ to DEBUG output commands, outputs "TRUE" if non-0 or "FALSE" if O.
Added DEBUG backtick-mode output commands: “?(boolean) and ".(floating_point).
On DEBUG download with no clock setup, 20 MHz crystal mode will be assumed to facilitate DEBUG.
Fixed bug that caused DAT-block ORG sections to not pad zeroes to next long after FVAR/FVARS.

structureA := structureB ‘'copy structure
structureA :=: structureB 'swap structures

v45 Coming Soon e Data structures have been revamped, backing out and replacing v44 functionality.

o New keyword STRUCT is used to begin structure definitions in CON blocks.

o Structures of 15 longs or less can be passed as parameters and return values.

o FILL/COPY/SWAP/COMP structure methods from v44 are removed, now handled by operators.
m structure~ 'clear structure to $00's

structure~~ 'set structure to $FF's

structureA == structureB 'check structure equality and return TRUE/FALSE
structureA <> structureB 'check structure inequality and return TRUE/FALSE
structure := 1,2,3 'assign longs to a structure

New Keywords Introduced by New Versions

v43 LSTRING Method Declares a constant string preceded by a length byte. {Spin2_v43}
v44 BYTESWAP Method Swap two ranges of bytes. {Spin2_v44}

WORDSWAP Method Swap two ranges of words.

LONGSWAP Method Swap two ranges of longs.

BYTECOMP Method Compare two ranges of bytes.

WORDCOMP Method Compare two ranges of words.

LONGCOMP Method Compare two ranges of longs.

BOOL, BOOL_ DEBUG | Output a boolean, "TRUE" if non-0 or "FALSE" if 0.

Parallax Spin2 Documentation Page 2 of 52

v45 STRUCT Keyword | In a CON block, it precedes a structure definition. {Spin2_v45}
SIZEOF Method Returns the size of a structure in bytes.

Spin2 Overview

The Spin2 language is designed to be very simple and highly capable. Spin2 does not hide the underlying binary phenomena that make computers work, but allows you to
exploit it for effective programming. Assembly language is also supported in Spin2 as in-line sequences, callable routines, and stand-alone programs.

A person with programming experience will be able to get a solid understanding of Spin2 in a very short amount of time. Learning Spin2 will pay dividends by allowing you to
focus on your ideas, without having to navigate a myriad of typecasts and usage rules. Your brain will delight in staying busy, with compile+download+execute times of under 1
second.

In Spin2:

e There are few variable types: BYTE (8 bits), WORD (16 bits), LONG (32 bits), and data structures made of BYTE(s), WORD(s) and LONG(s). Bit fields are supported
for each. There are also data structure pointers which are LONG variables that point to data structures and allow efficient access.

All math operations are performed at 32 bits and there are both signed/unsigned and IEEE-754 floating-point operators for where distinctions matter.

Programs, called objects, can easily incorporate other objects written by other authors with no foreknowledge of your particular project.

Objects compile to compact, hardware-accelerated bytecode blocks which invoke short sequences of cog-resident interpreter code.

Source code is case-insensitive

Symbolic names can be up to 32 characters in length.

In this documentation, all keywords are in UPPERCASE for clarity and anything in lowercase represents a user-defined symbolic name.
There are two other core documents of interest to Propeller 2 programmers.

. B Parallax Propeller 2 Documentation v35 - Rev B/C Silicon
° Parallax Propeller 2 Instructions v35 - Rev B/C Silicon

Here is the latest zip file which contains PNut_v44.exe and example files:

e https://drive.google.com/file/d/1FfDTGmMSO1aKJPtuty9ZYnz702-p8EYND/view?usp=sharing

Spin2 Program Structure

Spin2 programs are built from one or more objects. Objects are files which contain at least one public method, along with optional constants, data structures, child objects,
variables, additional methods, and data. Objects are assembled together into a top-level object with an internal hierarchy of sub-objects. Each object instance, at run-time, gets
its own set of variables, as defined by the object, to maintain its unique operating state.

Different parts of an object are declared within blocks, which all begin with 3-letter block identifiers.

The compiler can actually generate PASM-only programs, as well as Spin2+PASM programs, depending upon which blocks are present in the .spin2 file.

Note: Ensure the file is saved as a “.spin2” file, otherwise the example programs will not work. If you receive an error code of “expected unique parameter name”, this could be
your problem.

Block Block Contents Spin2+PASM PASM-only
Identifier Programs Programs

CON Constant and data-structure declarations (CON is the initial/default block type) Permitted Permitted

OBJ Child-object instantiations Permitted Not Allowed

VAR Variable declarations Permitted Not Allowed
Public method for use by the parent object and within this object Required Not Allowed
Private method for use within this object Permitted Not Allowed
Data declarations, including PASM code Permitted Required

Here are some minimal Spin2 and PASM-only programs. If you copy and paste these into PNut.exe, you can hit F10 to run them.

Minimal PUB MinimalSpin2Program/() 'first PUB method executes
Spin2
Program REPEAT
PINWRITE(7..0, GETRND()) 'write a random pattern to P7..PO
WAITMS (100) 'wait 1/10th of a second, loop
Minimal DAT ORG 'start PASM at hub $00000 for cog $000
PASM
Program loop DRVRND #0 ADDPINS 7 'write a random pattern to P7..PO
WAITX ##clkfreq_/lo 'wait 1/10th of a second, loop
JMP #loop

Here is a Spin2 program which contains every block type.

All-Block CON _clkfreq = 297_000_000 'set clock frequency

Spin2

Parallax Spin2 Documentation Page 3 of 52

https://docs.google.com/document/d/1gn6oaT5Ib7CytvlZHacmrSbVBJsD9t_-kmvjd7nUR6o/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1_vJk-Ad569UMwgXTKTdfJkHYHpc1rZwxB-DcIiAZNdk/edit?usp=sharing
https://drive.google.com/file/d/1FfDTGmSO1aKJPtuty9ZYnz7o2-p8EYND/view?usp=sharing

Program OBJ vga : "VGA_ 640x480_text 80x40" 'instantiate vga object

VAR time, i 'declare object-wide variables
PUB go() 'this first public method execute
vga.start(8) 'start vga on base pin 8
SEND := @vga.print 'establish SEND pointer
SEND (4, $004040, 5, SOOFFFF) 'set light cyan on dark cyan
time := GETCT () 'capture time
i := Qtext 'print file to vga screen

REPEAT @textend-i
SEND (byte[i++])

s, cog stops after

time := GETCT() - time 'capture time delta in clock cycles
time := MULDIV64 (time, 1_000_000, clkfreq) 'get time delta in microseconds
SEND (12, "Time elapsed during printing was ", dec(time), " microseconds.") 'print time delta
PRI dec(value) | flag, place, digit 'private method prints decimals, three local variables
flag~ 'reset digit-printed flag
place := 1_000_000_000 'start at the one-billion's place and work downward
REPEAT
IF flag ||= (digit := value / place // 10) || place == 'print a digit?
SEND ("0" + digit) 'yes
IF LOOKDOWN (place : 1_000_000_000, 1_000_000, 1_000) 'also print a comma?
SEND (", ") 'yes
WHILE place /= 10 'next place, done?
DAT
text FILE "VGA_640x480_text 80x40.txt" 'include raw file data for printing
textend

A breakdown of each block type follows.
CON Blocks

CON blocks are used to declare symbolic constants and data structures which can be used throughout the file.
Symbolic constants:

Symbolic constants resolve to 32-bit values.

Symbolic constants can be assigned using '=' or by just expressing their names in an enumeration list.
Symbolic constants can be referenced by every block within the file, including CON blocks.

Symbolic constants can be referenced by the parent object's methods via 'objectname.constantname' syntax.
If a "." or "e" is present among decimal digits, the value is encoded in IEEE-754 single-precision format.

Data structures:

A data structure declaration defines a packed group of bytes, words, longs, and substructures.
A structure definition begins with a name, followed by a list of members enclosed in parentheses:

e StructType(BYTE|WORD|LONG|SubStruct MemberName{[Count]}, ...)

Each member of a structure has a name and a BYTE/WORD/LONG/SubStructType, with LONG being the default.
Each member of a structure can be declared as an array by adding [count] after the member name.

Structure declarations can contain unlimited levels of nesting.

Data structures are limited to $FFFF bytes, though arrays of up to $FFFF structures can be instantiated.

No storage space is allocated until a structure is instantiated as a variable within a VAR block or a PUB/PRI header.
Structures are accessed in Spin2 using the following syntax:

structure
structure.byte_word_long
structure.substructure
structure.substructure.byte_word_long
Generally, for instantiated structures:
o structure{[index]}{.substructure{[index]}...}{.byte_word_long{[index]}}
e There is also a generic format:
o StructType[address]{[index]}{.substructure{[index]}...}{.byte_word_long{[index]}}

CON CON EnableFlow = 8 'single assignments
DisableFlow = 4
Direct ColorBurstFreq = 3_579 545
Constant UpperNibs = $FOFOFOFO

Assignments
PWM base = 8
PWM pins = PWM base ADDPINS 7

x=5,y=-5z=1 'comma-separated assignments

HalfPi 1.5707963268 'IEEE-754 single-precision float
QuarPi = HalfPi / 2.0

values

Parallax Spin2 Documentation Page 4 of 52

NegG = -1le9
Micro = le-6
j = ROUND (4000.0 / QuarPi) 'float to integer
CON CON #0,a,b,c,d 'a=0, b=1, c=2, d=3 (start=0, step=1)
#1,e,£f,g,h 'e=l, f=2, g=3, h=4 (start=1, step=1l)
Enumerated
Constant #4[2]1,1,3,k,1 'i=4, j=6, k=8, 1=10 (start=4, step=2)
Assignments #-1[-1] ,m,n,p 'm=-1, n=-2, p=-3 (start=-1, step=-1)
#16 'start=16, step=1l
q 'q=16
r[0] 'r=17 ([0] is a step multiplier)
s 's=17
t 't=18
ul[2] 'u=19 ([2] is a step multiplier)
v 'v=21
w 'w=22
CON e0,el,e2 'e0=0, el=1l, e2=2 (start=0, step=1)
'..enumeration is reset at each CON
CON CON
Data sPoint(x, y)
Structure 'sPoint contains long x and long y.
Definitions 'sPoint would generate this in memory if instantiated as "point":

v

' 400: long point.x
' +04: long point.y

sLine (sPoint a, sPoint b, BYTE color)
'sLine contains sPoint a, sPoint b, and byte color.
'sLine would allocate this in memory if instantiated as "line":

' 400: long line.a.x
' +04: long line.a.y
' +08: long line.b.x
' +0C: long line.b.y

' 410: byte line.color

'sLine would allocate this in memory if instantiated as "line[2]":

' 400: long line[0].a.x
' 4+404: long line[0].a.y
' +08: long line[0].b.x
' 4+0C: long line[0].b.y

' +10: byte line[0].color
' 4+11: long line[l].a.x
' +15: long linel[l].a.y
' +19: long line[l].b.x
' +1D: long line[l].b.y
' +21: byte line[l].color

OBJ Blocks

OBJ blocks are used to instantiate child objects into the current (parent) object.
Child objects can be instantiated with parameters which override CON symbols of the same name within the child object.

e Up to 16 parameters are allowed.
e Useful for hard-coding buffer sizes, pins, etc.

Child objects' methods can be executed and their constants can be referenced by the parent object at run time.
e Up to 32 different child objects can be incorporated into a parent object.
e Child objects can be instantiated singularly or in arrays of up to 255.
e Up to 1024 child objects are allowed per parent object.

OBJ syntax is as follows:

OBJ objectname{[instances]} : "objectfilename{.spin2}" {| parameter = value{,...}}

OoBJ OBJ vga : "VGA Driver" 'instantiate "VGA Driver.spin2" as "vga"
Child-Object mouse : "USB_Mouse" 'instantiate "USB Mouse.spin2" as "mouse"
Instantiations
pwm : "PWM Driver" | p =8, w =4 ‘'instantiate "PWM Driver.spin2" as "pwm" with parameters
v[le] : "VocalSynth" 'instantiate an array of 16 objects, v[0] through v[15]

From within a parent-object method, a child-object method can be called by using the syntax:

object name.method name ({any parameters})

From within a parent-object method, a child-object constant can be referenced by using the syntax:

object name.constant name

Parallax Spin2 Documentation Page 5 of 52

VAR Blocks

VAR blocks are used to declare symbolic variables which can be utilized by all methods within the object.
e \Variables can be the following types:

BYTE (8 bits)
WORD (16 bits)
LONG (32 bits) - this is the default type.

e STRUCT contains BYTE, WORD, and/or LONG type(s).
o Structure references which end in a BYTE/WORD/LONG member become just like a direct BYTE/WORD/LONG variable that can be read, written,
modified, and addressed.
o Structure references which name only the base structure or end in a substructure member are read-only and return the address of the base structure
or substructure referenced.

e STRUCT pointer (LONG) points to a structure of a certain type.
o Structure pointers act just like LONG types when not followed by "[Index]" or ".Member" syntax.
o When followed by "[Index]" or ".Member" syntax, a structure pointer acts just like a STRUCT variable.

Variables can be declared as singles or arrays, except STRUCT pointers, which are always singles.

Variables are packed in memory in the order they are declared, beginning at a long-aligned address.

Variables are initialized to zero at run time.

Each object's first 15 longs of variable memory are accessed via special bytecodes for improved efficiency.

Each instance of an object will require one long, plus its declared amount of VAR space, plus 0..3 bytes to long-align to the next object's VAR space.

VAR VAR CogNum 'The default variable size is LONG (32 bits).
CursorMode
Variable PosX '"The first 15 longs have special bytecodes for faster/smaller code.
Declarations Posy
SendPtr 'So, declare your most common variables first, as longs.
BYTE StringChr 'byte variable (8 bits)
BYTE StringBuff[64] 'byte variable array (64 bytes)
BYTE a,b,c[1000],d 'comma-separated declarations
WORD CurrentCycle 'word variable (16 bits)
WORD Cycles[200] 'word variable array (200 words)
WORD e, f[5],g,h[10] 'comma-separated declarations
LONG Value 'long variable
LONG Values[15] 'long variable array (15 longs)
LONG i[100],3,k,1 'comma-separated declarations
StructTypeA sRecord 'structure variable of StructTypeA
StructTypeB sRecord[20] 'structure variable array of StructTypeB
~StructTypeC pRecord 'structure pointer variable of StructTypeC
ALIGNW 'word-align to hub memory, advances variable pointer as necessary
ALIGNL 'long-align to hub memory, advances variable pointer as necessary
BYTE Bitmap[640*480] '..useful for making long-aligned buffers for FIFO-wrapping

PUB and PRI Blocks

PUB and PRI blocks are used to define public and private executable Spin2 methods.

e PUB methods are available to the parent object, as well as to the object they are defined in.
e PRI methods are available only to the object they are defined in.
e The first PUB method in an object is what executes when that object is run as the top-level object.
e Methods can have from 0 to 127 input parameters, all of which are single longs.
o AStructType override will cause a parameter to become a structure pointer.
e Methods can have from 0 to 15 output results, all of which are single longs.
e Methods can have up to 64KB of local variables, which can be bytes, words, longs (default), and structures, in both singles and arrays. They can also have structure
pointers which are always singles.
e Local variable size/type overrides (BYTE/WORD/LONG/StructType/AStructType) apply only to the variable being declared, not subsequent variables.
e Results and local variables are initialized to zero on method entry.
e Parameters, then results, and then local variables are packed into stack memory in the order they are declared.
e In-line PASM code can access the first 16 longs of parameters/results/locals via registers with the same symbolic names.

PUB/PRI syntax is as follows:

PUB|PRI MethodName ({{~StructType} Parameter{,...}}) {: Result{,...}} {| {ALIGNW|ALIGNL} {BYTE|WORD|LONG|{~}StructType}
Localvar{[Count]}{,...}}

PUB / PRI Declarations Input Output Local
Parameters Results Variables

(method code would go below each declaration) (longs) (longs) (longs, words, bytes,
structures, structure pointers)

PUB go () 0 0 0
PUB SetupADC (pins) 1 0 0
PUB StartTx(pin, baud) : Okay 2 1 0
PRI RotateXY (X, Y, Angle) : NewX, NewY | p,q,r 3 2 3 longs
PRI Shuffle() | i, j 0 0 2 longs

Parallax Spin2 Documentation Page 6 of 52

PRI FFT1024 (DataPtr) | a, b, x[1024], y[1024]

PRI ReMix() : Length, SampleRate | WORD Buff[20000], k
PRI StrCheck (StrPtrA, StrPtrB) : Pass | i, BYTE Str[64]
PRI Analyze (*StructTypeX pX) | StructTypeX sX[10]

1+1+1024+1024 longs
20000 words + 1 long
1 long + 64 bytes
sizeof (StructTypeX) x 10

HNOR
OoOKFrNO

DAT Blocks

DAT blocks are used to express data and PASM code.

e Data is packed in memory in the order they are declared, beginning at a long-aligned address.
e Data is expressed using the following syntax: {symbolname} BYTE/WORD/LONG data{[count]} {,data...}
e Symbols that precede data and PASM instructions resolve to addresses
o In Spin2+PASM programs, hub addresses are relative to the start of the object and can be referenced as follows:
m 'SymbolName' will return the data at the symbol, in accordance with its size (byte/word/long).
m '@SymbolName' will return the address of the data.
m '@@SymbolName' will convert an '@Symbol' in the data to an absolute address (see "DAT Data Pointers")
o In PASM-only programs, hub addresses are absolute.

DAT
Symbols and Data
DAT 'symbols without data take the size of the previous declaration
HexChrs BYTE "0123456789ABCDEF" 'HexChrs is a byte symbol that points to the "0"
symbolO 'symbol0 is a byte symbol that points after the "F"
Pattern WORD $ccee,$3333,%AAAA, 55555 'Pattern is word symbol that points to $CCCC
symboll 'symboll is a word symbol that points after $5555
Billion LONG 1 _000_000_000 'Billion is a long symbol that points to 1_000_000_000
symbol2 'symbol2 is a long symbol that points after 1_000_000_000
DoNothing NOP 'DoNothing is a long symbol that points to a NOP instruction
symbol3 'symbol3 is a long symbol that points after the NOP instruction
symbol4 BYTE 'symbol4 is a byte symbol that points to $78
symbol5 WORD 'symbol5 is a word symbol that points to $5678
symbolé LONG 'symbol6é is a long symbol that points to $12345678
LONG $12345678 'long value $12345678
LONG 1.0 'IEEE-754 1.0 is long value $3F800000
BYTE 100[64] '64 bytes of value 100
BYTE 10, WORD 500, LONG $FC000 'BYTE/WORD/LONG overrides allowed for single values
BYTE FVAR 99, FVARS -99 'FVAR/FVARS overrides allowed, can be read via RFVAR/RFVARS
BYTEFIT -$80,$FF 'size-check data, overrides allowed for single values
WORDFIT -$8000, $FFFF 'size-check data, overrides allowed for single values
FileDat FILE "Filename" 'include binary file, FileDat is a byte symbol that points to file
ALIGNW 'word-align to hub by emitting a zero byte, if necessary
ALIGNL 'long-align to hub by emitting 1 to 3 zero bytes, if necessary

DAT
Data Pointers

DAT

Stro0 BYTE "Monkeys" ,0 'strings with symbols

Strl BYTE "Gorillas",0

Str2 BYTE "Chimpanzees", 0

Str3 BYTE "Humanzees" , 0

StrList WORD @sStro0 'in Spin2, these are offsets of strings relative to start of object
WORD @strl 'in Spin2, @@StrList[i] will return address of Str0..Str3 for i = 0..3
WORD @sStr2 'in PASM-only programs, these are absolute addresses of strings
WORD @sStr3 ' (use of WORD supposes offsets/addresses are under 64KB)

DAT
Cog-exec
DAT ORG 'begin a cog-exec program (no symbol allowed before ORG)
'"COGINIT (16, @IncPins, 0) will launch this program in a free cog
IncPins MOV DIRA, #S$FF 'to Spin2 code, IncPins is the 'MOV' instruction (long)
Loop ADD OUTA, #$01 'to Spin2 code, @IncPins is the hub address of the 'MOV' instruction
AND OUTA, #SFF 'to Spin2 code, #IncPins is the cog address of the 'MOV' instruction
JMP #Loop 'to PASM code, #Loop is the cog address ($001) of the 'ADD' instruction
ORG 'set cog-exec mode, cog address = $000, cog limit = $1F8 (reg, both defaults)
ORG $100 'set cog-exec mode, cog address = $100, cog limit = $1F8 (reg, default limit)
ORG $100,8%120 'set cog-exec mode, cog address = $100, cog limit = $120 (reg)
ORG $200 'set cog-exec mode, cog address = $200, cog limit = $400 (LUT, default limit)
ORG $300,$380 'set cog-exec mode, cog address = $300, cog limit = $380 (LUT)
ADD register, #1 'in cog-exec mode, instructions force alignment to cog/LUT registers
ORGF $040 'fill to cog address $040 with zeros (no symbol allowed before ORGF)
FIT $020 'test to make sure cog address has not exceeded $020

Parallax Spin2 Documentation Page 7 of 52

X RES 1 'reserve 1 register, advance cog address by 1, don't advance hub address
y RES 1 'reserve 1 register, advance cog address by 1, don't advance hub address
z RES 1 'reserve 1 register, advance cog address by 1, don't advance hub address
buff RES 16 'reserve 16 registers, advance cog address by 16, don't advance hub address
DAT
Hub-exec
DAT ORGH 'begin a hub-exec program (no symbol allowed before ORGH)
'COGINIT (32+16, Q@IncPins, 0) will launch this program in a free cog
IncPins MOV DIRA, #$FF 'In Spin2, IncPins is the 'MOV' instruction (long)
Loop ADD OUTA, #1 'In Spin2, @IncPins is the hub address of the 'MOV' instruction
JMP #Loop 'In PASM, Loop is the hub address ($00404) of the 'ADD' instruction
ORGH 'set hub-exec mode, hub origin = $00400, origin limit = $100000 (both defaults)
ORGH $1000 'set hub-exec mode, hub origin = $01000, origin limit = $100000 (default limit)
ORGH $FC000,$FC800 'set hub-exec mode, hub origin = $FC000, origin limit = $FC800
FIT $2000 'test to make sure hub address has not exceeded $2000

There are some differences between Spin2+PASM programs and PASM-only programs, when it comes to hub-exec code:

Spin2+PASM e Hub-exec code must use relative addressing, since it is not located at its place of origin.
Programs e The LOC instruction can be used to get addresses of data assets within relative hub-exec code.
e ORGH must specify at least $400, so that pure hub-exec code will be assembled.
e The default ORGH address of $400 is always appropriate, unless you are writing code which will be
moved to its actual ORGH address at runtime, so that it can use absolute addressing.
DAT ORGH 'set hub-exec mode and set origin to $400
ORGH $SFC000 'set hub-exec mode and set origin to $FC000
PASM-Only e Hub-exec code may use absolute and relative addressing, since origin always matches hub address.
Programs ®¢ ORGH fills hub memory with zeros, up to the specified address.
DAT ORGH 'set hub-exec mode at current hub address
ORGH $400 'set hub-exec mode and fill hub memory with zeros to $400

Spin2 Language
Comments

Comments can occur anywhere in Spin2 or PASM code and take several forms:

Comment Examples Descriptions
a :=0 'comment here e initiated by apostrophe, rest of line is ignored
b :=1 ' 'comment here e initiated by two apostrophes, rest of line is ignored

e Comment text goes into the documentation file

x 4, {comment here} y := 5 e Everything within braces is ignored, including end-of-lines

{comment here
comment here}

x := 4, {{comment here}} y := 5 e Everything within double braces is ignored, including end-of-lines
e Comment text goes into the documentation file

{{comment here
comment here}}

z := 100 ... comment here e Initiated by three periods, rest of line is ignored
* x ... comment here e parsing continues on next line, as if no end-of-line was encountered
- W

Constants

Constants resolve to 32-bit values and can be expressed as follows:

Constants Examples Descriptions
1 e Decimal values use digits '0'..'9'
-150 e Underscores ' ' are allowed after the first digit for placeholding
3_000_000
$1B e Hex values start with '$' and use digits '0'..'9' and 'A"..'F'
$AAS55 e Underscores ' ' are allowed after the first digit for placeholding
$FFFF;FFFF
$%21 e Double binary values start with '%%' and use digits '0"..'3'
$%01_23 e Underscores ' ' are allowed after the first digit for placeholding
$$3333_2222 1111 0000
$0110 e Binary values start with '%' and use digits '0' and '1'

Parallax Spin2 Documentation Page 8 of 52

$1 1111 1000 e Underscores ' 'are allowed after the first digit for placeholding
$0001_0010_0011 0100
-1.0 e Float values use digits '0"..'9' and have a . and/or 'e' in them
1 _250_000.0 e Floats are encoded in IEEE-754 single-precision 32-bit format
le9 e Underscores ' ' are allowed after the first digit for placeholding
5e+6 e Special floating-point operators (+. -. *. /.) treat long values as floats
-1.23456e-7
"H" e Asingle character in quotes resolves to an 8-bit ASCII value
° uAu — $41
"Hello" e Multiple characters in quotes resolve to 8-bit ASCII values separated by commas
e "Hello" — $48, $65, $6C, $6C, $6F
%$"ABCD" e Up to four 8-bit ASCII values packed into a long, little-endian, zero-padded
gm123" e %"ABCD" — $44 43 42 41
e %"123" — $00 33 32 31

Variables

In Spin2, there are both user-defined and permanent variables. The user-defined variable sources are listed below and the permanent variables are shown in the table.

VAR variables (hub)

PUB/PRI parameters, return values, and local variables (hub)
DAT symbols (hub)

Cog registers

Variables Variable Address Description Useful in Useful in Useful in
(all LONG) Name or Offset Spin2 Spin2-PASM PASM-Only
CLKMODE $00040 Clock mode value Yes Yes No
CLKFREQ $00044 Clock frequency value Yes Yes No
VARBASE +0 Object base pointer, @VARBASE is VAR Maybe No No
base, used by method-pointer calls

PRO $1D8 Spin2 <-> PASM communication Yes Yes No
PR1 $1D9 Yes Yes No
PR2 $1DA Yes Yes No
PR3 $1DB Yes Yes No
PR4 $1DC Yes Yes No
PR5 $1DD Yes Yes No
PR6 $1DE Yes Yes No
PR7 $1DF Yes Yes No
IJMP3 $1F0 Interrupt JMP's and RET's No Yes Yes
IRET3 $1F1 No Yes Yes
IJMP2 $1F2 No Yes Yes
IRET2 $1F3 No Yes Yes
IJMP1 $1F4 No Yes Yes
IRET1 $1F5 No Yes Yes
PA $1F6 Pointer registers No Yes Yes

PB $1F7 No Yes Yes
PTRA $1F8 Data pointer passed from COGINIT No Yes Yes
PTRB $1F9 Code pointer passed from COGINIT No Yes Yes
DIRA $1FA Output enables for P31..P0 Yes Yes Yes
DIRB $1FB Output enables for P63..P32 Yes Yes Yes
OUTA $1FC Output states for P31..PO Yes Yes Yes
OUTB $1FD Output states for P63..P32 Yes Yes Yes
INA $1FE Input states from P31..PO Yes Yes Yes
INB $1FF Input states from P63..P32 Yes Yes Yes

In Spin2, all variables can be indexed and accessed as bitfields. Additionally, symbolic hub variables can have BY TE/WORD/LONG size overrides:

Variable Usage Example Description
AnyVar Hub or permanent register variable
HubVar .WORD Hub variable with BYTE/WORD/LONG size override
BYTE [address] Hub BYTE/WORD/LONG by address
REG[register] Register, 'register’' may be symbol declared in ORG section
AnyVar [index] Hub or permanent register variable with index
HubVar .BYTE [index] Hub variable with size override and index
LONG[address] [index] Hub BYTE/WORD/LONG by address with index
REG[register] [index] Register with index
AnyVar. [bitfield] Hub or permanent register variable with bitfield
HubVar.LONG. [bitfield] Hub variable with size override and bitfield
WORD [address] . [bitfield] Hub BYTE/WORD/LONG by address with bitfield
REG[register] . [bitfield] Register with bitfield
AnyVar[index] . [bitfield] Hub or permanent register variable with index and bitfield
HubVar .BYTE[index] . [bitfield] Hub variable with size override, index, and bitfield
LONG[address] [index] . [bitfield] Hub BYTE/WORD/LONG by address with index and bitfield
REG[register] [index] . [bitfield] Register with index and bitfield

A bitfield is a 10-bit value which contains a base-bit number in bits 4..0 and an additional-bits number in bits 9..5. Bitfields can be defined in a few different ways:

Parallax Spin2 Documentation Page 9 of 52

Bitfield Bit Range Details

.[%00000_00000] 0 0 additional bits above the base bit 0, a single-bit bitfield

.[%$00000_11111] 31 0 additional bits above the base bit 31, a single-bit bitfield

.[%00010_01111] 17..15 2 additional bits above the base bit 15, a three-bit bitfield

.[%$11110_00000] 30..0 30 additional bits above the base bit 0, a 31-bit bitfield

.[%11111_10000] 15..0, 31..16 31 additional bits above the base bit 16, wraps around, a 32-bit bitfield

.[%00001_11111] 0, 31 1 additional bit above the base bit 31, wraps around, a 2-bit bitfield

. [23] 23 Just the base bit, adds no extra bits

.[31..20] 31..20 "Top..Bottom' syntax allowed within '. []', wraps if Top < Bottom

. [5 ADDBITS 7] 12..5 ADDBITS can be used to compute the bitfield

. [BitfieldCon] 13..9 CON BitfieldCon = 9 ADDBITS 4 'BitfieldCon useful in PASM, too
. [BitfieldVar] ? BitfieldVar := BaseBit ADDBITS ExtraBits 'wraps if BaseBit + ExtraBits > 31

In addition to bitfields, there are also pinfields, which are used to select a range of I/O pins within the same 32-pin block (P63..P32 or P31..P0). Pinfields are 11-bit values which
contain a base-pin number in bits 5..0 and an additional-pins number in bits 10..6. Pinfields are used by instructions which interface to pins.

Pinfield Pin Range Details

PINLOW (%00000_000000) 0 0 additional pins above the base pin 0, a single-pin pinfield

PINLOW(%00000_111111) 63 0 additional pins above the base pin 63, a single-pin pinfield

PINLOW(%00011_100000) 35..32 3 additional pins above the base pin 32, a four-pin pinfield

PINLOW(%11111 001000) 7..0, 31..8 31 additional pins above the base pin 8, wraps around, a 32-pin pinfield

PINLOW(19) 19 Just the base pin, adds no extra pins

PINLOW (49..40) 49. .40 "Top..Bottom' syntax allowed within '. [, wraps if Top < Bottom

PINLOW (11l ADDPINS 4) 15..11 ADDPINS can be used to compute the pinfield

PINLOW (PinfieldCon) 53..50 CON PinfieldCon = 50 ADDPINS 3 'PinfieldCon useful in PASM, too

PINLOW (PinfieldVar) ? PinfieldVar := BasePin ADDPINS ExtraPins 'wraps if BasePin + ExtraPins > 31
Expressions

e Run-time expressions can incorporate constants, variables, and methods' return values
e Compile-time expressions can use only constants.
e All expressions can use operators.

Here are some examples of expressions:

Expression Details

BYTE [i++] Byte pointed to by 'i', post-increment i’
(digit := value / place // 10) OR place == Boolean with buried 'digit' assignment
place /= 10 Divide 'place’ by 10

"0" + digit Get 'digit' character

PINREAD (17..12) Read pins 17..12

Operators

Below is a table of all the operators available for use in Spin2. Compile-time expressions can use the unary, binary, ternary, and float operators.

Var-Prefix Term Term Assign Assign Description
Operators (PUB/PRI only) Priority (PUB/PRI only) Priority
++ (pre) ++var 1 ++var 1 Pre-increment var, return var
-- (pre) --var 1 --var 1 Pre-decrement var, return var
?? (pre) ??var 1 ??var 1 Iterate long var per XORO32, return pseudo-random value
Var-Postfix Term Term Assign Assign Description
Operators (PUB/PRI only) Priority (PUB/PRI only) Priority
(post) ++ var++ 1 var++ 1 Return var, post-increment var
(post) -- var-- 1 var-- 1 Return var, post-decrement var
(post) !! var!! 1 var!! 1 Return var, post-logical-NOT var (0 — -1, non-0 — 0)
(post) ! var! 1 var! 1 Return var, post-bitwise-NOT var

Parallax Spin2 Documentation Page 10 of 52

(post) \ var\x 1 var\x 1 Return var, post-assign x to var
(post) ~ var~ 1 var~ 1 Return var, post-clear all bits in var
(post) ~~ var~~ 1 var~~ 1 Return var, post-set all bits in var

Address

Operators

Term
(PUB/PRI only)

Term
Priority

Description

e “Qanyvar 1 Field pointer to any hub or register variable, including bitfield
@ @hubvar 1 Hub address of VAR/PUB/PRI/DAT variable

@ @method 1 Pointer to method, may be @object{[i]}.method

Qe @ex 1 Hub address of this object + x, 'DAT x long @dat_symbol'

#reg_symbol 1 Register address of cog/LUT DAT symbol

Unary

Operators

Term
(All blocks)

Term
Priority

Assign

(PUB/PRI only)

Assign
Priority

Description

Floating-Point
Operator

1, NOT x 12 = var 1 Logical NOT (0 — -1, non-0 — 0)
! 'x 2 '= var 1 Bitwise NOT (1's complement)
- -x 2 -= var 1 Negate (2's complement) CON only *
- -.x 2 Floating-point negate (toggles MSB) All blocks
ABS ABS x 2 ABS= var 1 Absolute value CON only *
FABS FABS x 2 Floating-point absolute value (clears MSB) All blocks
ENCOD ENCOD x 2 ENCOD= var 1 Encode MSB, 0..31
DECOD DECOD x 2 DECOD= var 1 Decode, 1 << (x & $1F)
BMASK BMASK x 2 BMASK= var 1 Bitmask, (2 << (x & $1F)) - 1
ONES ONES x 2 ONES= var 1 Sum all 1" bits, 0..32
SQRT SORT x 2 SQRT= var 1 Square root of unsigned value
FSQRT FSQRT x 2 Floating-point square root
QLOG QLOG x 2 QLOG= var 1 Unsigned value to logarithm {5'whole, 27'fraction}
QEXP QEXP x 2 QEXP= var 1 Logarithm to unsigned value

Binary

Operators

Term
(Al blocks)

Term
Priority

Assign

(PUB/PRI only)

Assign
Priority

Description

Floating-Point
Operator

>> X >y 3 var >>=y 17 Shift x right by y bits, insert 0's
<< x <<y 3 var <<= y 17 Shift x left by y bits, insert O's
SAR x SAR y 3 var SAR= y 17 Shift x right by y bits, insert MSB's
ROR x ROR y 3 var ROR= y 17 Rotate x right by y bits
ROL x ROL y 3 var ROL= y 17 Rotate x left by y bits
REV x REV y 3 var REV= y 17 Reverse order of bits 0..y of x and zero-extend
ZEROX x ZEROX y 3 var ZEROX= y 17 Zero-extend above bity
SIGNX x SIGNX y 3 var SIGNX= y 17 Sign-extend from bit y
& X &y 4 var &= y 17 Bitwise AND
2 x Ny 5 var =y 17 Bitwise XOR
| x|y 6 var |=y 17 Bitwise OR
* X *y 7 var *=y 17 Signed multiply CON only *
*, X *. y 7 Floating-point multiply All blocks
/ x/y 7 var /=y 17 Signed divide, return quotient CON only *
/. x /.y 7 Floating-point divide All blocks
+/ x +/ y 7 var +/=y 17 Unsigned divide, return quotient
// x // 7 7 var //=y 17 Signed divide, return remainder
+// x +// y 7 var +//=y 17 Unsigned divide, return remainder
sca x SCA y 7 var SCA= y 17 Unsigned scale, (x * y) >> 32
SCAS x SCAS y 7 var SCAS= y 17 Signed scale, (x *y) >> 30
FRAC x FRAC y 7 var FRAC= y 17 Unsigned fraction, (x << 32) /y
+ x +y 8 VAR += y 17 Add CON only *
+. x+. y 8 Floating-point add All blocks
- X -y 8 var -= y 17 Subtract CON only *
= X -. Yy 8 Floating-point subtract All blocks
#> x #> vy 9 var #>=y 17 Force x =>y, signed CON only *
<# x <# y 9 var <#=y 17 Force x <=y, signed CON only *
ADDBITS x ADDBITS y 10 var ADDBITS= y 17 Make bitfield, (x & $1F) | (y & $1F) << 5
ADDPINS x ADDPINS y 10 var ADDPINS= y 17 Make pinfield, (x & $3F) | (y & $1F) << 6
< x <y 11 Signed less than (returns 0 or -1) CON only **
+< x < y 11 Unsigned less than (returns 0 or -1)
<. x <.y 11 Floating-point less than (returns 0 or -1) All blocks
<= X <=y 11 Signed less than or equal (returns 0 or -1) CON only **
+<= X +<=y 11 Unsigned less than or equal (returns 0 or -1)
<=. x <=. y 11 Floating-point less than or equal (returns 0 or -1) All blocks
== X ==y 11 Equal (returns 0 or -1) CON only **
== X ==. y 11 Floating-point equal (returns 0 or -1) All blocks
<> x <>y 11 Not equal (returns 0 or -1) CON only **
<>. x <>. y 11 Floating-point not equal (returns 0 or -1) All blocks

Parallax Spin2 Documentation Page 11 of 52

>= X >=y 11 Signed greater than or equal (returns 0 or -1) CON only **
+>= x +>=y 11 Unsigned greater than or equal (returns 0 or -1)
>=. x >=.y 11 Floating-point greater than or equal (returns 0 or -1) All blocks
> x>y 11 Signed greater than (returns 0 or -1) CON only **
+> X +> y 11 Unsigned greater than (returns 0 or -1)
> X >,y 11 Floating-point greater than (returns 0 or -1) All blocks
<=> x <=>y 11 Signed comparison (<,=,> returns -1,0,1) CON only ***
&&, AND X && y 13 var &&=y 17 Logical AND (x <>0AND y <> 0, returns 0 or -1)
A%, XOR x "My 14 var =y 17 Logical XOR (x <>0 XORy <> 0, returns 0 or -1)
||, OR x ||y 15 var ||=y 17 Logical OR (x<>0 OR y <> 0, returns 0 or -1)

Ternary Term Priority
Operator (All blocks) (term)

Assign
Operator

Description

Assign
(PUB/PRI only)

var := x 17 Set var to x
vl,v2 := X,y Set v1 to x, setv2 to y, etc. ('_' on left = ignore)

Assign
(CON only)

Priority Description

Equate
Operator

Priority ~ Description

Float Term Description Floating-Point
Conversions (All blocks) Operator
FLOAT () FLOAT (x) Convert integer x to float All blocks
ROUND () ROUND (x) Convert float x to rounded integer All blocks
TRUNC () TRUNC (x) Convert float x to truncated integer All blocks

*** *** In CON blocks, this operator will take on floating-point functionality when applied to floating-point constants and symbols.

** In CON blocks, relational operators (<, <=, ==, <>, >=, >) will return 1.0 or 0.0, instead of integer -1 or 0, when applied to floating-point constants and symbols.
*** In CON blocks, the <=> operator will return -1.0, 0.0, or 1.0, instead of integer -1, 0, or 1, when applied to floating-point constants and symbols.

Spin2 Version Selection

To avoid namespace conflicts between future Spin2 keyword additions and user symbols, a means of gating new keywords was implemented starting in v43.

The compiler searches for a "{Spin2_v##}" comment before any code is expressed in the .spin2 file. ## is a two-digit number which selects the version of Spin2 for which its
and all subsequent versions' keywords will be enabled. If no {Spin2_v##} is found, the compiler will default to enabling all keywords used in v41.

For example, to select v43, which would enable use of the LSTRING() method, you could place this comment at the top of your file:
{Spin2_v43}
Version numbers below 43 will be ignored, causing v41 to be used. If a version number found in code exceeds the current compiler's version, it will generate an error. Not every

future version of Spin2 will constitute a meaningful version number for version selection, since it might not contain any new keywords which need gating, but it might be helpful
to the person working with the code to know what the author's expectation might have been regarding other aspects of the compiler.

Built-In Methods

Hub Methods Details

HUBSET (Value) Execute HUBSET instruction using Value.

CLKSET (NewCLKMODE, NewCLKFREQ) Safely establish new clock settings and update CLKMODE and CLKFREQ.

COGSPIN (CogNum, Method({Pars}), StkAddr) Start Spin2 method in a cog, returns cog's ID if used as an expression element, -1 = no cog free.
COGINIT (CogNum, PASMaddr, PTRAvalue) Start PASM code in a cog, returns cog's ID if used as an expression element, -1 = no cog free.
COGSTOP (CogNum) Stop cog CogNum.

COGID() : CogNum Get this cog's ID.

COGCHK (CogNum) : Running Check if cog CogNum is running, returns -1 if running or 0 if not.

LOCKNEW () : LockNum Check out a new LOCK from inventory, LockNum = 0..15 if successful or < 0 if no LOCK available.
LOCKRET (LockNum) Return a certain LOCK to inventory.

LOCKTRY (LockNum) : LockState Try to capture a certain LOCK, LockState = -1 if successful or 0 if another cog has captured the LOCK.
LOCKREL (LockNum) Release a certain LOCK.

LOCKCHK (LockNum) : LockState Check a certain LOCK's state, LockState[31] = captured, LockState[3:0] = current or last owner cog.
COGATN (CogMask) Strobe ATN input(s) of cog(s) according to 16-bit CogMask.

POLLATN() : AtnFlag Check if this cog has received an ATN strobe, AtnFlag = -1 if ATN strobed or 0 if not strobed.
WAITATN () Wait for this cog to receive an ATN strobe.

Pin Methods Details

Parallax Spin2 Documentation Page 12 of 52

PINW | PINWRITE (PinField, Data) Drive PinField pin(s) with Data.
PINL | PINLOW (PinField) Drive PinField pin(s) low.

PINH | PINHIGH (PinField) Drive PinField pin(s) high.
PINT | PINTOGGLE (PinField) Drive and toggle PinField pin(s).
PINF | PINFLOAT (PinField) Float PinField pin(s).

PINR | PINREAD (PinField) : PinStates Read PinField pin(s).

PINSTART (PinField, Mode, Xval, Yval)

Start PinField smart pin(s): DIR=0, then WRPIN=Mode, WXPIN=Xval, WYPIN=Yval, then DIR=1.

PINCLEAR (PinField)

Clear PinField smart pin(s): DIR=0, then WRPIN=0.

WRPIN (PinField, Data)

Write 'mode’ register(s) of PinField smart pin(s) with Data.

WXPIN (PinField, Data)

Write 'X' register(s) of PinField smart pin(s) with Data.

WYPIN (PinField, Data)

Write "Y' register(s) of PinField smart pin(s) with Data.

AKPIN (PinField) Acknowledge PinField smart pin(s).
RDPIN (Pin) : Zval Read Pin smart pin and acknowledge, Zval[31] = C flag from RDPIN, other bits are RDPIN data.
RQPIN (Pin) : Zval Read Pin smart pin without acknowledge, Zval[31] = C flag from RQPIN, other bits are RQPIN data.

Timing Methods

Details

GETCT () : Count Get 32-bit system counter.
POLLCT (Tick) : Past Check if system counter has gone past 'Tick', returns -1 if past or 0 if not past.
WAITCT (Tick) Wait for system counter to get past Tick'.

WAITUS (Microseconds)

Wait Microseconds, uses CLKFREQ, duration must not exceed $8000_0000 clocks.

WAITMS (Milliseconds)

Wait Milliseconds, uses CLKFREQ, duration must not exceed $8000_0000 clocks.

GETSEC() : Seconds

Get seconds since booting, uses 64-bit system counter and CLKFREQ, rolls over every 136 years.

GETMS () : Milliseconds

Get milliseconds since booting, uses 64-bit system counter and CLKFREQ, rolls over every 49.7 days.

PASM interfacing

CALL (RegisterOrHubAddr)

Details

CALL PASM code at Addr, PASM code should avoid registers $120..$1D7 and LUT $010..$1FF.

REGEXEC (HubAddr)

Load a self-defined chunk of PASM code at HubAddr into registers and CALL it. See REGEXEC description.

REGLOAD (HubAddr)

Load a self-defined chunk of PASM code or data at HubAddr into registers. See REGLOAD description.

Math Methods

Details

ROTXY (x, y, angle32bit) : rotx, roty

Rotate (x,y) by angle32bit and return rotated (x,y).

POLXY (length, angle32bit) : x, y

Convert (length,angle32bit) to (x,y).

XYPOL(x, y) : length, angle32bit

Convert (x,y) to (length,angle32bit).

QSIN(length, step, stepsInCircle) : y

Rotate (length,0) by (step / stepsInCircle) * 2Pi and return y. Use 0 for stepsInCircle = $1_0000_0000.
stepsInCircle is unsigned.

QCOS (length, step, stepsInCircle) : x

Rotate (length,0) by (step / stepsInCircle) * 2Pi and return x. Use 0 for stepsinCircle = $1_0000_0000.
stepsInCircle is unsigned.

MULDIV64 (multl,mult2,divisor) : quotient

Divide the 64-bit product of 'mult1' and 'mult2' by 'divisor', return quotient (unsigned operation).

GETRND () : rnd

Get random long (from xoroshiro128** PRNG, seeded on boot with thermal noise from ADC).

NAN (float) : NotANumber

Determine if a floating-point value is not a number, return true (-1) or false (0).

Details

Memory Methods

GETREGS (HubAddr, CogAddr, Count)

Move Count registers at CogAddr to longs at HubAddr.

SETREGS (HubAddr, CogAddr, Count)

Move Count longs at HubAddr to registers at CogAddr.

BYTEFILL (Destination, Value, Count)

Fill Count bytes starting at Destination with Value.

WORDFILL (Destination, Value, Count)

Fill Count words starting at Destination with Value.

LONGFILL (Destination, Value, Count)

Fill Count longs starting at Destination with Value.

BYTEMOVE (Destination, Source, Count)

Move Count bytes from Source to Destination.

WORDMOVE (Destination, Source, Count)

Move Count words from Source to Destination.

LONGMOVE (Destination, Source, Count)

Move Count longs from Source to Destination.

BYTESWAP (AddrA, AddrB, Count)
(new in v44)

Swap Count bytes of data starting at AddrA and AddrB.

WORDSWAP (AddrA, AddrB, Count)
(new in v44)

Swap Count words of data starting at AddrA and AddrB.

Parallax Spin2 Documentation Page 13 of 52

LONGSWAP (AddrA, AddrB, Count) Swap Count longs of data starting at AddrA and AddrB.
(new in v44)

BYTECOMP (AddrA, AddrB, Count) : Match Compare Count bytes of data starting at AddrA and AddrB, return -1 if match or 0 if mismatch.
(new in v44)

WORDCOMP (AddrZ, AddrB, Count) : Match Compare Count words of data starting at AddrA and AddrB, return -1 if match or 0 if mismatch.
(new in v44)

LONGCOMP (AddrA, AddrB, Count) : Match Compare Count longs of data starting at AddrA and AddrB, return -1 if match or 0 if mismatch.
(new in v44)

FILL(StructA, ByteValue) Fill StructA with ByteValue.
(new in v44)

COPY (StructA, StructB) Copy contents of StructB into StructA.
(new in v44)

SWAP (StructA, StructB) Swap contents of StructA and StructB.
(new in v44)

COMP (StructA, StructB) : Match Compare contents of StructA and StructB, return -1 if match or 0 if mismatch.
(new in v44)

String Methods Details

STRSIZE (Addr) : Size Count bytes in zero-terminated string at Addr and return string size, not including the zero.
STRCOMP (AddrA, AddrB) : Match Compare zero-terminated strings at AddrA and AddrB, return -1 if match or 0 if mismatch.
STRCOPY (Destination, Source, Max) Copy a zero-terminated string of up to Max characters from Source to Destination. The copied string will

occupy up to Max+1 bytes, including the zero terminator.

@"Text" : StringAddress Compose a zero-terminated string from text within quotes, return address of string.

STRING ("Text",13) : StringAddress Compose a zero-terminated string (quoted characters and values 1..255), return address of string.
LSTRING ("Hello",0, "Terve",0) Compose a length-headed string (quoted characters and values 0..255), return address of string.
BYTE ($80,$09,$77,WORD $1234,LONG -1) Compose a string of bytes, return address of string. WORD/LONG size overrides allowed.

WORD (1_000,10_000,50_000,LONG $12345678) Compose a string of words, return address of string. BYTE/LONG size overrides allowed.

LONG (le-6,1le-3,1.0,1e3,1e6,-50,BYTE S$FF) Compose a string of longs, return address of string. BYTE/WORD size overrides allowed.

GETCRC (BytePtr, Poly, Count) : CRC Compute a CRC of Count bytes starting at BytePtr using a custom polynomial of up to 32 bits.

LOOKUP (Index: vl, v2..v3, etc) : Value Lookup value (values and ranges allowed) using 1-based index, return value (0 if index out of range).
LOOKUPZ (Index: vl, v2..v3, etc) : Value Lookup value (values and ranges allowed) using 0-based index, return value (0 if index out of range).
LOOKDOWN (Value: vl, v2..v3, etc) : Index Determine 1-based index of matching value (values and ranges allowed), return index (0 if no match).
LOOKDOWNZ (Value: vl, v2..v3, etc) : Index | Determine 0-based index of matching value (values and ranges allowed), return index (0 if no match).

USING METHODS

Methods that return single results can be used as terms in expressions:

x := GETRND() +// 100 'Get a random number between 0 and 99

BYTEMOVE (ToStr, FromStr, STRSIZE (FromStr) + 1)

Methods which return multiple results (like POLXY) can be used to supply multiple parameters to other methods:

X,y := SumPoints (POLXY (rhol, thetal), POLXY (rho2, theta2))
..where...
PRI SumPoints(x1l, yl, x2, y2) : x, y

RETURN x1+x2, yl+y2

Multiple method results can be assigned to variables or ignored by using an underscore in lieu of a variable name::

X,y := ROTXY(xin,yin, theta) 'use both the x and y results
_,/Y := ROTXY(xin,yin, theta) 'use only the y result
x,_ := ROTXY(xin,yin, theta) 'use only the x result

User-defined methods which return one or more results can also be used as instructions, where the return values are ignored. However, built-in methods such as STRSIZE,
which return results, must be used as expression terms.

ABORT

Spin2 has an "abort" mechanism for instantly returning, from any depth of nested method calls, back to a base caller which used '\' before the method name. A single return
value can be conveyed from the abort point back to the base caller:

Parallax Spin2 Documentation Page 14 of 52

PRI Subl() : Error 'Subl calls Sub2 with an ABORT trap

Error := \Sub2() '\ means call method and trap any ABORT
\Sub2 () 'in this case, the ABORT value is ignored

PRI Sub2() 'Sub2 calls Sub3
Sub3 () 'Sub3 never returns here due to the ABORT
PINHIGH(0) 'PINHIGH never executes

PRI Sub3() 'Sub3 ABORTs, returning to Subl with ErrorCode
ABORT ErrorCode 'ABORT and return ErrorCode
PINLOW(O0) 'PINLOW never executes

Regardless of how many return values a particular method may have, when that method is called with a preceding "\", there will be only one return value, which may be
ignored.

If no value is specified after ABORT, then zero will be returned.

If a method is called with a preceding "\", but no ABORT occurs, then zero will be returned.

If an ABORT executes without a "\" trap somewhere in the call chain, the cog returns past the top-level method and executes COGSTOP(COGID), shutting itself down.
The abort mechanism is intended as a means to return from a deeply nested subroutine where some error situation has developed, but it can be used for any purpose.

Basically, it's a way to return to a base caller without having to check for a condition to do so at every level of the call chain. It returns all the way back to the caller with the "\"
abort trap, carrying the ABORT value. You can compose hierarchical levels of "\" abort traps and ABORT points.

METHOD POINTERS

Method pointers are LONG values which point to a method and are then used to call that method indirectly.

To establish a method pointer, you can assign a long variable using "@" before the method name. Note that there are no parentheses after the method name:

LongVar := @SomeMethod 'a method within the current object
LongVar := @SomeObject.SomeMethod 'a method within a child object
LongVar := @SomeObject[index] .SomeMethod 'a method within an indexed child object

Method pointers can be generated on-the-fly and passed as parameters:

SetUpIO (RInMethod, @OutMethod)

Method pointers are then used in the following ways to call methods:

LongVar () 'no parameters and no return values
LongVar (Parl, Par2) 'two parameters and no return values
Var := LongVar():1 'no parameters and one return value
Varl,Var2 := LongVar (Parl) :2 'one parameters and two return values
Varl,Var2 := POLXY (LongVar (Parl,Par2,Par3) :2) 'three parameters and two return values

There is no compile-time awareness of how many parameters the method pointed to actually has. You need to code your method pointer usage such that you supply the proper

number of parameters and specify the proper number of return values after a colon ":", so that there is agreement with the method pointed to.

Method pointers can be passed through object hierarchies to enable direct calling of any method from anywhere. They can also be used to dynamically point to different
methods which have the same numbers of parameters and return values.

How Method Pointers Work

An @method expression generates a 32-bit value which has two bit fields:
[31..20] = Index of the method, relative to the method's object base. The index of the first method will be twice the number of objects instantiated
[19..0] = Address of the method's VAR base. The method's VAR base, in turn, contains the address of the method's object base.

By putting the method's index and VAR base address together into the 32-bit value, and having the VAR base contain the method's object base address, a complete method
pointer is established in a single long, which can be treated as any other variable.

To accommodate method pointers, each object instance reserves the first long of its VAR space for the object base address. When an @method expression executes, that first
long is written with the object's base address.

SEND

SEND is a special method pointer which is inherited from the calling method and, in turn, conveyed to all called methods. Its purpose is to provide an efficient output
mechanism for data.

SEND can be assigned like a method pointer, but it must point to a method which takes one parameter and has no return values:

SEND := @OutMethod

When used as a method, SEND will pass all parameters, including any return values from called methods, to the method SEND points to:

SEND("Hello! ", GetDigit()+"e", 13)

Any methods called within the SEND parameters will inherit the SEND pointer, so that they can do SEND methods, too:

Parallax Spin2 Documentation Page 15 of 52

PUB Go()
SEND := @SetLED
REPEAT
SEND(Flash(),$01,$02,%04,$08,$10,$20,$40,$80)
PRI Flash() : x
REPEAT 2
SEND($00, $FF,$00)
RETURN $AA
PRI SetLED(x)
PINWRITE(56 ADDPINS 7, !x)
WAITMS (125)
In the above example, the following values are output in repeating sequence: $00, $FF, $00, $00, $FF, $00, $AA, $01, $02, $04, $08, $10, $20, $40, $80 (but inverted for LEDs)

Though a called method inherits the current SEND pointer, it may change it for its own purposes. Upon return from that method, the SEND pointer will be back to what it was
before the method was called. So, the SEND pointer value is propagated in method calls, but not in method returns.

RECV

RECYV, like SEND, is a special method pointer which is inherited from the calling method and, in turn, conveyed to all called methods. Its purpose is to provide an efficient input
mechanism for data.

RECYV can be assigned like a method pointer, but it must point to a method which takes no parameters and returns a single value:

RECV := @InMethod

An example of using RECV:
VAR i
PUB Go()
RECV := @GetPattern
REPEAT
PINWRITE(56 ADDPINS 7, !RECV())
WAITMS(125)

PRI GetPattern() : Pattern
RETURN DECOD(i++ & 7)

In the above example, the following values are output in repeating sequence: $01, $02, $04, $08, $10, $20, $40, $80 (but inverted for LEDs)

Though a called method inherits the current RECV pointer, it may change it for its own purposes. Upon return from that method, the RECV pointer will be back to what it was
before the method was called. So, the RECV pointer value is propagated in method calls, but not in method returns.

FLOW CONTROL

Spin2 has three basic flow-control constructs:

IF / IFNOT + ELSEIF / ELSEIFNOT + ELSE - Conditional execution with random decision logic
CASE / CASE_FAST - Conditional execution with single target and multiple match tests
REPEAT - Looped execution with various modes

All these constructs use relative indentation to determine which code falls under their control:

IF cog 'if cog <> ©
COGSTOP(cog-1) '..then stop cog
PINCLEAR(av_base_pin_ ADDPINS 4) '..then clear pin mode(s)

The flow-control constructs can be nested in any order:

CASE flag
0: CASE_FAST chr
0: BYTEFILL(@screen, " ", screen_size)
col := row := 0
1: col := row := 0
2..7: flag := chr
RETURN
8: IF col
col--
9: REPEAT
out(" ")
WHILE col & 7
10: RETURN
11: color := $00
12: color := $80
13: newline()

Parallax Spin2 Documentation Page 16 of 52

OTHER: out(chr)

2: col := chr // cols

3: row := chr // rows
4..7: backgrounde_[flag-$04] := chr << 8
flag := ©

IF / IFNOT + ELSEIF / ELSEIFNOT + ELSE

The IF construct begins with IF or IFNOT and optionally employs ELSEIF, ELSEIFNOT, and ELSE. To all be part of the same decision tree, these keywords must have the

same level of indentation.

The indented code under IF or ELSEIF executes if <condition> is not zero. The code under IFNOT or ELSEIFNOT executes if <condition> is zero. The code under ELSE

executes if no other indented code executed:

IF / IFNOT <condition> - Initial IF or IFNOT
<indented code>

ELSEIF / ELSEIFNOT <condition> - Optional ELSEIF or ELSEIFNOT
<indented code>

ELSE - Optional final ELSE

<indented code>

CASE / CASE_FAST

The CASE construct sequentially compares a target value to a list of possible matches. When a match is found, the related code executes.

Match values/ranges must be indented past the CASE keyword. Multiple match values/ranges can be expressed with comma separators. Any additional lines of code related to

the match value/range must be indented past the match value/range:

CASE target - CASE with target value
<match> : <code> - match value and code
<indented code>
<match..match> : <code> - match range and code
<indented code>
<match>,<match..match> : <code> - match value, range, and code
<indented code>
OTHER : <code> - optional OTHER case, in case no match found

<indented code>
CASE_FAST is like CASE, but rather than sequentially comparing the target to a list of possible matches, it uses an indexed jump table of up to 256 entries to immediately
branch to the appropriate code, saving time at a possible cost of larger compiled code. If there are only contiguous match values and no match ranges, the resulting code will
actually be smaller than a normal CASE construct with more than several match values.

For CASE_FAST to compile, the match values/ranges must be unique constants which are all within 255 of each other.

See CASE_FAST example under "FLOW CONTROL" above.

REPEAT

All looping is achieved through REPEAT constructs, which have several forms:

REPEAT - Repeat forever (useful for putting at end of program if you don't want the cog to stop and cease driving its 1/0's)

<indented code>

REPEAT <count> - Repeat <count> times, if <count> is zero then <indented code> is skipped

<indented code>

REPEAT <positive_count> WITH <variable> - Repeat <positive_count> times while iterating <variable> from 0 to <positive_count> - 1
<indented code> - After completion, <variable> = <positive_count>

REPEAT <variable> FROM <first> TO <last> - Repeat while iterating <variable> from <first> to <last>, stepping by +/-1
<indented code> - After completion, <variable> = <last> +/- 1

REPEAT <variable> FROM <first> TO <last> STEP <delta> - Repeat while iterating <variable> from <first> to <last>, stepping by +/-<delta>
<indented code> - After completion, <variable> = <last> +/- <delta>

Parallax Spin2 Documentation Page 17 of 52

REPEAT WHILE <condition> - Repeat while <condition> is not zero, <condition> is evaluated before <indented code> executes

<indented code>

REPEAT UNTIL <condition> - Repeat until <condition> is not zero, <condition> is evaluated before <indented code> executes

<indented code>

REPEAT - Repeat while <condition> is not zero, <condition> is evaluated after <indented code> executes
<indented code>

WHILE <condition> - WHILE must have same indentation as REPEAT

REPEAT - Repeat until <condition> is not zero, <condition> is evaluated after <indented code> executes
<indented code>

UNTIL <condition> - UNTIL must have same indentation as REPEAT

Within REPEAT constructs, there are two special instructions which can be used to change the course of execution: NEXT and QUIT. NEXT will immediately branch to the point
in the REPEAT construct where the decision to loop again is made, while QUIT will exit the REPEAT construct and continue after it. These instructions are usually used

conditionally:

REPEAT
<indented code>
IF <condition> - Optionally force the next iteration of the REPEAT
NEXT
<indented code>
IF <condition> - Optionally quit the REPEAT
QUIT

<indented code>

IN-LINE PASM CODE

Spin2 methods can execute in-line PASM code by preceding the PASM code with an "ORG {start{, limit}' and terminating it with an END. 'Start' is the first register into which
your PASM code will be assembled and 'limit' is the upper register which must not be encroached upon. Defaults for 'start' and 'limit' are $000 and $120, respectively.

PUB go() | x
REPEAT
ORG
GETRND WC 'rotate a random bit into x
RCL X, #1
END
PINWRITE(56 ADDPINS 7, x) 'output x to the P2 Eval board's LEDs
WAITMS (100)

Your PASM code will be assembled with a RET instruction added at the end to ensure that it returns to Spin2, in case no early RET_ or RET executes.
Here's the internal Spin2 procedure for executing in-line PASM code:

Save the current streamer bytecode address for restoration after the PASM code executes.

Copy the method's first 16 long variables, including any parameters, return values, and local variables, from hub RAM to cog registers $1E0..$1EF.
Copy the in-line PASM-code longs from hub RAM into cog registers, starting at the address specified after the ORG (default is $000).

CALL the PASM code.

Restore the 16 longs in cog registers $1E0..$1EF back to hub RAM, in order to update any modified method variables.

Restore the streamer address and resume Spin2 bytecode execution.

Within your in-line PASM code, you can do all these things:

Read and write the following register areas:
o $000..$11F, which your PASM code loads into. You can even load different PASM programs at different addresses within this range and CALL them from
Spin2.
$1D8..$1DF, which are general-purpose registers, named PR0..PR7, available to both PASM and Spin2 code.
$1E0..$1EF, which contain the method's first 16 long hub RAM variables and are assigned the same symbolic names, for use in your PASM code.
$1F0..$1FF, which include IUMP3, IRET3, IUMP2, IRET2, IJMP1, IRET1, PA, PB, PTRA, PTRB, DIRA, DIRB, OUTA, OUTB, INA, and INB.
LUT $000..$00F, which are available for any use and ideal for streamer modes which use the LUT.
Avoid writing to $120..$1D7 and LUT RAM $010..$1FF, since the Spin2 interpreter occupies these areas. You can look in "Spin2_interpreter.spin2" to see the
interpreter code.
Use the FIFO temporarily by executing RDFAST/WRFAST and RFxxxx/WFxxxx instructions.
Use the streamer, including LUT modes which utilize LUT $000..$00F.
Use up to 5 levels of the hardware stack for nested CALLs, including CALLs to hub RAM.
Declare and reference regular and local symbols. These symbols will not be accessible outside of your PASM code.
Declare BYTE, WORD, and LONG data. BYTEFIT and WORDFIT are also allowed.
Use the RES, ORGF, and FIT directives. The directives ORG, ORGH, ALIGNW, ALIGNL, and FILE are not allowed within in-line PASM code.
Establish an interrupt which executes your code remaining in cog registers $000..$11F. Spin2 accommodates interrupts and only stalls them briefly.
Return to Spin2, at any point, by executing an _RET_ or RET instruction.

O O O O O

Parallax Spin2 Documentation Page 18 of 52

CALLING PASM FROM SPIN2

You can do a CALL(address) in Spin2 to execute PASM code in either cog register space or hub RAM.

PUB go() | x
REPEAT
CALL(@random)
PINWRITE(56 ADDPINS 7, x)
WAITMS (100)
DAT ORGH "hub PASM program to rotate a random bit into x
random GETRND WC
RET RCL X, #1

Here's the internal Spin2 procedure for executing a CALL:

Save the current streamer bytecode address for restoration after the PASM code executes.
CALL the PASM code.
Restore the streamer address and resume Spin2 bytecode execution.

Within code which you CALL, you can do all these things:

Read and write the following cog register and LUT areas:
o $000..$11F, which may contain PASM code and/or data which you previously loaded.

O O O O O

to see the interpreter code.

$1D8..$1DF, which are general-purpose registers, named PR0..PR7, available to both PASM and Spin2 code.
$1E0..$1EF, which are available for scratchpad use, but will likely be rewritten when Spin2 resumes.

$1F0..$1FF, which include IUMP3, IRET3, IUMP2, IRET2, IMP1, IRET1, PA, PB, PTRA, PTRB, DIRA, DIRB, OUTA, OUTB, INA, and INB.
LUT $000..$00F, which are available for any use and ideal for streamer modes which use the LUT.
Avoid writing to registers $120..$1D7 and LUT RAM $010..$1FF, since the Spin2 interpreter occupies these areas. You can look in "Spin2_interpreter.spin2"

Use the FIFO temporarily by executing RDFAST/WRFAST and RFxxxx/WFxxxx instructions.
Use the streamer, including LUT modes which utilize LUT $000..$00F.
Use up to 5 levels of the hardware stack for nested CALLSs, including CALLs to hub RAM.

Establish an interrupt which executes your code remaining in cog registers $000..$11F. Spin2 accommodates interrupts and only stalls them briefly.

Return to Spin2, at any point, by executing an _RET_ or RET instruction.

REGLOAD and REGEXEC

The Spin2 instructions REGLOAD(HubAddress) and REGEXEC(HubAddress) are used to load or load-and-execute PASM code and/or data chunks from hub RAM into cog

registers.

The chunk of PASM code and/or data must be preceded with two words which provide the starting register and the number of registers (longs) to load, minus 1.

PUB go()
REGLOAD (@chunk) 'load self-defined chunk from hub into registers
REPEAT
CALL (#start) 'call program within chunk at register address
WAITMS (100)
DAT
chunk WORD start,finish-start-1 ‘'define chunk start and size-1
ORG $100 'org can be $000..$120-size
start DRVRND #© ADDPINS 7 'some code
RET DRVNOT #8 'more code + return
finish

REGEXEC works like REGLOAD, but it also CALLs to the start register of the chunk after loading it.

In the example below, REGEXEC launches a chunk of code in upper register memory which sets up a timer interrupt and then returns to Spin2. Meanwhile, as the Spin2
method repeatedly randomizes pins 60..63 every 100ms, the chunk of code loaded into upper register memory perpetuates the timer interrupt and toggles pins 56..59 every

500ms. Note that registers $000..$117 are still free for other code chunks and interrupts 2 and 3 are still unused.

PUB go()
REGEXEC (@chunk) 'load self-defined chunk and execute it
'chunk starts timer interrupt and returns
REPEAT
PINWRITE(6@ ADDPINS 3, GETRND()) 'randomize pins 60..63
WAITMS (100) 'pins 56..59 toggle via interrupt
DAT
chunk WORD start,finish-start-1 'define chunk start and size-1
ORG $118 'org can be $000..$120-size
start MOV IJMP1,#isr 'set intl vector
SETINT1 #1 'set intl to ct-passed-ctl event
GETCT PRO 'get ct
ret ADDCT1 PRO,bigwait 'set initial ctl target, return to Spin2
isr DRVNOT #56 ADDPINS 3 'interrupt service routine, toggle 56..59

Parallax Spin2 Documentation Page 19 of 52

ADDCT1 PRO,bigwait 'set next ctl target
RETI1 'return from interrupt

bigwait LONG 20_000_000 / 2 '500ms second on RCFAST
finish

DATA STRUCTURES

Data structures make it easy to organize variables via compartmentalization. A whole set of related variables can be declared and passed as a single parameter. Structured
variable names are scoped to the structure, itself, so there are no namespace conflicts.

{Spin2_v44}

CON sPoint(byte x, byte y)
sLine(sPoint a, sPoint b, byte color)

LineCount = 100
VAR slLine Line[LineCount] 'Line is an array of sLine structures
PUB go() | i
debug(plot myplot size 256 256 hsv8x update)
repeat
repeat LineCount with i 'set up random lines
Line[i].a.x := getrnd()
Line[i].a.y := getrnd()
Line[i].b.x := getrnd()
Line[i].b.y := getrnd()
Line[i].color := getrnd()
drawLines(Line, LineCount) ‘draw them by passing Line base-structure address
PRI drawlLines(”~slLine plLine, count) | i ‘'plLine is a structure pointer of type sLine
debug(myplot clear linesize 2)
repeat count with i
debug(myplot color " (pLine[i].color))
debug(“myplot set ~(pLine[i].a.x, pLine[i].a.y))
debug(myplot line " (pLine[i].b.x, pLine[i].b.y))

debug(myplot update)

FIELD POINTERS

Field pointers allow you to point to any hub byte/word/long location OR cog register, without making distinction as the field pointer is passed and used.

A field pointer can be obtained for any hub or register variable. By specifying an optional bit range in the field pointer declaration, the field pointer can then be used to index into
an array of sub-variables of non-standard bit width.

The *@variable operator will return a 32-bit value which will fully define where the variable is located and what range of bits comprise it.

Once this field pointer is obtained, it can be passed among methods and used to access the variable that it points to using FIELD[fieldpointer].

Indexing is also supported via FIELDIfieldpointer][index]. If the variable pointed to is two bits long, then the indexing will step by units of two bits. Non-power-of-two bit field
sizes also work, but you must be pointing to a WORD or LONG in hub memory, so that the base read/write address can move in byte increments, allowing upper bits to be read
or written in the upper byte(s) of the WORD or LONG.

When planning to index into an array of n-bit fields, make sure that you pick an adequately-large (BY TE/WORD/LONG) variable size for the array, so that indexed accesses will
always be within the BYTE/WORD/LONG boundary. For example, single-bit fields will always work within BYTE arrays, but three-bit fields can span two bytes, so they would

require a WORD array. Anything ten bits or larger would require a LONG array, since they may span three bytes.

Here is an example program which uses a field pointer to access three bits within a long variable. Note that the pointer 'p' can be passed around in code and then used with
FIELD to read, write, or modify the data it points to.

CON _clkfreq = 10_000_000
PUB go() | p, k
p := "@k.[23..21] 'get a pointer to three bits within k

repeat 9
debug(ubin_long(k), udec(field[p]++)) 'show k and three bits via p

Parallax Spin2 Documentation Page 20 of 52

i DEBUG Output = | & | &3

B
.

1
-
-
2

Here is an example using indexing to affect successive bit fields.

CON _clkfreq = 10_000_000

PUB go() | p, k, i

p := "@k.[2..0] 'get a pointer to the three lowest bits of k
repeat 10
field[p][i++]~~ 'set three bits at a time, progressing upwards

debug(ubin_long(k))

B DEBUG Output = -5 [

INIT % ; load
IMNIT 14

Aside from supporting optional bit fields, field pointers also differentiate between hub memory and registers. So, field pointers can reference both types of memory without any
special syntax.

Here is how field pointers are encoded into 32-bit values:

Variable Syntaxes Field Pointer Declarations Field Pointer Encodings
register_name “@register 00_11111_00000_00000000000rrrrrrrrr
“@register. [bbbbb addbits sssss] 00_sssss_bbbbb_00000000000rrrrrrrrr
REG[address] “@register. [msbit..1lsbit]

“@register. [bit]

byte name “@byte 01_00111_00000_aaaaaaaaaaaaaaaaaaaa
“@byte. [bbbbb addbits sssss] 01_sssss_bbbbb_aaaaaaaaaaaaaaaaaaaa
BYTE [address] “@byte. [msbit..1lsbit]

A@byte. [bit]

word_ name ~@word 10_01111_00000_aaaaaaaaaaaaaaaaaaaa
~“@word. [bbbbb addbits sssss] 10_sssss_bbbbb_aaaaaaaaaaaaaaaaaaaa
WORD [address] ~“@word. [msbit..lsbit]

“Qword. [bit]

long_name “@long 11 11111 00000_aaaaaaaaaaaaaaaaaaaa
“@long. [bbbbb addbits sssss] 11 _sssss_bbbbb_aaaaaaaaaaaaaaaaaaaa
LONG[address] “@long. [msbit..lsbit]

“@long. [bit]

Note that since the bottom 20 bits of field pointers are base addresses, their values can be conveniently added to or subtracted from when used:
FIELD[fieldpointer + Q@record].

FIELD[fieldpointer + SectorBase(x)].
FIELD[fieldpointer - 4].

Parallax Spin2 Documentation Page 21 of 52

DEBUG

The Spin2 compiler contains a stealthy debugging program that can be automatically downloaded with your application. It uses the last 16 KB of RAM plus a few bytes for each
Spin2 DEBUG statement and one instruction for each PASM DEBUG statement. You can place DEBUG() statements in your application which contain output commands that
will serially transmit the state of variables and equations as your application runs. Each time a DEBUG statement is encountered during execution, the debugging program is
invoked and it outputs the message for that statement. There is also a single-stepping PASM debugger which can be invoked via plain DEBUG statements which do not contain
any parameters within parentheses. Debugging is initiated in PNut by adding the Ctrl key to the usual F10 to 'run' or F11 to 'program’, or in PropellerTool by enabling Debug
Mode with Ctrl+D then using F10 or F11 as is normal. This compiles your application with all the DEBUG statements, adds the debugging program to the download, and then

brings up the DEBUG Output window which begins receiving messages at the start of your application.

Things to know about the DEBUG system

e To use the debugger, you must configure at least a 10 MHz clock derived from a crystal or external input. You cannot use RCFAST or RCSLOW.

e The debugging program occupies the top 16 KB of hub RAM, remapped to $FC000..$FFFFF and write-protected. The hub RAM at $7C000..$7FFFF will no longer be
available.

e Data defining each DEBUG() statement is stored within the debugger image in the top 16 KB of RAM, minimizing impact on your application code.

e In Spin2, each DEBUG statement adds three bytes, plus any code needed to reference variables and resolve run-time expressions used in the DEBUG() statement.

e In PASM, each DEBUG statement adds one instruction (long).

e DEBUG statements are ignored by the compiler when not compiling for DEBUG mode, so you don't need to comment them out when debugging is not in use.

e If no DEBUG statements exist in your application, you will still get notification messages when cogs are started, if you are running the debugging program.

e Debugging is invoked by holding CTRL (in PNut), or enabling debug with CTRL+D (in Propeller Tool), before the usual F9..F11 keys, to compile, download, and
program to flash.

e During execution, as DEBUG() statements are encountered, text messages are sent out serially on P62 at 2 Mbaud in 8-N-1 format.

e DEBUG() messages always start with "CogN ", where N is the cog number, followed by two spaces, and they always end with CR+LF (new line).

e Up to 255 DEBUG() statements can exist within your application, since the BRK instruction is used to interrupt and select the particular DEBUG() statement definition.

e You can define several symbols to modify debugger behavior: DEBUG_COGS, DEBUG_DELAY, DEBUG_BAUD, DEBUG_PIN, DEBUG_TIMESTAMP, etc. See table.

e Each time a debug-enabled cog is started, a debug message is output to indicate the cog number, code address (PTRB), parameter (PTRA), and 'load’ or jump'
mode.

e For Spin2, DEBUG() statements can output expression and variable values, hub byte/word/long arrays, and register arrays.

e For PASM, DEBUG() statements can output register values/arrays, hub byte/word/long arrays, and constants. PASM syntax is used: implied register or #immediate.

e DEBUG() output data can be displayed as floating-point, decimal, hex, or binary, and sized to byte, word, long, or auto. Hub character strings are also supported.

e DEBUG() output commands show both the source and value: "DEBUG(UHEX(x))" might output "x = $ABC".

e DEBUG() commands which output data can have multiple sets of parameters, separated by commas: SDEC(x,y,z) and LSTR(ptr1,size1,ptr2,size2)

e Commas are automatically output between data: "DEBUG(UHEX_BYTE(d,e,f), SDEC(g))" might output "d = $45, e = $67, f = $89, g = -1_024".

e Al DEBUG() output commands have alternate versions, ending in "_" which output only the value: DEBUG(UHEX_BYTE_(d,e,f)) might output "$45, $67, $89".

e DEBUG() statements can contain comma-separated strings and characters, aside from commands: DEBUG("We got here! Oh, Nooooo...", 13, 13)

e DEBUG() statements may contain IF() and IFNOT() commands to gate further output within the statement. An initial IF/IFNOT will gate the entire message.

e DEBUG() statements may contain a final DLY(milliseconds) command to slow down a cog's messaging, since messages may stream at the rate of ~10,000 per
second.

e DEBUG() statements may contain PC_KEY() and PC_MOUSE() commands to get the state of the host's keyboard and mouse into DEBUG() Displays.

e DEBUG() serial output can be redirected to a different pin, at a different baud rate, for displaying/logging elsewhere.

e DEBUG without parentheses will invoke that cog's PASM-level debugger, from either Spin2 or PASM. There is no limit on the number of plain DEBUG commands.

e By defining either the DEBUG_COGINIT or DEBUG_MAIN symbol, the PASM-level debugger will be started automatically for each cog upon its COGINIT.

e LOCK]15] is allocated by the debugger and used among all cogs during their debug interrupts to time-share the DEBUG serial TX and RX pins, as well as some RAM.

e P63 is configured in long-repository mode and holds the clock frequency value between debug interrupts. It must be updated when the clock frequency is altered.

e Command-line supports DEBUG-only mode: PNut -debug {CommPort if not 1} {BaudRate if not 2_000_000}

Commands for use within DEBUG() statements

Conditionals Details

IF(condition) If condition <> 0 then continue at the next command within the DEBUG() statement, else skip all remaining commands and output
CR+LF. If used as the first command in the DEBUG() statement, IF will gate ALL output for the statement, including the "CogN
"+CR+LF. This way, DEBUG() messages can be entirely suppressed, so that you can filter what is important.

IFNOT(condition) If condition = 0 then continue at the next command within the DEBUG() statement, else skip all remaining commands and output
CR+LF. If used as the first command in the DEBUG() statement, IFNOT will gate ALL output for the statement, including the "CogN
"+CR+LF. This way, DEBUG() messages can be entirely suppressed, so that you can filter what is important.

Boolean Output * Details Output

BOOL (value) Output "TRUE" if value is not 0 or "FALSE" if 0. TRUE / FALSE
(new in v44)

String Output * Details Output
ZSTR(hub_pointer) Output zero-terminated string at hub_pointer. "Hello!"
LSTR(hub_pointer,size) Output 'size' characters of string at hub_pointer. "Goodbye."

Parallax Spin2 Documentation Page 22 of 52

Floating-Point Output * Details Min Output Max Output
FDEC(value) Output floating-point value. -3.4e+38 3.4e+38
FDEC_REG_ARRAY(reg_pointer,size) Output register array as floating-point values. -3.4e+38 3.4e+38
FDEC_ARRAY (hub_pointer,size) Output hub long array as floating-point values. -3.4e+38 3.4e+38

Decimal Output, unsigned * Details Min Output Max Output
UDEC(value) Output unsigned decimal value. 0 4 294 967_295
UDEC_BYTE(value) Output byte-size unsigned decimal value. 0 255
UDEC_WORD(value) Output word-size unsigned decimal value. 0 65_535
UDEC_LONG(value) Output long-size unsigned decimal value. 0 4 294 967_295
UDEC_REG_ARRAY(reg_pointer,size) Output register array as unsigned decimal values. 0 4 294 967_295
UDEC_BYTE_ARRAY (hub_pointer,size) Output hub byte array as unsigned decimal values. 0 255
UDEC_WORD_ARRAY (hub_pointer,size) Output hub word array as unsigned decimal values. 0 65_535
UDEC_LONG_ARRAY (hub_pointer,size) Output hub long array as unsigned decimal values. 0 4 294 967_295

Decimal Output, signed * Details Min Output Max Output

SDEC(value) Output signed decimal value. -2_147_483_648 2_147 483 647
SDEC_BYTE(value) Output byte-size signed decimal value. -128 127
SDEC_WORD(value) Output word-size signed decimal value. -32_768 32 767

SDEC_LONG(value)

Output long-size signed decimal value.

-2_147_483_648

2_147_483_647

SDEC_REG_ARRAY(reg_pointer,size)

Output register array as signed decimal values.

-2_147_483_648

2_147_483_647

SDEC_BYTE_ARRAY (hub_pointer,size)

Output hub byte array as signed decimal values.

-128

127

SDEC_WORD_ARRAY (hub_pointer,size)

Output hub word array as signed decimal values.

-32_768

32767

SDEC_LONG_ARRAY (hub_pointer,size)

Output hub long array as signed decimal values.

-2_147_483_648

2_147_483_647

Hexadecimal Output, unsigned * Details Min Output Max Output
UHEX(value) Output auto-size unsigned hex value. $0 $FFFF_FFFF
UHEX_BYTE(value) Output byte-size unsigned hex value. $00 $FF
UHEX_WORD(value) Output word-size unsigned hex value. $0000 $FFFF
UHEX_LONG(value) Output long-size unsigned hex value. $0000_0000 $FFFF_FFFF
UHEX_REG_ARRAY(reg_pointer,size) Output register array as unsigned hex values. $0000_0000 $FFFF_FFFF
UHEX_BYTE_ARRAY (hub_pointer,size) Output hub byte array as unsigned hex values. $00 $FF
UHEX_WORD_ARRAY (hub_pointer,size) Output hub word array as unsigned hex values. $0000 $FFFF
UHEX_LONG_ARRAY (hub_pointer,size) Output hub long array as unsigned hex values. $0000_0000 $FFFF_FFFF

Hexadecimal Output, signed * Details Min Output Max Output
SHEX(value) Output auto-size signed hex value. -$8000_ 0000 $7FFF_FFFF
SHEX_BYTE(value) Output byte-size signed hex value. -$80 $7F
SHEX_WORD(value) Output word-size signed hex value. -$8000 $7FFF
SHEX_LONG(value) Output long-size signed hex value. -$8000_0000 $7FFF_FFFF
SHEX_REG_ARRAY(reg_pointer,size) Output register array as signed hex values. -$8000_0000 $7FFF_FFFF
SHEX_BYTE_ARRAY (hub_pointer,size) Output hub byte array as signed hex values. -$80 $7F
SHEX_WORD_ARRAY (hub_pointer,size) Output hub word array as signed hex values. -$8000 $7FFF
SHEX_LONG_ARRAY (hub_pointer,size) Output hub long array as signed hex values. -$8000_0000 $7FFF_FFFF

Binary Output, unsigned * Details Min Output Max Output
UBIN(value) Output auto-size unsigned binary value. %0 %11111111_11111111_11111111_11111111
UBIN_BYTE(value) Output byte-size unsigned binary value. %00000000 %11111111

UBIN_WORD(value)

Output word-size unsigned binary value.

%00000000_00000000

%11111111_11111111

UBIN_LONG(value)

Output long-size unsigned binary value.

%11111111_11111111_11111111_11111111

UBIN_REG_ARRAY(reg_pointer,size)

Output register array as unsigned binary values.

%00000000_00000000_00000000_

%11111111_11111111_11111111_ 11111111

UBIN_BYTE_ARRAY(hub_pointer,size)

Output hub byte array as unsigned binary values.

%00000000

%11111111

UBIN_WORD_ARRAY (hub_pointer,size)

Output hub word array as unsigned binary values.

%00000000_00000000

%11111111_11111111

UBIN_LONG_ARRAY(hub_pointer,size)

Output hub long array as unsigned binary values.

%00000000_00000000_00000000_

%11111111_11111111_11111111_ 11111111

Parallax Spin2 Documentation Page 23 of 52

Binary Output, signed * Details Min Output Max Output
SBIN(value) Output auto-size signed binary value. -%1 _ _| | %01111111 11111111 11111111 11111111
SBIN_BYTE(value) Output byte-size signed binary value. -%10000000 %01111111
SBIN_WORD(value) Output word-size signed binary value. -%10000000_ 00000000 %01111111 11111111
SBIN_LONG(value) Output long-size signed binary value. %1 _| _ _ %01111111 11111111 11111111 11111111
SBIN_REG_ARRAY(reg_pointer,size) Output register array as signed binary values. -%1 _ _ _ %01111111 11111111 11111111 11111111
SBIN_BYTE_ARRAY(hub_pointer,size) Output hub byte array as signed binary values. -%10000000 %01111111
SBIN_WORD_ARRAY (hub_pointer,size) Output hub word array as signed binary values. -%10000000_00000000 %01111111_11111111
SBIN_LONG_ARRAY(hub_pointer,size) Output hub long array as signed binary values. -%10000000_00000000_00000000_00000000 %01111111 11111111 11111111 11111111

Miscellaneous Details
DLY(milliseconds) Delay for some milliseconds to slow down continuous message outputs for this cog. DLY is only allowed as the last command

in a DEBUG() statement, since it releases LOCK][15] before the delay, permitting other cogs to capture LOCK][15] so that they
may take control of the DEBUG() serial-transmit pin and output their own DEBUG() messages.

PC_KEY(pointer_to_long) FOR USE IN GRAPHICAL DEBUG() DISPLAYS - Must be the last command in a DEBUG() statement.

Returns any new host-PC keypress that occurred within the last 100ms into a long inside the chip. The DEBUG() Display
must have focus for keypresses to be noticed.

LONG key 'Key long which receives keypresses (0 if no keypress)
0 = <no keypress>

1 = Left Arrow
2 = Right Arrow

3 = Up Arrow

4 = Down Arrow
5 =Home

6 = End

7 = Delete

8 = Backspace
9=Tab

10 = Insert

11 = Page Up
12 = Page Down
13 = Enter

27 = Esc

32..126 = Space to "~", including all symbols, digits, and letters

If used in Spin2 code, the long must be in the hub (use @key as the pointer).
If used in PASM code, the long must be a cog register (use #key as the pointer).

PC_MOUSE (pointer_to_7_longs) FOR USE IN GRAPHICAL DEBUG() DISPLAYS - Must be the last command in a DEBUG() statement.

Returns the current host-PC mouse status into a 7-long structure inside the chip, arranged as follows:

LONG xpos 'X position within the DEBUG Display (xpos<® and ypos<@ if mouse is outside)
LONG ypos 'Y position within the DEBUG Display

LONG wheeldelta 'Scroll-wheel delta, @ or +/-1 if changed (the DEBUG Display must have focus)
LONG lbutton 'Left-button state, @ or -1 if pressed

LONG mbutton 'Middle-button state, @ or -1 if pressed

LONG rbutton 'Right-button state, @ or -1 if pressed

LONG pixel 'Pixel color at mouse position, $00 RR_GG_BB or -1 if outside the DEBUG Display

If used in Spin2 code, the seven longs must be in the hub (use @xpos as the pointer).
If used in PASM code, the seven longs must be cog registers (use #xpos as the pointer).

* These commands accept multiple parameters, or multiple sets of parameters. Alternate commands with the same names, but ending in
output (i.e. BOOL_, ZSTR_, LSTR_, UDEC_).

, are also available for value-only

Symbols you can define to modify DEBUG behavior

CON Symbol Default Purpose
DOWNLOAD_BAUD 2_000_000 Sets the download baud rate.
DEBUG_COGS %11111111 Selects which cogs have debug interrupts enabled. Bits 7..0 enable debugging interrupts in cogs 7..0.
DEBUG_COGINIT undefined By declaring this symbol, each cog's PASM-level debugger will initially be invoked when a COGINIT occurs.
DEBUG_MAIN undefined By declaring this symbol, each cog's PASM-level debugger will initially be invoked when a COGINIT occurs, and it will be ready to

single-step through main (non-interrupt) code. In this case, DEBUG commands will be ignored, until you select "DEBUG"
sensitivity in the debugger.

DEBUG_DELAY 0 Sets a delay in milliseconds before your application runs and begins transmitting DEBUG messages.

DEBUG_PIN_TX 62 Sets the DEBUG serial output pin. For DEBUG windows to open, DEBUG_PIN must be 62.

DEBUG_PIN_RX 63 Sets the DEBUG serial input pin for interactivity with the host PC.

DEBUG_BAUD DOWNLOAD_BAUD | Sets the DEBUG baud rate. May be necessary to add DEBUG_DELAY if DEBUG_BAUD is less than DOWNLOAD_BAUD.

DEBUG_TIMESTAMP undefined By declaring this symbol, each DEBUG message will be time-stamped with the 64-bit CT value.

DEBUG_LOG_SIZE 2] Sets th? maximum size in bytes of the 'DEBUG.log' file which will collect DEBUG messages. A value of 0 will inhibit log file
generation.

Parallax Spin2 Documentation Page 24 of 52

DEBUG_LEFT (dynamic) Sets the left screen coordinate where the DEBUG message window will appear.

DEBUG_TOP (dynamic) Sets the top screen coordinate where the DEBUG message window will appear.

DEBUG_WIDTH (dynamic) Sets the width of the DEBUG message window.

DEBUG_HEIGHT (dynamic) Sets the height of the DEBUG message window.

DEBUG_DISPLAY_LEFT 0 Sets the overall left screen offset where any DEBUG displays will appear (adds to 'POS' x coordinate in each DEBUG display).
DEBUG_DISPLAY_TOP 0 Sets the overall top screen offset where any DEBUG displays will appear (adds to 'POS' y coordinate in each DEBUG display).
DEBUG_WINDOWS_OFF 0 Disables any DEBUG windows from opening after downloading, if set to a non-zero value.

Simple DEBUG example in Spin2

CON _clkfreq = 10_000 000 'set 10 MHz clock (assumes 20 MHz crystal)
PUB go() | i
REPEAT i FROM @ TO 9 'count from @ to 9
DEBUG(UDEC(1i)) 'debug, output i

When run with Ctrl-F10, the Debug window opens and this is what appears:

Cog@ INIT $0000_0000 $0000_0000 load
Cog@ INIT $0000_0D6C $0000_10BC jump
Cogd 1 =
Cogo
Cogo
Cogo
Cogo
Cogo
Cogo
Cogo
Cogo
Cogo

He e He He He He He He .
non
VWoONOOTUDRWNREO

In the first line of the report, you see Cog0 loading the Spin2 set-up code from $00000. In the second line, the Spin2 interpreter is launched from $00D6C with its stack space
starting at $010BC. After that, the Spin2 program is running and you see 'i' iterating from 0 to 9.

If you change the "9" to "99" in the REPEAT, data will scroll too fast to read, but by adding a DLY command at the end of the DEBUG statement, you can slow down the output:
debug(udec(i), dly(250)) 'debug, output i with a 250ms delay after each report

Let's say you want to limit the messages being output, so that only odd values of 'i' are shown. You could use an IF at the start of your DEBUG statement to check the

least-significant bit of 'i'. When the IF is false, no message will be output, causing only the odd values of i to be shown:

debug(if(i & 1), udec(i), dly(250)) 'debug, output only odd i values with a 250ms delay after each report

Simple DEBUG example in PASM

CON _clkfreq = 10_000 000 'set 10 MHz clock (assumes 20 MHz crystal)
DAT ORG
MOV i,#9 'set i to 9
loop DEBUG (UHEX_LONG(i)) ‘'debug, output i in hex
DINF i,#loop 'decrement i and loop if not -1
JMP #$ 'don't go wandering off, stay here
i RES 1 'reserve one register as 'i'’

When run with Ctrl-F10, the Debug window opens and this is what appears:

Cogl INIT $0000 0000 $0000 0000 load
Cogl i = $0000 0009
Cogl i = $0000_0008
Cogd i = $0000_0007
Cogl i = $0000 0006
Cogl i = $0000 0005
Cogl i = $0000 0004
Cogd i = $0000_0003
Cogl i = $0000 0002
Cogl i = $0000 0001
Cogd i = $0000_0000

In the first line of the report, you see Cog0 loading our PASM program from $00000. After that, the program runs and you see 'i' iterating from 9 down to 0.

Parallax Spin2 Documentation Page 25 of 52

If you change the "9" to "99" in the MOV instruction and you'd like to slow things down, add a DLY command to the DEBUG statement and be sure to express the milliseconds

as #250, since a plain 250 would be understood as register 250:

debug (uhex_long(i), dly(#250)) 'debug, output i in hex and delay for 250ms after each report

PASM-Level Debugger

CON _clkfreq = 200_000_000
debug_main "run debugger(s) for all main code
PUB go() | i
coginit(newcog, @pasm, 0) 'start another cog with a pasm program
repeat 'increment i
i++
DAT org
pasm add $100,#1 'increment some registers
add $101,#1
add $102,#1
add $103,#1
jmp #tpasm 'loop
long o[11] 'clear space after code for clarity

In the example above, the DEBUG_MAIN symbol causes a debugger window to open for each cog when it is initially launched via COGINIT. The above example will launch
TWO cogs and debuggers. Cog 0 will be running a Spin2 program that just increments the variable 'i' in a REPEAT loop, and Cog 1 will be running a PASM program that
repeatedly adds one to registers $100 to $103.

Once inside the debugger, you must confirm which break condition(s) you'd like and then click the 'Go' button to execute code to the next break. As you move the mouse

around within the debugger window, hints are given on the bottom line which alert you of your options. The debugger is designed to be self-explanatory.

Note that 'DEBUG' break sensitivity is exclusive to all but 'INIT' (COGINIT) sensitivity. This is because plain DEBUG commands can only be differentiated from DEBUG()
commands if no other debug interrupt sources are enabled. The asynchronous 'BREAK', which is actually always enabled, is visually indicated by the absence of all other
sensitivities, excepting 'INIT'. Because COGINITs can always be detected within debug interrupts, 'INIT' sensitivity is independent of all the others. To use the asynchronous
break capability, you must have another cog that is frequently updating its own debugger, so that it can serve as the messenger to generate the asynchronous break for the cog

of interest.

Parallax Spin2 Documentation Page 26 of 52

Debugger - Cog 0

LuT C1 Z1 PC 00249 SKIPF 90000000 D00ROROD 00118110 11110118 XBYTE 1Al " | LT 000epd08 CS531F1C

FOE7AAD2 00000000 IJMP3 ©POOOORE INT ©
FO67AADL FC63ABE3 IRET3 0too0ORR CT1 1
F103C7D5 00001348 IJMP2 00000000 (T2
(lyfeopd 0 0 shl $1E3,#%002 0000 | FFFFFFFD IRET2 ©00o0OR0R CT3
F1@3C7CF 0201348 IJMP1 ©000Pe0R SE1
F103C7D@ £000R0R0 IRET1 90000000 SE2
F103C7D1 00PPPBR4 PA ©PPORRDD SE3
FE@3C7D5 00000000 PB 00001325 SE4 1
FB@7ABSF FBOBABE3 PTRA ©00P134C PAT ©
F603C1C6 FC63ABE3 PTRB 00080000 FBW ©
FE@3C1C7 POOBROLF DIRA ©000PDP0 XMT ©
F6@3C1C8 £00012DC DIRB CPeppeee XFI ©
F6@3C3CA F62001D5 OUTA ©00000PPe XRO ©
F6@3C3CB B447AALF OUTB 00000PPe XRL ©
FE@3C3CC FD63AAR3 INA FFFFFFFF ATN ©
FE@7C407 FD63AARS INB 7FFFO0AR QMT ©

STACK ©ObPOPlFF feooooeC 00027 (PPOD271 OPDPODOEc ©OPOODOD DOPODEDD BPDDRLRO

RFxx 81325
PTRA ©134C
PTRE 800880

DIR 11000000 P00ROE0D 0DODEOEE OPODRDED SDDDDEOD PORODRDE BDDERERR PHRRDBDE
OUT 800eboee PDPPDEDE 0DDDRODE OPODRDED PRODDROD DORDDRDE BDDODERR PDDRDBDE
IN 91111111 11111111 oeeeeeee 1eleeees 11111111 11111111 1131117131 1311111711

ROPIN A

80808
00010
ope2e
00030
00840
00050
00060
eee7e

HUB L-Click or <SPACE> to execute to next break [R-Click or <ENTER> to execute through breaks

Debugger - Cog 1

CO Z9 PCORORZ SKIPF 90000000 ©00D0D0D DODOODD DODPDRDe XBYTE 000 CT 00000116 2B65SF1DS

F1060001 0eReRavS IJMP3 obbooedd INT @

F1060201 0000R075 IRET3 90000000 CT1 1
SCLLEN add $162,#%601 00000074 IIMP2 00000008 (T2
F1060601 00000074 IRET2 00000000 (T3
FD9FFFEC IJMP1 00000000 SEI
IRET1 00000000 SE2
FPA 000RORRO SE3

PB 000R0ORO SE4 1

PTRA 90000000 PAT ©

PTRB 900012DC FBW ©

DIRA 9PO000P0 XMT ©

DIRB (0020000 XFI ©

OUTA 00POROOR XRO ©

OUTB 00boReRd XRL B

INA FFFFFFFF ATN @

INB 7FFFOBAD QMT @

STACK PBo0e0be 2eDBReee 0DORERRD DPPREDEE DPERRDED POPREROE PORERRDR BPRBRERA

RFxx 90000
PTRA 90000
PTRB ©12DC

DIR 11900000 ©2pp0oDe 0DobooDD DOPDPDDD DPDRDEOE PDPDDROD DODOPDRD DPDPDPDE
OUT B0PeREes PBERDEND GBODRRED PORRDED PRBDDEND PORDBRDE BORERERR BBRBDBE
IN 91111111 11111111 eeeeeeee leleeeee 11111111 11111111 11111111 11111111

ROPIN A

00000
epole
00020
oee3e
80848
80858
20868
epe7e

HUB

To launch a debugger or force an update to an already-open debugger, you can insert a plain DEBUG command into your Spin2 or PASM code where you would like the
update to occur. You can place any number of plain DEBUG commands throughout your application, since they all resolve to a 'BRK #0' instruction, whereas DEBUG()
commands resolve to unique 'BRK #1..255' instructions. For plain DEBUG commands to be subsequently registered by the debugger after pressing the 'Go' button, the
'DEBUG' sensitivity button must be set. This will be the default sensitivity, unless either DEBUG_COGINIT or DEBUG_MAIN symbols were defined, which set the initial

Parallax Spin2 Documentation Page 27 of 52

sensitivity to either 'INIT' or 'MAIN'.

For decent debugger performance, it is necessary to go into the Windows Device Manager and set the USB Serial Port's Latency Timer to 1 ms, instead of the default 16 ms.

Here are the windows you need to navigate through to change the Latency Timer setting. Also be sure that the "USB Transfer Sizes" are both set to 4096:

Parallax Spin2 Documentation Page 28 of 52

Device Manager

File Action View Help

o || E| HE| & B%S

- :a- Chip
> '3:_5} Audio inputs and outputs
> M Com puter
» —a Disk drives
- B Display adapters
» I':'E'; Hum an Interface Devices
> g IDE ATA/ATAPI controllers
> ’—'3 Im aging devices
> Keyboards
= Mice and other pointing devices
- B Monitors
- ¥ Network adapters
> g Metwork Infrastructure Devices
a4 "2 ports (COM & LPT)
"?' LISE Serial Port (CORM3)
> = Print queues
> D Frocessors
> I Software devices
» '3:_5,?5' Sound, video and gam e confrollers

» €= Storane confrollers

USB Serial Port (COMS3) Properties

General | Fort Settings | Driver | Details | Ewvents

Bits per second: | 9600 Lv
Data bits: | & L*
Farity: | NMone e
Stop hits: |1 Lv
Flow control: | Mone L*
Achvanced. Restare Defaults
DE. Cancel

Advanced Settings for COM3

COM Port Mumber: COoM2 L

LISE Transfer Sizes

Select lower settings to correct performance problems at low baud rates.

Select higher settings for faster performance.

Receive (Bytes): 4096 W
Transmit (Bytes): 4095 w
BM Options Miscellaneous Options
Select lower settings to carrect response problems. Serial Enurmerator
Serial Printer
Latency Timer {msec): Cancel If Power Off
Event COn Surprise Remaoval
Timeouts Set to 1 msec. Set RTS On Close
Disable Modem Ctrl At Startup
rinimum Read Timeout {msec):
() o b Enable Selective Suspend
Minimum Write Timeout (msec): 0 - Selective Suspend Idle Timeout (secs) 5

Parallax Spin2 Documentation Page 29 of 52

> I

[8].4 |

Cancel

Defaults

<Uooguor

DEBUG dynamic clock frequency adaptation

When DEBUG is enabled, the serial receive pin (P63) is configured as a long repository to hold the clock frequency value, so that the debugger can compute the proper baud

rate during debug interrupts. This long-repository value must be updated whenever the clock frequency is changed, in order to keep the debugger communicating properly.

Below is a code snippet which demonstrates how to do this.

DAT org
clock_change rep #99,#1 'use REP to stall all interrupts (including debug)
andn old_mode, #%11 'switch to 20 MHz while maintaining old pll/xtal settings

hubset o0ld_mode

mov old_mode, new_mode 'establish new pll/xtal settings while staying at 20 MHz
andn old_mode, #%11

hubset o0ld_mode

waitx ##20_000_000/100 'allow 1@ms for new settings to stabilize

mov old_mode,new_mode 'switch to new settings
hubset o0ld_mode

dirh #63 'must enable smart pin to update long repository
wxpin new_freq, #63 'write new_freq to rx pin long repository
ret dirl #63 'put smart pin back to sleep, REP cancels upon _ret_
old_mode res 1
new_mode res 1
new_freq res 1

DEBUG() memory utilization

Here is what the memory utilization looks like for a Spin2 DEBUG() command. You can see, on the Spin2 side, that a bytecode is needed to read the variable 'i', and then three

obligatory bytecodes make up the actual DEBUG() command.
The 'stack adjustment' byte tells the interpreter how far to drop the stack to effectively 'pop' all the expressions that were pushed in preparation for the DEBUG() event. In this

case of ', only, the stack needs to drop by four bytes (one long). When the debugging program is invoked, the values it needs will be ordered right above the current Spin2

stack pointer.

debug("What? ", udec(i))

Spin2 bytecodes DEBUG database in
in application top 16KB of RAM
$E@ - read 'i' $84 - output "CoghN "
$44 - DEBUG bytecode $86 - output string
$84 - stack adjustment $57 - "W"
$81 - unique BRK code $68 - "h"

$61 - "a"

$74 - "t"

$3F - "

$20 - " "

$00 - end of string

$41 - UDEC + output string
$69 _ " i!!

$00 - end of string

$88 - end of DEBUG statement

The 'unique BRK code' byte (1..255) is used as an index to look up the specific record in the DEBUG() database at the top of memory, from which the debugging program reads

its commands.

In the case where debugging is active, but a cog has had its debug interrupt disabled via the DEBUG_COGS symbol, Spin2 DEBUG commands will not trigger a debug

interrupt, but they do still pop any DEBUG-intended values from the stack, so these are harmless events.

For PASM DEBUG commands, a 'BRK #code' instruction is inserted where the DEBUG command was placed, and all related data resides in the DEBUG database. If a cog's

debug interrupt is disabled, the 'BRK #code' instruction does nothing, taking two clocks.

DEBUG and interrupts

Interrupt requests received during a DEBUG command will execute after the DEBUG completes, but the response time may be so skewed that the retrigger setup for the
interrupt won't happen properly. High-frequency cyclical smart pin interrupts are especially prone to this problem. Imagine you do an AKPIN instruction within your normal ISR
(interrupt service routine) to drop the INA/INB signal so that the smart pin can make it go high again, triggering a new interrupt. Meanwhile, after the AKPIN and before the

RETIx, the smart pin triggers, raising INA/INB high. This is only happening because your cycle-frame timing has become skewed from the DEBUG command. This interrupt

Parallax Spin2 Documentation Page 30 of 52

won't be seen since it happened when the ISR was busy. This will cause the interrupt to cease cycling. CT interrupts are not prone to this problem, though, since they have
$8000_0000 clock cycles in which to be recognized. To remedy the smart-pin retrigger problem, you could trigger on INA/INB-high, as opposed to INA/INB-rise, but this could

cause performance problems with your smart pin configurations.

One fail-safe way to get around this DEBUG/interrupt dilemma is to only do DEBUG commands from cogs that are not executing ISRs in the background. If the ISRs can

tolerate timing skew and there is no risk of hanging interrupt cycling, you can do DEBUG commands with some understood interrupt timing degradations.

Graphical DEBUG Displays

DEBUG() commands can invoke special graphical DEBUG displays which are built into the tool. These graphical displays each take the form of a unique window. Once
instantiated, displays can be continuously fed data to generate animated visualizations. These displays are very handy for development and debugging, as various data types

can be viewed in their proper contexts. Up to 32 graphical displays can be running simultaneously.

When a DEBUG message contains a backtick (') character (ASCII $60), a string, containing everything from the backtick to the end of the message, is sent to the graphical

DEBUG display parser. The parser looks for several different element types, treating any commas as whitespace:

Element Type Example Description
display_type LOGIC, SCOPE, PLOT, BITMAP This is the formal name of the graphical DEBUG display type you wish to instantiate.
unknown_symbol MyLogicDisplay Each graphical DEBUG display Instance must be given a unique symbolic name.
instance_name MyLogicDisplay Once instantiated, a graphical DEBUG display instance is referenced by its symbolic name.
keyword TITLE, POS, SIZE, SAMPLES Keywords are used to configure displays. They might be followed by numbers, strings, and other keywords.
number 1024, $FF, %1010 Numbers can be expressed in decimal, hex ($), and binary (%).
string 'Here is a string' Strings are expressed within single-quotes.

Before getting into how all this fits together, we need to go over some special DEBUG()-display syntax that can be used for displays. This syntax is invoked when the first
character in the DEBUG() command is the backtick. This causes everything in the DEBUG() command to be viewed as a string, except when subsequent backticks act as

'‘escape’ characters to allow normal or shorthand DEBUG() commands.

DEBUG Statement DEBUG Message Output Note
(v=100, w = 1.0, bytes[a] = 1,2,3,4,5)
DEBUG(" LOGIC MyLog SAMPLES ", SDEC_(v)) Cog® "LOGIC MyLog SAMPLES 100 Regular DEBUG() syntax can drive DEBUG() displays, but it's verbose.
DEBUG(" LOGIC MyLog SAMPLES 100) "LOGIC MyLog SAMPLES 100 DEBUG()-display syntax is simpler and 'CogN' is omitted in the output.
DEBUG(LOGIC MyLog SAMPLES ~?(Vv)) “LOGIC MyLog SAMPLES TRUE Booleans are output using “?(value) notation. Short for BOOL _.

(new in v44)

DEBUG(" LOGIC MyLog SAMPLES " .(w)) "LOGIC MyLog SAMPLES 1.000000e+00 | Floating-point values are output using ".(value) notation. Short for FDEC_.
(new in v44)

DEBUG(" LOGIC MyLog SAMPLES ~(v)) “LOGIC MyLog SAMPLES 100 Decimal numbers are output using "(value) notation. Short for SDEC_.
DEBUG(" LOGIC MyLog SAMPLES “$(v)) “LOGIC MyLog SAMPLES $64 Hex numbers are output using “$(value) notation. Short for UHEX _.
DEBUG(LOGIC MyLog SAMPLES “%(Vv)) "LOGIC MyLog SAMPLES %1100100 Binary numbers are output using “%(value) notation. Short for UBIN_.
DEBUG(LOGIC MyLog TITLE '“#(v)") "LOGIC MyLog TITLE 'd’ Characters are output using "#(value) notation.

DEBUG(MyLog “UDEC_BYTE_ARRAY_(@a,5)) ‘MyLog 1, 2, 3, 4, 5 Regular DEBUG() commands can follow the backtick, as well.

There are two steps to using graphical DEBUG() displays. First, they must be instantiated and, second, they must be fed:

To Use a Display: 1st 2nd 3rd 4th Note
First, instantiate it. : display_type unknown_symbol keyword(s), number(s), string(s) Unknown_symbol becomes instance_name.
Then, feed it.) instance_name(s) keyword(s), number(s), string(s) Multiple displays can be fed the same data.

To bring this all together, let's show a sawtooth wave on a SCOPE display:

CON _clkfreq = 10_006_060 r@ DEEBUG Qutput | = || & || &3 MyScope - SCOPE 3

PUB go() | i 61

debug(” SCOPE MyScope SIZE 254 84 SAMPLES 128)
debug(MyScope 'Sawtooth' © 63 64 10 %1111)

repeat
debug(MyScope " (i & 63))
i++
waitms(50)

Parallax Spin2 Documentation Page 31 of 52

In the example above, a SCOPE is instantiated called MyScope that is 254 x 84 pixels and shows 128 samples. A width of 254 was chosen since samples are numbered
0..127 and | wanted them to be spaced at a constant two-pixel pitch (127 * 2 = 254). A height of 84 was chosen so that there would be 10 pixels above and below the
waveform, which will have a height of 64 pixels. A channel called "Sawtooth" is defined which, for the purpose of display, has a bottom value of 0 and a top value of 63, is 64
pixels tall within that range, and is elevated 10 pixels off the bottom of the scope window. The %1111 enables top and bottom legend values and top and bottom lines. Within
the REPEAT block, the SCOPE is fed a repeating pattern of 0..63 which forms the sawtooth wave. The SCOPE updates its display each time it receives a value. If there were

eight channels defined, instead of just one, it would update the display on every eighth value received, drawing all eight channels.

Currently, the following graphical DEBUG() displays are implemented, but more will be added in the future:

Display Types Descriptions
LOGIC Logic analyzer with single and multi-bit labels, 1..32 channels, can trigger on pattern
SCOPE Oscilloscope with 1..8 channels, can trigger on level with hysteresis
SCOPE_XY XY oscilloscope with 1..8 channels, persistence of 0..512 samples, polar mode, log scale mode
FFT Fast Fourier Transform with 1..8 channels, 4..2048 points, windowed results, log scale mode
SPECTRO Spectrograph with 4..2048-point FFT, windowed results, phase-coloring, and log scale mode
PLOT General-purpose plotter with cartesian and polar modes
TERM Text terminal with up to 300 x 200 characters, 6..200 point font size, 4 simultaneous color schemes
BITMAP Bitmap, 1..2048 x 1..2048 pixels, 1/2/4/8/16/32-bit pixels with 19 color systems, 15 direction/autoscroll modes, independent X and Y pixel size of 1..256
MIDI Piano keyboard with 1..128 keys, velocity depiction, variable screen scale

Following are elaborations of each DEBUG() display type.

LOGIC Display Logic analyzer with single and multi-bit labels, 1..32 channels, can trigger on pattern

CON _clkfreq = 10_000_000

MyLogic - LOGIC £3

PUB go() | i

debug(LOGIC MyLogic SAMPLES 32 'Low' 3 'Mid' 2 'High')
debug(MyLogic TRIGGER $07 $04 HOLDOFF 2)

repeat
debug(“MyLogic " (i & 63))
i++
waitms(25)

LOGIC Instantiation Description Default
TITLE 'string’ Set the window caption to 'string'. <none>
POS left top Set the window position. 0,0
SAMPLES 4_to_2048 Set the number of samples to track and display. 32
SPACING 2_to_32 Set the sample spacing. The width of the display will be SAMPLES * SPACING. 8

RATE 1_to_2048

Set the number of samples (or triggers, if enabled) before each display update.

1

LINESIZE 1_to_7

Set the line size.

1

TEXTSIZE 6_to_200

Set the legend text size. Height of text determines height of logic levels.

editor text size

COLOR back_color {grid_color}

Set the background and grid colors *.

BLACK, GRAY 4

'‘name’ {1_to_32 {color}}

Set the first/next channel or group name, optional bit count, optional color *.

1, default color

packed_data_mode Enable packed-data mode. See description at end of this section. <none>
HIDEXY Hide the XY mouse coordinates from being displayed at the mouse pointer. not hidden
LOGIC Feeding Description Default

TRIGGER mask match sample_offset

Trigger on (data & mask) = match. If mask = 0, trigger is disabled.

0,1, SAMPLES / 2

HOLDOFF 2_to_2048

Set the minimum number of samples required from trigger to trigger.

SAMPLES

data

Numerical data is applied LSB-first to the channels.

CLEAR

Clear the sample buffer and display, wait for new data.

SAVE {WINDOW} 'filename’

Save a bitmap file (.bmp) of either the entire window or just the display area.

Parallax Spin2 Documentation Page 32 of 52

CLOSE

Close the window.

* Color is rgb24 value, else BLACK / WHITE or ORANGE / BLUE / GREEN / CYAN / RED / MAGENTA / YELLOW / GRAY followed by an optional 0..15 for brightness (default

is 8).

The LOGIC display can be used to display data that was captured at high speed. In the example below, the P2 is generating 8-N-1 serial at 333 Mbaud using a smart pin. This

bit stream can be captured by the streamer. On every clock, the streamer will record the smart pin's IN signal and its output state, as read from an adjacent pin. Every time it

gets four two-bit sample sets, it does an RFBYTE to save them to hub RAM, forming contiguous bytes, words, and longs. By invoking the LONGS_2BIT packed-data mode, we

can have the LOGIC display unpack the two-bit sample sets from longs, yielding 16 sets per long.

CON _clkfreq = 333_333 333 'go really fast, 3ns clock period
rxpin = 24 ‘even pin
txpin = rxpin+l 'odd pin
samps = 32 'multiple of 16 samples
bufflongs = samps / 16 'each long holds 16 2-bit samples
xmode = $DO8OOVLO + rxpin << 17 + samps 'streamer mode

VAR buff[bufflongs]
PUB go() | i, buffaddr

debug(logic Serial samples " (samps) spacing 12 'TX'
debug(Serial trigger %10 %10 22)

buffaddr := @buff
repeat
org
wrpin ##+1<<28, #rxpin 'rxpin inputs txpin at rxpin+1
wrpin #%01_11110 0,#txpin 'set async tx mode
wxpin ##1<<16+8-1,#txpin 'set baud=sysclock/1 and size=8
dirh #txpin 'enable smart pin
wrfast #0,buffaddr 'set write-fast at
xinit ##xmode, #0 'start capturing 2-
wypin i, #txpin 'transmit serial byte
waitxfi 'wait for streamer capture done
end

debug(~Serial “uhex_long_array_(@buff, bufflongs))
i++
waitms(20)

Senal - LOGIC

X

"IN' longs_2bit)

for txpin

buff
bit samples

SCOPE Display

Oscilloscope with 1..8 channels, can trigger on level with hysteresis

CON _clkfreq = 100_000_000
PUB go() | a, af, b, bf

debug (" SCOPE MyScope)

debug(MyScope 'FregA' -1000 1000 100 136 15 MAGENTA)
debug(MyScope 'FregqB' -1000 1000 100 20 15 ORANGE)
debug(MyScope TRIGGER © HOLDOFF 2)

repeat
a := gsin(1e00, af++, 200)
b := gsin(1000, bf++, 99)
debug(MyScope " (a,b))
waitus(200)

MyScope - SCOPE £3

SCOPE Instantiation Description Default
TITLE 'string’ Set the window caption to 'string'. <none>
POS left top Set the window position. 0,0
SIZE width height Set the display size (32..2048 x 32..2048) 255, 256
SAMPLES 16_to_2048 Set the number of samples to track and display. 256
RATE 1_to_2048 Set the number of samples (or triggers, if enabled) before each display update. 1
DOTSIZE 0_to_32 Set the dot size in pixels for showing exact sample points. 0
LINESIZE ©_to_32 Set the line size in half-pixels for connecting sample points. 3

TEXTSIZE 6_to_200

Set the legend text size.

editor text size

COLOR back_color {grid_color}

Set the background and grid colors *.

BLACK, GRAY 4

Parallax Spin2 Documentation Page 33 of 52

packed_data_mode Enable packed-data mode. See description at end of this section. <none>
HIDEXY Hide the X,Y mouse coordinates from being displayed at the mouse pointer. not hidden
SCOPE Feeding Description Default

'name’ {min {max {y_size {y_base {legend} {color}}}}}

Set first/next channel name, min value, max value, y size, y base, legend, and color *.
Legend is %abcd, where %a to %d enable max legend, min legend, max line, min line.

full, no legend,
default color

"name’' AUTO {y_size {y_base {legend} {color}}}

Set first/next channel name, auto-scale, y size, y base, legend, and color *. Legend is
Y%abcd, where %a to %d enable max legend, min legend, max line, min line.

auto, no legend,
default color

TRIGGER channel {arm_level {trigger_level {offset}}}

Set the trigger channel, arm level, trigger level, and right offset. If channel=-1, disabled.

-1,-1, 0, width / 2

TRIGGER channel AUTO {offset} Set the trigger channel, 33% arm level, 50% trigger level, and right offset. If channel=-1, | -1, width / 2
(new in v44) disabled.
HOLDOFF 2_to_2048 Set the minimum number of samples required from trigger to trigger. SAMPLES

data

Numerical data is applied to the channels in ascending order.

CLEAR

Clear the sample buffer and display, wait for new data.

SAVE {WINDOW} 'filename’

Save a bitmap file (.bmp) of either the entire window or just the display area.

CLOSE

Close the window.

* Color is rgb24 value, else BLACK / WHITE or ORANGE / BLUE / GREEN / CYAN / RED / MAGENTA / YELLOW / GRAY followed by an optional 0..15 for brightness (default

is 8).

SCOPE_XY Display

CON _clkfreq = 100_000 000

PUB go() | i

repeat
repeat i from @ to 500

waitms(5)

debug (" SCOPE_XY MyXY RANGE 500 POLAR 360 'G' 'R' 'B')

debug("MyXxy " (i, i, i, i+120, i, i+240))

MyXY - SCOPE_XY &3

XY oscilloscope with 1..8 channels, persistence of 1..512 samples, polar mode, log scale mode

SCOPE_XY Instantiation Description Default
TITLE 'string’ Set the window caption to 'string'. <none>
POS left top Set the window position. 0,0
SIZE radius Set the display radius in pixels. 128
RANGE 1_to_7FFFFFFF Set the unit circle radius for incoming data $7FFFFFFF
SAMPLES ©_to_512 Set the number of samples to track and display with persistence. Use 0 for infinite persistence. 256
RATE 1_to_512 Set the number of samples before each display update. 1
DOTSIZE 2_to_20 Set the dot size in half-pixels for showing sample points. 6

TEXTSIZE 6_to_200

Set the legend text size.

editor text size

COLOR back_color {grid_color}

Set the background and grid colors *.

BLACK, GRAY 4

POLAR {twopi {offset}}

Set polar mode, twopi value, and offset. For a twopi value of $100000000 or -$100000000, use 0 or -1.

$100000000, 0

LOGSCALE

Set log-scale mode to magnify points within the unit circle.

<off>

'name’ {color}

Set the first/next channel name and optionally assign it a color *.

default color

packed_data_mode Enable packed-data mode. See description at end of this section. <none>
HIDEXY Hide the X,Y mouse coordinates from being displayed at the mouse pointer. not hidden

SCOPE_XY Feeding Description Default
Xy X-Y data pairs are applied to the channels in ascending order. In polar mode, x=length and y=angle.

Parallax Spin2 Documentation Page 34 of 52

CLEAR Clear the sample buffer and display, wait for new data.

SAVE {WINDOW} 'filename’ Save a bitmap file (.bmp) of either the entire window or just the display area.

CLOSE Close the window.

* Color is rgb24 value, else BLACK / WHITE or ORANGE / BLUE / GREEN / CYAN / RED / MAGENTA / YELLOW / GRAY followed by an optional 0..15 for brightness (default
is 8).

CON _clkfreq = 10_000_000 'Normal mode CON _clkfreq = 10_000_ 000 'LOGSCALE mode magnifies low-level details
PUB go() | x, y PUB go() | x, y
debug(” SCOPE_XY MyXY SIZE 80 RANGE 8 SAMPLES © 'Normal') debug(” SCOPE_XY MyXY SIZE 80 RANGE 8 SAMPLES © LOGSCALE 'Logscale')
repeat x from -8 to 8 repeat x from -8 to 8
repeat y from -8 to 8 repeat y from -8 to 8
debug("MyXY " (x,y)) debug("MyXY " (x,y))
I " I b
MyXY - SCOPEXY [= | MyXY - SCOPE_XY [= |

FFT Display Fast Fourier Transform with 1..8 channels, 4..2048 points, windowed results, log scale mode

CON _clkfreq = 100_000_000
PUB go() | i, 3, k

' Set up FFT
debug (" FFT MyFFT SIZE 250 200 SAMPLES 2048 © 127 RATE 256 LOGSCALE COLOR YELLOW 4 YELLOW 5)
debug("MyFFT 'FFT' © 1000 180 10 15 YELLOW 12)

' Set up SCOPE

debug (" scope MyScope POS 300 © SIZE 255 200 COLOR CYAN 4 CYAN 5)
debug(MyScope 'Sine' -1000 1000 180 10 15 CYAN 12)

debug(MyScope TRIGGER @)

repeat
j += 1550 + gqsin(1300, i++, 31_000)
k := gsin(1e00, j, 560_000)
debug("MyFFT MyScope " (k))

waitus(100)
£ I | -~ —
MyFFT - FFT &2 | MyScope - SCOPE e |
FFT Instantiation Description Default

TITLE 'string' Set the window caption to 'string'. <none>
POS left top Set the window position. 0,0
SIZE width height Set the display size (32..2048 x 32..2048) 256, 256
SAMPLES 4_to_2048 {first {last}} | Setthe 2n number of FFT inputs points, plus the first and last result values to display. 512, 0, 255
RATE 1_to_2048 Set the number of samples before each display update. SAMPLES

Parallax Spin2 Documentation Page 35 of 52

DOTSIZE @_to_32

Set the dot size in pixels for showing exact sample points.

0

LINESIZE neg32_to_32

Set the line size in half-pixels for connecting sample points. A negative line size will make isolated vertical lines.

3

TEXTSIZE 6_to_200

Set the legend text size.

editor text size

COLOR back_color {grid_color}

Set the background and grid colors *.

BLACK, GRAY 4

LOGSCALE Set log-scale mode to magnify low-level results. <off>

packed_data_mode Enable packed-data mode. See description at end of this section. <none>

HIDEXY Hide the X,Y mouse coordinates from being displayed at the mouse pointer. not hidden
FFT Feeding Description Default

‘name’ {mag {max {y_size {y_base
{legend {color}}}}}}

Set the first/next channel name, magnification factor (2, n = 0..11), max amplitude, y size, y base, legend, and
color *. Legend is %abcd, where %a to %d enable max legend, min legend, max line, min line.

full, no legend,
default color

data

Numerical data is fed into the channels' sliding Hanning windows from which the FFT computes power levels.

CLEAR

Clear the sample buffer and display, wait for new data.

SAVE {WINDOW} 'filename'

Save a bitmap file (.bomp) of either the entire window or just the display area.

CLOSE

Close the window.

* Color is rgb24 value, else BLACK / WHITE or ORANGE / BLUE / GREEN / CYAN / RED / MAGENTA / YELLOW / GRAY followed by an optional 0..15 for brightness (default

is 8).

SPECTRO Display

Spectrograph with 4..2048-point FFT, phase-coloring, and log scale mode

CON _clkfreq = 100_000_000
PUB go() | i, 3, k

' Set up SPECTRO

debug (" SPECTRO MySpectro SAMPLES 2048 © 236 RANGE 1000 LUMASX GREEN)

' Set up SCOPE

debug (" SCOPE MyScope POS 280 SIZE 150 200 COLOR GREEN 15 GREEN 12)
debug(MyScope 'Sine' -1000 1000 180 10 © GREEN 6)

debug(MyScope TRIGGER ©0)

repeat
j +=
k := gsin(1ee@, j, 50 _000)
debug (" MySpectro MyScope " (k))
waitus(100)

2850 + qsin(2500, i++, 30_000)

s ™

MySpectro - SPECTRO £2

Sine

" MyScope - SCOPE | 2

"

SPECTRO Instantiation Description Default
TITLE 'string' Set the window caption to 'string'. <none>
POS left top Set the window position. 0,0
SAMPLES 4_to_2048 {first {last}} Set the 2" number of FFT input points, plus the first and last result values to display (defines display height). 512, 0, 255
DEPTH 1_to_2048 Set the number of vertical-line FFT results to display (defines the display width). 256
MAG ©_to_11 Set the magnification factor (2", n = 0..11). 0
RANGE saturation_power Set the power level at which pixel brightness saturates. $7FFFFFFF
RATE 1_to_2048 Set the number of samples before each display update. SAMPLES / 8

TRACE @_to_15

Set the trace pattern (see TRACE animation in BITMAP Display).

15 (right, up, scroll)

DOTSIZE width_and_height {height} | Set the spectrograph pixel-width and pixel-height (1..16) together, or set them independently. 1,1

luma_or_hsv {color_or_phase} Set the color scheme to LUMAS8(W)(X) with color *, or HSV16(W)(X) with 0..255 phase-coloring offset. LUMA8X ORANGE

LOGSCALE Set log-scale mode to magnify low-level results. <off>

packed_data_mode Enable packed-data mode. See description at end of this section. <none>

HIDEXY Hide the X,Y mouse coordinates from being displayed at the mouse pointer. not hidden
SPECTRO Feeding Description Default

data Numerical data is fed into a sliding Hanning window from which the FFT computes power and phase.

CLEAR Clear the sample buffer and display, wait for new data.

SAVE {WINDOW} 'filename’

Save a bitmap file (.bmp) of either the entire window or just the display area.

CLOSE

Close the window.

* Color is ORANGE / BLUE / GREEN / CYAN / RED / MAGENTA / YELLOW / GRAY.

Parallax Spin2 Documentation Page 36 of 52

Below, a SPECTRO display was fed ADC samples from a pin attached to a microphone. This is what verbally counting from "1" to "10" looks like, spectrally. The "1" is on the

left and the "10" is on the right. The vertical distance between horizontal trend lines is glottal pitch. The larger brightness trends are vocal formants. This gives some idea of how

our ears perceive speech:

p - SPECTRO

PLOT Display

General-purpose plotter with cartesian and polar modes

CON _clkfreq = 10_000_000

PUB go(): i, j, k

kK~
repeat
debug(myplot clear)

if k & 8
j++
else
repeat i from @ to 7
debug(myplot gray 12 set 83

repeat i from @ to 7

debug(myplot update “dly(30))
k++

debug(plot myplot size 400 480 backcolor white update)
debug(myplot origin 200 200 polar -64 -16)

debug(myplot set 240 © cyan 3 text 24 3 'Hub RAM Interface')
debug(myplot set 210 © text 11 3 'Cogs can r/w 32 bits per clock')

'move RAMs or draw spokes?

*(i*8) line 150 " (i*8) 15)

debug(myplot set @ @ cyan 4 circle 121 yellow 7 circle 117 3)
debug(myplot set 20 © white text 9 'Address LSBs')

debug(myplot set @ © text 11 1 '8 Hub RAMs')

debug(myplot set 20 32 text 9 '16K x 32')

'draw RAMs and cogs

debug(myplot cyan 6 set 83 "~ (i*8-j) circle 43 text 14
debug(myplot cyan 4 set 83 " (i*8-j) circle 45 3)
debug(" myplot orange 6 set 150 " (i*8) circle 61 text 13 'Cog (i)')
debug(myplot orange 4 set 150 " (i*8) circle 63 3)

myplot- PLOT

Address LSBs
2 Hub RAMs

)Y

Hub RAM Interface

Cogs can r/fw 32 bits per clock

PLOT Instantiation Description Default
TITLE 'string' Set the window caption to 'string'. <none>
POS left top Set the window position. 0,0
SIZE width height Set the display width (32..2048) and height (32..2048). 256, 256
DOTSIZE width_and_height {height} Set the display pixel-width and pixel-height (1..256) together, or set them independently. 1,1
lutl_to_rgb24 Set the color mode. RGB24

LUTCOLORS rgb24 rgb24 ...

For LUT1..LUT8 color modes, load the LUT with rgb24 colors. Use HEX_LONG_ARRAY__ to load colors.

default colors 0..7

BACKCOLOR color

Set the background color according to the current color mode. *

BLACK

UPDATE Set UPDATE mode. The display will only be updated when fed an 'UPDATE' command. automatic update
HIDEXY Hide the X,Y mouse coordinates from being displayed at the mouse pointer. not hidden

PLOT Feeding Description Default
lutl_to_rgb24 Set color mode. rgb24

LUTCOLORS rgb24 rgb24 ...

For LUT1..LUT8 color modes, load the LUT with rgb24 colors. Use HEX_LONG_ARRAY_ to load values.

default colors 0..7

BACKCOLOR color Set the background color according to the current color mode. * BLACK
COLOR color Set the drawing color according to the current color mode. Use just before TEXT to change text color. * CYAN
BLACK/WHITE or ORANGE/BLUE/GREEN/CYAN/ | Setthe drawing color and optional 0..15 brightness for ORANGE..GRAY colors (default is 8). CYAN

RED/MAGENTA/YELLOW/GRAY {brightness}

Parallax Spin2 Documentation Page 37 of 52

OPACITY level Set the opacity level for DOT, LINE, CIRCLE, OVAL, BOX, and OBOX drawing. 0..255 = clear..opaque. 255
PRECISE Toggle precise mode, where line size and (x,y) for DOT and LINE are expressed in 256ths of a pixel. disabled
LINESIZE size Set the line size in pixels for DOT and LINE drawing. 1
ORIGIN {x_pos y_pos} Set the origin point to cartesian (x_pos, y_pos) or to the current (x, y) if no values are specified. 0,0
SET x y Set the drawing position to (x, y). After LINE, the endpoint becomes the new drawing position.
DOT {linesize {opacity}} Draw a dot at the current position with optional LINESIZE and OPACITY overrides.
LINE x y {linesize {opacity}} Draw a line from the current position to (x,y) with optional LINESIZE and OPACITY overrides.
CIRCLE diameter {linesize {opacity}} Draw a circle around the current position with optional line size (none/0 = solid) and OPACITY override.
OVAL width height {linesize {opacity}} | Draw an oval around the current position with optional line size (none/0 = solid) and OPACITY override.
BOX width height {linesize {opacity}} Draw a box around the current position with optional line size (none/0 = solid) and OPACITY override..
0BOX width height x_radius y_radius Draw a rounded box around the current position with width, height, x and y radii, and optional line size
{linesize {opacity}} (none/0 = solid) and OPACITY override.
TEXTSIZE size Set the text size (6..200). 10
TEXTSTYLE style_YYXXUIWW Set the text style to %YYXXUIWW: %00000001
%YY is vertical justification: %00 = middle, %10 = bottom, %11 = top.
%XX is horizontal justification: %00 = middle, %10 = right, %11 = left.
%U is underline: %1 = underline.
%l is italic: %1 = italic.
%WW is weight: %00 = light, %01 = normal, %10 = bold, and %11 = heavy.
TEXTANGLE angle Set the text angle. In cartesian mode, the angle is in degrees. 0
TEXT {size {style {angle}}} 'text'’ Draw text with overrides for size, style, and angle. To change text color, declare a color just before TEXT.
SPRITEDEF id x_dim y_dim pixels... Define a sprite. Unique ID must be 0..255. Dimensions must each be 1..32. Pixels are bytes which select
colors... palette colors, ordered left-to-right, then top-to-bottom. Colors are longs which define the palette
referenced by the pixel bytes; SAARRGGBB values specify alpha-blend, red, green, and blue.
SPRITE id {orient {scale {opacity}}} Render a sprite at the current position with orientation, scale, and OPACITY override. Orientation is 0..7, <id>, 0, 1, 255

per the first eight TRACE modes. Scale is 1..64. See the DEBUG_PLOT_Sprites.spin2 file.

POLAR {twopi {offset}}

Set polar mode, twopi value, and offset. For example, POLAR -12 -3 would be like a clock face.
For a twopi value of $100000000 or -$100000000, use 0 or -1.
In polar mode, (x, y) coordinates are interpreted as (length, angle).

$100000000, 0

CARTESIAN {ydir {xdir}}

Set cartesian mode and optionally set Y and X axis polarity. Cartesian mode is the default.
If ydir is 0, the Y axis points up. If ydir is non-0, the Y axis points down.
If xdir is 0, the X axis points right. If xdir is non-0, the X axis points left.

0,0

CLEAR

Clear the plot to the background color.

UPDATE

Update the window with the current plot. Used in UPDATE mode.

SAVE {WINDOW} 'filename’

Save a bitmap file (.bmp) of either the entire window or just the display area.

CLOSE

Close the window.

* Color is a modal value, else BLACK / WHITE or ORANGE / BLUE / GREEN / CYAN / RED / MAGENTA / YELLOW / GRAY followed by an optional 0..15 for brightness

(default is 8).

TERM Display

Terminal for displaying text

CON _clkfreq = 10_000_000
PUB go() | i
repeat
repeat i from 50 to 60

waitms(500)

debug (" TERM MyTerm SIZE 9 1 TEXTSIZE 490)

debug(MyTerm 1 'Temp = ~(i)")

IMyTerm - TERM £3

TERM Instantiation Description Default
TITLE 'string' Set the window caption to 'string'. <none>
POS left top Set the window position. 0,0
SIZE columns rows Set the number of terminal columns (1..256) and terminal rows (1..256). 40, 20

TEXTSIZE size

Set the terminal text size (6..200).

editor text size

COLOR text_color back_color ...

Set text-color and background-color combos #0..#3. *

default colors

BACKCOLOR color

Set the display background color. *

BLACK

UPDATE

Set UPDATE mode. The display will only be updated when fed an 'UPDATE' command.

automatic update

HIDEXY

Hide the X,Y mouse coordinates from being displayed at the mouse pointer.

not hidden

Parallax Spin2 Documentation Page 38 of 52

TERM Feeding

Description

Default

character

0 = Clear terminal display and home cursor.
1 = Home cursor.

2 = Set column to next character value.
3 = Set row to next character value.

4 = Select color combo #0.

5 = Select color combo #1.

6 = Select color combo #2.

7 = Select color combo #3.

8 = Backspace.

9 = Tab to next 8th column.

13+10 or 13 or 10 = New line.

32..255 = Printable character.

'string’

Print string.

CLEAR

Clear the display to the background color.

UPDATE

Update the window with the current text screen. Used in UPDATE mode.

SAVE {WINDOW} 'filename’

Save a bitmap file (.bmp) of either the entire window or just the display area.

CLOSE

Close the window.

* Color is a modal value, else BLACK / WHITE or ORANGE / BLUE / GREEN / CYAN / RED / MAGENTA / YELLOW / GRAY followed by an optional 0..15 for brightness

(default is 8).

BITMAP Display

Pixel-driven bitmap

repeat

DAT
flag long
long
long
long
long
long
long
long
long
long
long
long
long
long
long
long
long
long
long
long
long
long
long
long
long
long
long
long
long
long
long
long

PUB go() | i

CON _clkfreq = 10_000 000

debug (" bitmap MyBitmap SIZE 32 16 DOTSIZE 8 LUT2 LONGS_2BIT)
debug(~MyBitmap TRACE 14 LUTCOLORS WHITE RED BLUE YELLOW 6)

debug("MyBitmap “uhex_(flag[i++ & $1F]) “dly(100))

%%3333333333333330
%%0010101022222220
%%0010101020202020
%%0010101022222220
%%0010101022020220
%%0010101022222220
%%0010101020202020
%%0010101022222220
%%0010101022020220
%%0010101022222220
%%0010101020202020
%%0010101022222220
%%0010101010101010
%%0010101010101010
%%0010101010101010
%%0010101010101010
%%0010101010101010
%%0010101010101010
%%0010101010101010
%%0010101010101010
%%0010101010101010
%%0010101010101010
%%0010101010101010
%%0010101010101010
%%0010101010101010
%%0010101010101010
%%0010101010101010
%%0000000000000000
%%0000000000000000
%7%0000000000000000
%7%0000000000000000
%%0000000000000000

...

MyBitmap - BITMAP (=]

i

1

BITMAP Instantiation Description Default
TITLE 'string' Set the window caption to 'string'. <none>
POS left top Set the window position. 0,0
SIZE x_pixels y_pixels Set the number of pixels in the bitmap (1..2048 for both x and y). 256, 256
DOTSIZE width_and_height {height} Set the bitmap pixel-width and pixel-height (1..256) together, or set them independently. 1,1
SPARSE color Show large round pixels against a colored background. DOTSIZE must be at least 4. * <off>
lutl_to_rgb24 Set the color mode. See images below. RGB24

LUTCOLORS rgb24 rgb24 ...

For LUT1..LUT8 color modes, load the LUT with RGB24 colors. Use HEX_LONG_ARRAY _ to load.

default colors 0..7

TRACE @_to_15

Set the pixel loading direction and whether to scroll after each line is filled. See animation below.

0

Parallax Spin2 Documentation Page 39 of 52

RATE pixels_per_update

Set the number of pixels before each display update. 'RATE -1' sets the rate to the bitmap size.

line size

packed_data_mode

Enable packed-data mode. See description at end of this section.

<none>

UPDATE Set UPDATE mode. The display will only be updated when fed an 'UPDATE' command. automatic update

HIDEXY Hide the XY mouse coordinates from being displayed at the mouse pointer. not hidden
BITMAP Feeding Description Default

pixel Numerical pixel data that is fed into the bitmap.

lutl_to_rgb24 Change the color mode. RGB24

LUTCOLORS rgb24 rgb24 ...

For LUT1..LUT8 color modes, load the LUT with rgh24 colors. Use HEX_LONG_ARRAY_ to load colors.

default colors 0..7

TRACE @_to_15

Change the direction in which pixels are loaded into the bitmap. Sets the rate to the line size.

0

RATE pixels_per_update

Set the number of pixels before each display update. 'RATE -1' sets the rate to the bitmap size.

SET x_position {y_position}

Set the current pixel-loading position. Cancels scroll mode by clearing bit 3 of TRACE.

SCROLL x_scroll y_scroll

Scroll the bitmap by some number of pixels. Negative/positive values determine the direction, 0 = none.

CLEAR

Clear the bitmap to zero-value pixels.

UPDATE

Update the window with the current bitmap. Used in UPDATE mode.

SAVE {WINDOW} 'filename’

Save a bitmap file (.bmp) of either the entire window or just the bitmap at 1x scale.

CLOSE

Close the window.

* Color is ORANGE / BLUE / GREEN / CYAN / RED / MAGENTA / YELLOW / GRAY.

TRACE modes

Rate is set to 1 so that each pixel can be seen as it's loaded.

,
j
j
j
A

=
g
g
(B%]
g
(78]
o

ﬁ
j
j
j
-l

oot
g
1%}
g
(=2}
g
¥
g

,
j
j
j
A

(= =]
il
(]
)
s
)
o

,
j
j
j
A

-
P
£
-
¥}
-
s
.
[¥}
d

Color Bits/ Description Intention

Mode Pixel
LUT1 1 Pixel indexes LUT colors 0..1 Memory-efficient 2-color-palette graphics
LUT2 2 Pixel indexes LUT colors 0..3 Memory-efficient 4-color-palette graphics
LUT4 4 Pixel indexes LUT colors 0..15 Memory-efficient 16-color-palette graphics
LUT8 8 Pixel indexes LUT colors 0..255 Memory-efficient 256-color-palette graphics.
LUMA8 8 From black to color * Instrumentation where luminance indicates level
LUMA8W 8 From white to color * Instrumentation where saturation indicates level
LUMASX 8 From black to color * to white Instrumentation where luminance indicates level, peaking in white
HSv8 8 From black to color: %HHHHSSSS 16 hues with 16 luminance levels
HSV8W 8 From white to color: %HHHHSSSS 16 hues with 16 saturation levels, coming from white
HSV8X 8 From black to color to white: %HHHHSSSS 16 hues with 16 luminance levels, peaking in white
RGBIS8 8 From black to color: %RGBIIlII 8 basic colors with 32 luminance levels

Parallax Spin2 Documentation Page 40 of 52

RGBI8W 8 From white to color: %RGBIIII 8 basic colors with 32 saturation levels, coming from white

RGBI8SX 8 From black to color to white: %RGBIIIII 8 basic colors with 32 luminance levels, peaking in white

RGB8 8 %RRRGGGBB Byte-level RGB with 8 red, 8 green, and 4 blue levels

HSVi16 16 From black to color: %HHHHHHHH_SSSSSSSS 256 hues with 256 luminance levels

HSV16W 16 From white to color: %HHHHHHHH_SSSSSSSS 256 hues with 256 saturation levels, coming from white

HSV16X 16 From black to color to white: %HHHHHHHH_SSSSSSSS 256 hues with 256 luminance levels, peaking in white

RGB16 16 %RRRRRGGG_GGGBBBBB Word-level RGB with 32 red levels, 64 green levels, and 32 blue levels
RGB24 24 | %RRRRRRRR_GGGGGGGG_BBBBBBBB Full RGB with 256 levels for red, green, and blue

* Color is ORANGE / BLUE / GREEN / CYAN / RED / MAGENTA / YELLOW / GRAY.

LUT1

L

=] LUT2

-

(=]

LuT4

=l LUTS

RGBS 2] RGB16

=] RGB24 =]

CON _clkfreq = 100_000_000

PUB go() | i
debug(bitmap a title 'LUT1' pos 100
debug(bitmap b title 'LUT2' pos 370
debug(bitmap ¢ title 'LUT4' pos 100
debug(bitmap d title 'LUT8' pos 370
debug(bitmap e title 'RGB8' pos 100
debug(bitmap f title 'RGB16' pos 370
debug(bitmap g title 'RGB24' pos 640

waitms(1000)

showbmp("a", @imagel, $8A, 2, $800)
showbmp("b", @image2, $36, 4, $1000)
showbmp("c", @image3, $8A, 16, $2000)
showbmp("d", @image4, $36, 256, $4000)

i := @image5 + $36 'send RGB8/RGB16/RGB24 images from the same 24-bpp file

repeat $10000

debug(“ e “uhex_(byte[i+@] >> 6 + byte[i+1l] >> 5 << 2 + byte[i+2] >> 5 << 5))
debug("f “uhex_(byte[i+@8] >> 3 + byte[i+1] >> 2 << 5 + byte[i+2] >> 3 << 11))

100
100
395
395
690
690
690

trace
trace
trace
trace
trace
trace
trace

'send
'send
'send
'send

lutl longs_1bit alt)
lut2 longs_2bit alt)
lut4 longs_4bit alt)
lut8 longs_8bit)
rgb8)

rgbl6)

rgb24)

NNMNNNMNNNMNDN

LUT1 image
LUT2 image
LUT4 image
LUT8 image

Parallax Spin2 Documentation Page 41 of 52

i+=3

DAT

imagel file
image2 file
image3 file
imaged4 file
image5 file

debug (" g “uhex_(byte[i+0]

"bird_lutl.bmp"
"bird_lut2.bmp"
"bird_lut4.bmp"
"bird_lut8.bmp"
"bird_rgb24.bmp"

+ byte[i+1] << 8

+ byte[i+2] << 16)

PRI showbmp(letter, image_address, lut_offset, lut_size, image_longs) | i
image_address += lut_offset
debug (" "#(letter) lutcolors “uhex_long_array_(image_address, lut_size))
image_address += lut_size << 2 - 4
repeat image_longs
debug (" "#(letter) “uhex_(long[image_address += 4]))

1

LUMAS

4
.|

| 2 |

LUMASW ="

-

LURMASK

o

4

1

RGBIS

4
.|

RGBIGW | =3

4

-

RGBI8X

-

HSV8

4
o

E

HSVEW | 53

4

o

HSVBX

-

H5V16

4
.|

HSV16W

o

HSV 16X

o

4

CON _clkfreq = 100_000_000

Parallax Spin2 Documentation Page 42 of 52

PUB go() | i
debug (" bitmap
debug (" bitmap
debug (" bitmap
debug (" bitmap
debug(bitmap e title 'RGBI8W' pos 370 395 size
debug(bitmap f title 'RGBI8X' pos 640 395 size 8 32 dotsize 32 8 trace 4 rgbi8x)

a 256 dotsize 256 1 luma8 cyan)
b
<
d
e
.F
debug(bitmap g title 'HSV8' pos 100 690 size 16 16 trace 4 dotsize 16 hsv8)
h
i
]
k
1

256 dotsize 256 1 luma8w cyan)

title 'LUMA8' pos 100 100 size 1
title 'LUMASW' pos 370 100 size 1
title 'LUMA8X' pos 640 100 size 1 256 dotsize 256 1 luma8x cyan)
title 'RGBI8' pos 100 395 size 8 32 dotsize 32 8 trace 4 rgbis8)
8 32 dotsize 32 8 trace 4 rgbi8w)

debug(bitmap h title 'HSVBW' pos 370 690 size 16 16 trace 4 dotsize 16 hsv8w)
debug(bitmap i title 'HSV8X' pos 640 690 size 16 16 trace 4 dotsize 16 hsv8x)
debug(bitmap j title 'HSV16' pos 100 985 size 256 256 trace 4 hsvle)
debug(bitmap k title 'HSV1eW' pos 370 985 size 256 256 trace 4 hsvléw)
debug(bitmap 1 title 'HSV16X' pos 640 985 size 256 256 trace 4 hsv1éx)

waitms(1000)

repeat i from @ to 255 'feed 8-bit displays
debug("a b cdefghi uhex_(i))

repeat i from @ to 65535 'feed 16-bit displays

debug("j k 1 “uhex_(1i))

MIDI Display MIDI keyboard for viewing note-on/off status with velocity
CON _clkfreq = 10_000_000 (My hich - MIDI ?
PUB go() | i

debug(midi MyMidi size 3 range 36 84)
repeat
repeat i from 36 to 84
debug("MyMidi $90 " (i, getrnd() & $7F))
waitms(150)
debug("MyMidi $80 " (i, @))

MIDI Instantiation Description Default
TITLE 'string’ Set the window caption to 'string'. <none>
POS left top Set the window position. 0,0
SIZE keyboard_size Set the size of the MIDI keyboard display (1..50). 4
RANGE first_key last_key Set the first and last MIDI key numbers (0..127). 21, 108 (88 keys)
CHANNEL channel_number Set the MIDI channel number to observe (0..15). 0
COLOR white_key black_key Set the 'ON' colors for white and black keys. * CYAN, MAGENTA
MIDI Feeding Description Default
byte If ($90 + channel) then NOTE_ON mode, else if ($80 + channel) then NOTE_OFF mode.
If NOTE_ON mode then receive a key ($00..$7F) and then its velocity ($00..$7F), update display.
If NOTE_OFF mode then receive a key ($00..$7F) and then its velocity ($00..$7F), update display.
CLEAR Clear all notes.
SAVE {WINDOW} 'filename’ Save a bitmap file (.bmp) of either the entire window or just the display area.
CLOSE Close the window.

* Color is BLACK / WHITE or ORANGE / BLUE / GREEN / CYAN / RED / MAGENTA / YELLOW / GRAY followed by an optional 0..15 for brightness (default is 8).

Here is a PASM program which receives MIDI serial on P16 and sends it to the MIDI display:

CON _clkfreq = 10_000_000
rxpin = 16
DAT org

debug ("midi m size 2)

wrpin #%11111 0,#rxpin

wxpin ##(clkfreq_/31250) << 16 + 8-1, #rxpin
drvl #rxpin

.wait testp #rxpin wc
if_nc jmp #.wait

rdpin Xx,#rxpin
shr X,#32-8

debug ("'m ", uhex_byte_ (x))
jmp #.wait

X res 1

Parallax Spin2 Documentation Page 43 of 52

m - MIDI (288, 1672)

Packed-Data Modes

Packed-data modes are used to efficiently convey sub-byte data types, by having the host side unpack them from bytes, words, or longs it receives. As well, bytes can be sent

within words and longs, and words can be sent within longs for some efficiency improvement.

To establish packed-data operation, you must specify one of the modes listed below, followed by optional 'ALT" and 'SIGNED' keywords:

packed_mode {ALT} {SIGNED}

The ALT keyword will cause bits, double-bits, or nibbles, within each byte sent, to be reordered on the host side, within each byte. This simplifies cases where the raw data you

are sending has its bitfields out-of-order with respect to the DEBUG display you are using. This is most-likely to be needed for bitmap data that was composed in standard

formats.

The SIGNED keyword will cause all unpacked data values to be sign-extended on the host side.

Packed-Data Descriptions Final Values Final Values
Modes if SIGNED
LONGS_1BIT Each value received is translated into 32 separate 1-bit values, starting from the LSB of the received value. 0..1 -1..0
LONGS_2BIT Each value received is translated into 16 separate 2-bit values, starting from the LSBs of the received value. 0.3 -2.1
LONGS_4BIT Each value received is translated into 8 separate 4-bit values, starting from the LSBs of the received value. 0..15 -8..7
LONGS_8BIT Each value received is translated into 4 separate 8-bit values, starting from the LSBs of the received value. 0..255 -128..127
LONGS_16BIT Each value received is translated into 2 separate 16-bit values, starting from the LSBs of the received value. 0..65,535 -32,768..32,767
WORDS_1BIT Each value received is translated into 16 separate 1-bit values, starting from the LSB of the received value. 0..1 -1..0
WORDS_2BIT Each value received is translated into 8 separate 2-bit values, starting from the LSBs of the received value. 0.3 -2.1
WORDS_4BIT Each value received is translated into 4 separate 4-bit values, starting from the LSBs of the received value. 0..15 -8..7
WORDS_8BIT Each value received is translated into 2 separate 8-bit values, starting from the LSBs of the received value. 0..255 -128..127
BYTES_1BIT Each value received is translated into 8 separate 1-bit values, starting from the LSB of the received value. 0.1 -1..0
BYTES_2BIT Each value received is translated into 4 separate 2-bit values, starting from the LSBs of the received value. 0.3 -2.1
BYTES_4BIT Each value received is translated into 2 separate 4-bit values, starting from the LSBs of the received value. 0..15 -8..7
Built-In Symbols for Smart Pin Configuration
Smart Pin Symbol Value Symbol Name Details
A Input Polarity (pick one)
%0000_0000_000_0000000000000 00 00000 0 P_TRUE_A (default) True A input
%1000_0000_000_0000000000000_00_00000_0 P_INVERT_A Invert A input
A Input Selection (pick one)

%0000_0000_000_0000000000000_00_00000_0

P_LOCAL_A (default)

Select local pin for A input

%0001_0000_000_0000000000000_00_00000_0 P_PLUS1_A Select pin+1 for A input
%0010_0000_000_0000000000000 00 00000 0 P_PLUS2_A Select pin+2 for A input
%0011_0000_000_0000000000000_00_00000_0 P_PLUS3_A Select pin+3 for A input
%0100_0000_000_0000000000000_00_00000_0 P_OUTBIT_A Select OUT bit for A input
%0101_0000_000_0000000000000 00 00000 _0 P_MINUS3_A Select pin-3 for A input
%0110_0000_000_0000000000000_00_00000_0 P_MINUS2_A Select pin-2 for A input
%0111_0000_000_ 0000000000000 00 00000 0 P_MINUS1_A Select pin-1 for A input
B Input Polarity (pick one)

%0000_0000_000_0000000000000_00_00000_0

P_TRUE_B (default) True B input

Parallax Spin2 Documentation Page 44 of 52

%0000_1000_000_0000000000000_00_00000_0

P_INVERT B

Invert B input

B Input Selection

(pick one)

%0000_0000_000_0000000000000_00_00000_0

P_LOCAL_B (default)

Select local pin for B input

%0000_0001_000_ 0000000000000 00 00000 0 P_PLUS1_B Select pin+1 for B input
%0000_0010_000_0000000000000_00_00000_0 P_PLUS2_B Select pin+2 for B input
%0000_0011_000_0000000000000_00_00000_0 P_PLUS3_B Select pin+3 for B input
%0000_0100_000_0000000000000 00 00000 _0 P_OUTBIT_B Select OUT bit for B input
%0000_0101_000_0000000000000_00_00000_0 P_MINUS3_B Select pin-3 for B input
%0000_0110_000_0000000000000_00_00000_0 P_MINUS2_B Select pin-2 for B input
%0000_0111_000_0000000000000 00 00000 _0 P_MINUS1_B Select pin-1 for B input

A, B Input Logic (pick one)
%0000_0000_000_ 0000000000000 00 00000 0 P_PASS_AB (default) Select A, B
%0000_0000_001_ 0000000000000 00 _00000_0 P_AND_AB Select A& B, B
%0000_0000_010_0000000000000_00_00000_0 P_OR_AB Select A | B, B
%0000_0000 011 0000000000000 00 00000 _0 P_XOR_AB Select A*B, B
%0000_0000_100_0000000000000_00_00000_0 P_FILTO_AB Select FILTO settings for A, B
%0000_0000_101_0000000000000_00_00000_0 P_FILT1_AB Select FILT1 settings for A, B
%0000_0000_110_0000000000000_00_00000_0 P_FILT2_AB Select FILT2 settings for A, B
%0000_0000_111_ 0000000000000 _00_00000_0 P_FILT3_AB Select FILT3 settings for A, B

Low-Level Pin Modes

(pick one)

Logic/Schmitt/Comparator Input Modes

%0000_0000_000_0000000000000_00_00000_0

P_LOGIC_A (default)

Logic level A — IN, output OUT

%0000_0000_000_0001000000000_00_00000_0 P_LOGIC_A_FB Logic level A — IN, output feedback
%0000_0000_000_0010000000000_00_00000_0 P_LOGIC_B_FB Logic level B — IN, output feedback
%0000_0000_000_ 0011000000000 _00_00000_0 P_SCHMITT_A Schmitt trigger A — IN, output OUT

%0000_0000_000_0100000000000_00_00000_0

P_SCHMITT_A FB

Schmitt trigger A — IN, output feedback

%0000_0000_000_0101000000000_00_00000_0

P_SCHMITT_B_FB

Schmitt trigger B — IN, output feedback

%0000_0000_000_0110000000000_00_00000_0

P_COMPARE_AB

A >B — IN, output OUT

%0000_0000_000_0111000000000_00_00000_0

P_COMPARE_AB_FB

A > B — IN, output feedback

BXXXX_XXXX_XXX_XXXXSTOHHHLLL_XX_XXXXX_X

Sync mode, IN/output polarity, high/low drive

ADC Input Modes

%0000_0000_000_1000000000000_00_00000_0 P_ADC_GIO ADC GIO — IN, output OUT
%0000_0000_000_1000010000000_00_00000_0 P_ADC_VIO ADC VIO — IN, output OUT
%0000_0000_000_1000100000000_00_00000_0 P_ADC_FLOAT ADC FLOAT — IN, output OUT
%0000_0000_000_1000110000000_00_00000_0 P_ADC_1X ADC 1x — IN, output OUT
%0000_0000_000_1001000000000_00_00000_0 P_ADC_3X ADC 3.16x — IN, output OUT
%0000_0000_000_1001010000000_00_00000_0 P_ADC_10X ADC 10x — IN, output OUT
%0000_0000_000_1001100000000_00_00000_0 P_ADC_30X ADC 31.6x — IN, output OUT
%0000_0000_000_1001110000000_00_00000_0 P_ADC_100X ADC 100x — IN, output OUT

FBXXXKX__XXXX_XXX_XXXXXXOHHHLLL_XX_XXXXX_X

O = output polarity, HHH/LLL = high/low drive

DAC Output Modes

DIR enables output, OUT enables ADC

%0000_0000_000_1010000000000_00_00000_0

P_DAC_990R_3V

DAC 990Q, 3.3V peak, ADC 1x — IN

%0000_0000_000_1010100000000_00_00000_0

P_DAC_60@R_2V

DAC 6009, 2.0V peak, ADC 1x — IN

%0000_0000_000_1011000000000_00_00000_0

P_DAC_124R_3V

DAC 123.75Q), 3.3V peak, ADC 1x — IN

%0000 _0000_000_ 1011100000000 00 00000 0 P_DAC_75R_2V DAC 75Q, 2.0V peak, ADC 1x — IN

BXXXX_XXXX_XXX_XXXXXDDDDDDDD_XX_ XXXXX_X DDDDDDDD = 8-bit DAC value
Level-Comparison Modes DIR enables output (1.5kQ drive)

%0000_0000_000_1100000000000_00_00000_0 P_LEVEL_A A > Level — IN, output OUT

%0000_0000_000_1101000000000_00_00000_0

P_LEVEL_A_FBN

A > Level — IN, output negative feedback

%0000_0000_000_1110000000000_00_00000_0

P_LEVEL_B_FBP

B > Level — IN, output positive feedback

%0000_0000_000_1111000000000_00_00000_0

P_LEVEL_B_FBN

B > Level — IN, output negative feedback

Parallax Spin2 Documentation Page 45 of 52

TXXXX_XXXX_XXX_XXXXSLLLLLLLL_XX_XXXXX_X

S = Synchronous, LLLLLLLL = 8-bit Level

Low-Level Pin Sub-Modes

Sync Mode

(pick one)

(for Logic/Schmitt/Comparator/Level modes)

XXX XXXXK_ XXX XXXXSXXXXXXXX_XX_XXXXX_X

Sync mode bit

%0000_0000_000_0000000000000_00_00000_0

P_ASYNC_IO (default)

Select asynchronous I/0

%0000_0000_000_0000100000000_00_00000_0 P_SYNC_IO Select synchronous 1/0
IN Polarity (pick one) (for Logic/Schmitt/Comparator modes)
FXXXKX__XXXX_XXX_XXXXX IXXXXXXX_XX_XXXXX_X IN polarity bit
%0000_0000_000_0000000000000_00_00000_0 P_TRUE_IN (default) True IN bit
%0000_0000_ 000 0000010000000 00 00000 0 P_INVERT_IN Invert IN bit
Output Polarity (pick one) (for Logic/Schmitt/Comparator/ADC modes)

XXX XXXXK_ XXX XXXXXXOXXXXXX_XX_XXXXX_X

Output polarity bit

%0000_0000_000_0000000000000_00_00000_0

P_TRUE_OUTPUT (default)
P_TRUE_OUT (for brevity)

Select true output

%0000_0000_000_0000001000000_00_00000_0

P_INVERT_OUTPUT
P_INVERT_OUT (for brevity)

Select inverted output

Drive-High Strength

(pick one)

(for Logic/Schmitt/Comparator/ADC modes)

FEXXXXK_XXXX_ XXX XXXXXXXHHHXXX_XX_ XXXXX_X

Drive-high selector bits

%0000_0000_000_0000000000000_00_00000_0

P_HIGH_FAST (default)

Drive high fast (30mA)

%0000_0000_000_0000000001000_00_00000_0 P_HIGH_1K5 Drive high 1.5kQ
%0000_0000_000_0000000010000_00_00000_0 P_HIGH_ 15K Drive high 15kQ
%0000_0000_000_0000000011000_00_00000_0 P_HIGH_150K Drive high 150kQ
%0000_0000_000_0000000100000_00_00000_0 P_HIGH_1MA Drive high 1mA

%0000_0000_000_0000000101000_00_00000_0

P_HIGH_100UA

Drive high 100pA

%0000_0000_000_0000000110000_00_00000_0

P_HIGH_1@UA

Drive high 10pA

%0000_0000_000_0000000111000_00_00000_0

P_HIGH_FLOAT

Float high

Drive-Low Strength

(pick one)

(for Logic/Schmitt/Comparator/ADC modes)

FXXXX_XXXX_ XXX XXXXXXXXXXLLL_XX_XXXXX_X

Drive-low selector bits

%0000_0000_000_0000000000000_00_00000_0

P_LOW_FAST (default)

Drive low fast (30mA)

%0000_0000_000_0000000000001_00_00000_0 P_LOW_1K5 Drive low 1.5kQ
%0000_0000_000_0000000000010_00_00000_0 P_LOW_15K Drive low 15kQ
%0000_0000 000 0000000000011 00 00000 0 P_LOW_150K Drive low 150kQ
%0000_0000_000_0000000000100_00_00000_0 P_LOW_1MA Drive low 1mA
%0000_0000_000_ 0000000000101 00 00000 0 P_LOW_100UA Drive low 100pA
%0000_0000_000_0000000000110 00 _00000_0 P_LOW_10UA Drive low 10pA
%0000_0000_000_0000000000111_00_00000_0 P_LOW_FLOAT Float low

DIR/OUT Control (pick one)
%0000_0000_000_0000000000000_00_00000_0 P_TT_00 (default) TT = %00
%0000_0000_000_0000000000000_01_ 00000 0 P_TT_01 TT = %01
%0000_0000_000_0000000000000_10_00000_0 P_TT 10 TT =%10
%0000_0000_000_0000000000000_11_00000_0 P TT 11 TT = %11
%0000 0000 000 0000000000000 01 00000 0 P_OE Enable output in smart pin mode, regardless of DIR
%0000_0000_000_0000000000000_01_00000_0 P_CHANNEL Enable DAC channel in non-smart pin DAC mode
%0000_0000_000_0000000000000_10_00000_0 P_BITDAC Enable BITDAC for non-smart pin DAC mode

Smart Pin Modes

(pick one)

%0000_0000_000_0000000000000_00_00000_0

P_NORMAL (default)

Normal mode (not smart pin mode)

%0000_0000_000_0000000000000_00_00001_0

P_REPOSITORY

Long repository (non-DAC mode)

%0000_0000_000_0000000000000_00_00001_0

P_DAC_NOISE

DAC Noise (DAC mode)

%0000_0000_000_0000000000000_00_00010_0

P_DAC_DITHER_RND

DAC 16-bit random dither (DAC mode)

%0000_0000_000_0000000000000_00_00011_0

P_DAC_DITHER_PWM

DAC 16-bit PWM dither (DAC mode)

%0000_0000_000_0000000000000_00_00100_0

P_PULSE

Pulse/cycle output

%0000_0000_000_0000000000000_00_00101_0

P_TRANSITION

Transition output

Parallax Spin2 Documentation Page 46 of 52

%0000_0000_000_0000000000000_00_001106_0

P_NCO_FREQ

NCO frequency output

%0000_0000_000_0000000000000_00_00111_0

P_NCO_DUTY

NCO duty output

%0000_0000_000_0000000000000_00_01000_0

P_PWM_TRIANGLE

PWM triangle output

%0000_0000_000_0000000000000 00 _01001_0

P_PWM_SAWTOOTH

PWM sawtooth output

%0000_0000_000_0000000000000_00_01010_0

P_PWM_SMPS

PWM switch-mode power supply I/O

%0000_0000_000_0000000000000_00_01011_0 P_QUADRATURE A-B quadrature encoder input

%0000_0000_000_0000000000000 00 01100 0 P_REG_UP Inc on A-rise when B-high

%0000_0000_000_0000000000000_00_01101 0 P_REG_UP_DOWN Inc on A-rise when B-high, dec on A-rise when B-low

%0000_0000_000_0000000000000_00_01110_0 P_COUNT_RISES Inc on A-rise, optionally dec on B-rise

%0000_0000_000_ 0000000000000 00_01111 © P_COUNT_HIGHS Inc on A-high, optionally dec on B-high

%0000_0000_000_0000000000000_00_10000_0 P_STATE_TICKS For A-low and A-high states, count ticks

%0000_0000_000_0000000000000_00_10001_0 P_HIGH_TICKS For A-high states, count ticks

%0000_0000_000_0000000000000_00_10010_0 P_EVENTS_TICKS For X A-highs/rises/edges, count ticks /

Timeout on X ticks of no A-high/rise/edge

%0000_0000_000_0000000000000 00 _10011_0 P_PERIODS_TICKS For X periods of A, count ticks

%0000_0000_000_0000000000000_00_10100_0 P_PERIODS_HIGHS For X periods of A, count highs

%0000_0000_000_0000000000000_00_10101_0 P_COUNTER_TICKS For periods of A in X+ ticks, count ticks

%0000_0000 000 0000000000000 _00_10110 0 P_COUNTER_HIGHS For periods of A in X+ ticks, count highs

%0000_0000_000_0000000000000_00_10111_0 P_COUNTER_PERIODS For periods of A in X+ ticks, count periods

%0000_0000_000_0000000000000_00_11000_0 P_ADC ADC sampleffilter/capture, internally clocked

%0000_0000_000_0000000000000_00_ 11001 0 P_ADC_EXT ADC sampleffilter/capture, externally clocked
%0000_0000_000_0000000000000_00_11010_0 P_ADC_SCOPE ADC scope with trigger

%0000_0000_000_ 0000000000000 00 11011 0 P_USB_PAIR USB pin pair
%0000_0000_000_0000000000000_00_11100_0 P_SYNC_TX Synchronous serial transmit
%0000_0000_000_0000000000000_00_11101_0 P_SYNC_RX Synchronous serial receive

%0000_0000 000 0000000000000 00 11110 0 P_ASYNC_TX Asynchronous serial transmit
%0000_0000_000_0000000000000_00_11111 © P_ASYNC_RX Asynchronous serial receive

Built-In Symbols for Streamer Modes

Streamer Symbol Value Symbol Name

Immediate — LUT — Pins / DACs

%0000_0000_0000_0000 << 16
%0000 DDDD_EPPP_BBBB << 16

X_IMM_32X1_LUT

%0001_0000_0000_0000 << 16
%0001_DDDD_EPPP_BBBB << 16

X_IMM_16X2_LUT

%0010_0000_0000_0000 << 16
%0010_DDDD_EPPP_BBBB << 16

X_IMM_8X4_LUT

%0011_0000_0000_0000 << 16
%0011_DDDD_EPPP_BBBB << 16

X_IMM_4X8_LUT

Immediate — Pins / DACs

%0100_0000_0000_0000 << 16
%0100_DDDD_EPPP_PPPA << 16

X_IMM_32X1_1DAC1

%0101_0000_0000_0000 << 16
%0101_DDDD_EPPP_PP@A << 16

X_IMM_16X2_2DAC1

%0101_0000_0000_0010 << 16
%0101_DDDD_EPPP_PP1A << 16

X_IMM_16X2_1DAC2

%0110_0000_0000_0000 << 16
%0110_DDDD_EPPP_P@OA << 16

X_IMM_8X4_4DAC1

%0110_0000_0000_0010 << 16
%0116_DDDD_EPPP_P@1A << 16

X_IMM_8X4_ 2DAC2

%0110_0000_0000_0100 << 16
%0110 DDDD_EPPP_P10A << 16

X_IMM_8X4_1DAC4

%0110_0000_0000_0110 << 16
%0110_DDDD_EPPP_0110 << 16

X_IMM_4X8_4DAC2

%0110_0000_0000_0111 << 16
%0110_DDDD_EPPP_0111 << 16

X_IMM_4X8_2DAC4

Parallax Spin2 Documentation Page 47 of 52

%0110_0000_0000_1110 << 16
%0110_DDDD_EPPP_1110 << 16

X_IMM_4X8_1DAC8

%0110_0000_0000_1111 << 16
%0110_DDDD_EPPP_1111 << 16

X_IMM_2X16_4DAC4

%0111_0000_0000_0000 << 16
%0111_DDDD_EPPP_0000 << 16

X_IMM_2X16_2DAC8

%0111_0000_0000_0001 << 16
%0111_DDDD_EPPP_0001 << 16

X_IMM_1X32_4DAC8

RDFAST — LUT — Pins / DACs

%0111_0000_0000_0010 << 16
%0111_DDDD_EPPP_@@1A << 16

X_RFLONG_32X1_LUT

%0111_0000_0000_0100 << 16
%0111_DDDD_EPPP_O010A << 16

X_RFLONG_16X2_LUT

%0111_0000_0000 0110 << 16
%0111_DDDD_EPPP_O011A << 16

X_RFLONG_8X4_LUT

%0111_0000_0000_1000 << 16
%0111 _DDDD_EPPP_1000 << 16

X_RFLONG_4X8_LUT

RDFAST — Pins / DACs

%1000_0000_0000_0000 << 16
%1000_DDDD_EPPP_PPPA << 16

X_RFBYTE_1P_1DAC1

%1001_0000_0000_0000 << 16
%1001_DDDD_EPPP_PPOA << 16

X_RFBYTE_2P_2DAC1

%1001_0000_0000_0010 << 16
%1001_DDDD_EPPP_PP1A << 16

X_RFBYTE_2P_1DAC2

%1010_0000_0000_0000 << 16
%1010_DDDD_EPPP_P@OA << 16

X_RFBYTE_4P_4DAC1

%1010_0000_0000_0010 << 16
%1010_DDDD_EPPP_PO1A << 16

X_RFBYTE_4P_2DAC2

%1010_0000_0000_0100 << 16
%1010_DDDD_EPPP_P10A << 16

X_RFBYTE_4P_1DAC4

%1010_0000_0000_0110 << 16
%1010_DDDD_EPPP_0110 << 16

X_RFBYTE_8P_4DAC2

%1010_0000_0000 0111 << 16
%1016_DDDD_EPPP_0111 << 16

X_RFBYTE_8P_2DAC4

%1010_0000_0000_1110 << 16
%1010_DDDD_EPPP_1110 << 16

X_RFBYTE_8P_1DAC8

%1010_0000_0000_1111 << 16
%1010_DDDD_EPPP_1111 << 16

X_RFWORD_16P_4DAC4

%1011_0000_0000_0000 << 16
%1011_DDDD_EPPP_0000 << 16

X_RFWORD_16P_2DAC8

%1011_0000_0000_0001 << 16
%1011_DDDD_EPPP_0@01 << 16

X_RFLONG_32P_4DAC8

RDFAST — RGB — Pins / DACs

%1011_0000_0000_0010 << 16
%1011_DDDD_EPPP_0010 << 16

X_RFBYTE_LUMAS

%1011_0000_0000_0011 << 16
%1011_DDDD_EPPP_0011 << 16

X_RFBYTE_RGBI8

%1011_0000_0000_0100 << 16
%1011_DDDD_EPPP_0100 << 16

X_RFBYTE_RGBS

%1011_0000_0000_0101 << 16
%1011_DDDD_EPPP_0101 << 16

X_RFWORD_RGB16

%1011_0000_0000 0110 << 16
%1011_DDDD_EPPP_0110 << 16

X_RFLONG_RGB24

Pins — DACs / WRFAST

%1100_0000_0000_0000 << 16
%1100_DDDD_WPPP_PPPA << 16

X_1P_1DAC1_WFBYTE

%1101_0000_0000_0000 << 16
%1101_DDDD_WPPP_PPOA << 16

X_2P_2DAC1_WFBYTE

%1101_0000_0000_00106 << 16
%1101_DDDD_WPPP_PP1A << 16

X_2P_1DAC2_WFBYTE

%1110_0000_0000_0000 << 16
%1110_DDDD_WPPP_P@RA << 16

X_4P_4DAC1_WFBYTE

%1110_0000_0000_0010 << 16
%1110_DDDD_WPPP_P@1A << 16

X_4P_2DAC2_WFBYTE

%1110_0000_0000_0100 << 16
%1110_DDDD_WPPP_P10A << 16

X_4P_1DAC4_WFBYTE

%1110_0000_0000_0110 << 16

X_8P_4DAC2_WFBYTE

Parallax Spin2 Documentation Page 48 of 52

%1110_DDDD_WPPP_0110 << 16

%1110_0000_0000_0111 << 16 X_8P_2DAC4_WFBYTE
%1110_DDDD_WPPP_0111 << 16

%1110_0000_0000_1110 << 16 X_8P_1DAC8_WFBYTE
%1110_DDDD_WPPP_1110 << 16

%1110_0000_0000_1111 << 16 X_16P_4DAC4_WFWORD
%1110_DDDD_WPPP_1111 << 16

%1111_0000_0000_0000 << 16 X_16P_2DAC8_WFWORD
%1111_DDDD_WPPP_00@0 << 16

%1111_0000_0000 0001 << 16 X_32P_4DAC8_WFLONG
%1111_DDDD_WPPP_0001 << 16

ADCs / Pins — DACs /| WRFAST

%1111_0000_0000_0010 << 16 X_1ADC8_OP_1DAC8_WFBYTE
%1111_DDDD_W@0O_0010 << 16

%1111_0000_0000_0011 << 16 X_1ADC8_8P_2DACS_WFWORD
%1111_DDDD_WPPP_0@11 << 16

%1111_0000_0000_0100 << 16 X_2ADC8_6P_2DAC8_WFWORD
%1111_DDDD_We@®_0100 << 16

%1111_0000_0000_0101 << 16 X_2ADC8_16P_4DAC8_WFLONG
%1111_DDDD_WPPP_0101 << 16

%1111_0000_0000_0110 << 16 X_4ADC8_OP_4DAC8_WFLONG
%1111_DDDD_W@0O_0110 << 16

DDS / Goertzel

%1111_0000_0000_0111 << 16 X_DDS_GOERTZEL_SINC1
%1111_DDDD_@PPP_P111 << 16

%1111_0000_1000_0111 << 16 X_DDS_GOERTZEL_SINC2
%1111_DDDD_1PPP_P111 << 16

Sub-Fields

DAC Channel Outputs

%XXXX_DDDD_XXXX_XXXX << 16

%0000_0000_0000_0000 << 16 X_DACS_OFF (default)
%0000_0001_0000_0000 << 16 X_DACS_© 0 0 0o
%0000_0010_0000_0000 << 16 X_DACS_X_X_0_0
%0000_0011_0000_0000 << 16 X_DACS_0_0_X_X
%0000_0100_0000_0000 << 16 X_DACS_X_X_X_©
%0000_0101_0000_0000 << 16 X_DACS_X_X_0 X
%0000_0110_0000_0000 << 16 X_DACS_X_0_X_X
%0000_0111_0000_0000 << 16 X_DACS_0_X_X_X
%0000_1000_0000_0000 << 16 X_DACS_ONo_oNo
%0000_1001_0000_0000 << 16 X_DACS_X_X_0No
%0000_1010_0000_0000 << 16 X_DACS_ONO_X_X
%0000_1011_0000_0000 << 16 X_DACS_1 . 0_1 0
%0000_1100_0000_0000 << 16 X_DACS_X_X_1 ©
%0000_1101_0000_0000 << 16 X_DACS_1 0 X X
%0000_1110_0000_0000 << 16 X_DACS_1N1_0oNe
%0000_1111_0000_0000 << 16 X_DACS_3_2_1. 0

Pin Output Control
BXXXX_XXXX_EXXX_XXXX << 16
%0000_0000_0000_0000 << 16 X_PINS_OFF (default)
%0000_0000_1000_0000 << 16 X_PINS_ON

Write Control

BXXXX_XXXX_WXXX_XXXX << 16
%0000_0000_0000_0000 << 16 X_WRITE_OFF (default)
%0000_0000_1000_0000 << 16 X_WRITE_ON
Alternate Order for 1/2/4 bits
FBXXXX_XXXX_XXXX_XXXA << 16
%0000_0000_0000_0000 << 16 X_ALT_OFF (default)

%0000_0000_0000_0001 << 16 X_ALT_ON

Built-In Symbols for Events and Interrupt Sources (PASM only, see silicon doc)

Symbol Value Symbol Name Details
0 EVENT_INT / INT_OFF Interrupt-occurred event or interrupts off
1 EVENT_CT1 CT-passed-CT1 event
2 EVENT_CT2 CT-passed-CT2 event
3 EVENT_CT3 CT-passed-CT3 event
4 EVENT_SE1 Selectable event 1
5 EVENT_SE2 Selectable event 2

Parallax Spin2 Documentation Page 49 of 52

6 EVENT_SE3 Selectable event 3

7 EVENT_SE4 Selectable event 4

8 EVENT_PAT INA/INB pattern match/mismatch event
9 EVENT_FBW Hub FIFO block-wrap event

10 EVENT_XMT Streamer command-empty event

11 EVENT_XFI Streamer command-finished event

12 EVENT_XRO Streamer NCO-rollover event

13 EVENT_XRL Streamer-read-last-LUT-location event
14 EVENT_ATN Attention-requested event

15 EVENT_QMT GETQX/GETQY-on-empty event

Built-In Symbols for COGINIT Usage

COGINIT Symbol Value

Symbol Name

Details

%00_0000 COGEXEC (default) Use "COGEXEC + CogNumber" to start a cog in cogexec mode

%10_0000 HUBEXEC Use "HUBEXEC + CogNumber" to start a cog in hubexec mode

%01_0000 COGEXEC_NEW Starts an available cog in cogexec mode

%11_0000 HUBEXEC_NEW Starts an available cog in hubexec mode

%01_0001 COGEXEC_NEW_PAIR Starts an available eve/odd pair of cogs in cogexec mode, useful for LUT sharing
%11_0001 HUBEXEC_NEW_PAIR Starts an available eve/odd pair of cogs in hubexec mode, useful for LUT sharing

Built-In Symbol for COGSPIN Usage

COGINIT Symbol Value

Symbol Name

%01_0000

NEWCOG

Starts an available cog

Built-In Numeric Symbols

Symbol Value Symbol Name Details
$0000_0000 FALSE Same as 0
$FFFF_FFFF TRUE Same as -1
$8000_0000 NEGX Negative-extreme integer, -2_147_483_648 ($8000_0000)
$7FFF_FFFF POSX Positive-extreme integer, +2_147_483_ 647 ($7FFF_FFFF)
$4049_OFDB PI Single-precision floating-point value of Pi, 3.14159265

Command Line options for PNut.exe

Command

Compile
with
DEBUG

Compile

with
Flash

Compile

and save
OBJ & BIN

Download

Start
DEBUG

Action

ERROR.TXT file afterwards
(file will contain one of these lines)

pnut Start PNut.exe. okay
pnut filename Load filename (.spin2 extension is okay
assumed, but not enforced).
pnut filename -c V Load filename and compile, then exit. okay
<filename_path>:<line_number>:error:<error_message>
pnut filename -cd V V Load filename and compile with okay
DEBUG, then exit. <filename_path>:<line_number>:error:<error_message>
pnut filename -cf V V Load filename and compile with flash okay
loader, then exit. <filename_path>:<line_number>:error:<error_message>
pnut filename -cb V V V Load filename and compile with both okay
DEBUG and flash loader, then exit. <filename_path>:<line_number>:error:<error_message>
pnut filename -r V V Load filename, compile, download, okay
then exit. <filename_path>:<line_number>:error:<error_message>
serial_error
pnut filename -rd V Load filename, compile with DEBUG, okay

4

4

download, start DEBUG, then exit

<filename_path>:

<line_number>:

error:

<error_message>

Parallax Spin2 Documentation Page 50 of 52

when the DEBUG window is closed. serial_error

pnut filename -f

<

<

Load filename, compile with flash okay
loader, download, then exit.

<

serial_error

pnut filename -fd

Load filename, compile with both okay
DEBUG and flash loader, download,
start DEBUG, then exit when the
DEBUG window is closed.

serial_error

pnut -debug
{CommPort}
{BaudRate}

V Open CommPort (default = 1) at okay
BaudRate (default = 2_000_000), start | serial_error
DEBUG, then exit when the DEBUG

<filename_path>:<line_number>:error:<error_message>

<filename_path>:<line_number>:error:<error_message>

window is closed.

Included Batch File to invoke PNut.exe and return status to STDOUT, STDERR, and ERRORLEVEL

PNUT_SHELL.BAT File

Batch File Line Descriptions

@echo off
set ERROR_FILE=error.txt
if exist %ERROR_FILE% del /q /f %ERROR_FILE%
if exist %1 set GOOD_SRC=1
if exist %1.spin2 set GOOD_SRC=1
if defined GOOD_SRC (
pnut_v39 %1 %2 %3
set pnuterror = %ERRORLEVEL%
for /f "tokens=*" %%i in (%ERROR_FILE%) do echo %%i 1>&2
) else (
set pnuterror=-1
echo "Error: File NOT found - %1" 1>&2

)

exit %pnuterror’%

Cancel echo to console.

Set ERROR.TXT filename.

If ERROR.TXT exists, delete it.

Check first parameter for a valid source file.

Check first parameter for a valid .spin2 source file.

IF source file exists

...Invoke PNut with passed parameters. Example: pnut_shell filename -r
...Capture ERRORLEVEL from PNut (0 = okay, 1 = error).
...Copy ERROR.TXT file to STDOUT and STDERR.

ELSE

...Set file-not-found error.

...Return file-not-found error message to STDOUT and STDERR.

Return ERRORLEVEL. Change to 'exit /b %pnuterror%' to maintain the console window.

Clock Setup

To establish the initial clock setup for your program, you can declare certain symbols which the compiler will look for to determine your setup. These symbols must be defined in

one of the following combinations:

*

CON symbol declarations HUBSET
(numbers are for example, can vary) %CC_SS **
CON _clkfreq = 250 000 000 Selects XI/XO-crystal-plus-PLL mode, assumes 20 MHz crystal. 10 11
The optimal PLL setting will be computed to achieve _clkfreq.
Compilation fails if _clkfreq £ _errfreq is unachievable. *
CON _xtlfreq = 12_000_000 Selects XI/XO-crystal-plus-PLL mode, along with frequencies. 1x_11
_clkfreq = 148 500 000 The optimal PLL setting will be computed to achieve _clkfreq.
Compilation fails if _clkfreq £ _errfreq is unachievable. *
CON _xinfreq = 32_000_000 Selects Xl-input-plus-PLL mode, along with frequencies. 01 11
_clkfreq = 297_500_ 000 The optimal PLL setting will be computed to achieve _clkfreq.
Compilation fails if _clkfreq £ _errfreq is unachievable. *
CON _xtlfreq = 16_000_000 Selects XI/XO-crystal mode and frequency. 1x_10
CON _xinfreq = 100_000_000 Selects Xl-input mode and frequency. 01_10
CON _rcslow Selects internal RCSLOW oscillator which runs at ~20 KHz. 00_01
CON _rcfast Selects internal RCFAST oscillator which runs at 20 MHz+. 00_00
No symbol and not DEBUG mode Selects internal RCFAST oscillator which runs at 20 MHz+. 00_00
No symbol and DEBUG mode Selects XI/XO-crystal mode and 20 MHz to facilitate DEBUG. 10_10
(new in v44)

The _errfreq declaration is optional, since _errfreq defaults to 1_000_000.

** If _xtlfreq >= 16_000_000 then x=0 for 15pF per XI/XO, else x=1 for 30pF per XI/XO.

During compilation, two constant symbols are defined by the compiler, whose values reflect the compiled clock setup:

Symbol Description

The compiled clock mode, settable via HUBSET.

clkmode_

For Spin2 programs, HUBSET will be invoked with 'clkmode_' before your program starts, in
order to set the compiled clock mode. The 'clkmode_' value will also be stored in the hub
variable 'clkmode'.

For pure PASM programs, 'clkmode_' can be used to set the clock mode away from its initial
RCFAST setting to any crystal/PLL compiled setting, as follows:

HUBSET ##clkmode_ & !3
WAITX ##20_000_000/100
HUBSET ##clkmode_

'start crystal/PLL, stay in RCFAST
'wait 1ems
'switch to crystal/PLL

The 'clkmode_' value may differ in each file of the application hierarchy. Files below the top-level
file do not inherit the top-level file's value.

Parallax Spin2 Documentation Page 51 of 52

clkfreq_ The compiled clock frequency.

e For Spin2 programs, the 'clkfreq_' value will be stored in the hub variable 'clkfreq'.

For pure PASM programs, 'clkfreq_' may be referenced only as a constant.

e The 'clkfreq_' value may differ in each file of the application hierarchy. Files below the top-level
file do not inherit the top-level file's value.

For Spin2 programs, two hub variables are maintained which reflect the current clock setup:

Spin2 Variables Description

clkmode The current clock mode, located at LONG[$40]. Initialized with the 'clkmode_' value.

clkfreq The current clock frequency, located at LONG[$44]. Initialized with the 'clkfreq_' value.

e For Spin2 methods, these variables can be read and written as 'clkmode' and 'clkfreq'.
Rather than write these variables directly, it's much safer to use:
CLKSET(new_clkmode, new_clkfreq)
This way, all other code sees a quick, parallel update to both 'clkmode' and 'clkfreq’, and the
clock mode transition is done safely, employing the prior values, in order to avoid a potential

clock glitch.

e For PASM code running under Spin2, these variables can be read and written as follows:

RDLONG x,#@clkmode 'read clkmode into x
WRLONG X, #@clkmode 'write x to clkmode
RDLONG x,#@clkfreq 'read clkfreq into x
WRLONG X, #@clkfreq 'write x to clkfreq
SETQ #2-1 ‘read clkmode and clkfreq into x and x+1

RDLONG x,#@clkmode

SETQ #2-1 'write x and x+1 to clkmode and clkfreq
WRLONG x,#@clkmode

For PASM-only programs, there is a special instruction named ASMCLK which will set the clock mode specified by the clock setup symbols. ASMCLK has no operands, but
may be used with a conditional prefix. ASMCLK will assemble to one or six PASM instructions, depending upon the clock mode.

ASMCLK is no longer needed at the start of PASM-only programs, since a small clock-setter program will be automatically prepended to PASM-only programs which use any
non-RCFAST (RCFAST is default) clock mode. This clock-setter program will set the clock mode, move the PASM program into position, then execute it.

CON declarations HUBSET ASMCLK assembles to:
(numbers are for example, can vary) %CC_SS
CON _clkfreq = 250_000_000 10_11
CON _xtlfreq = 12_000_000 1x_11
_clkfreq = 148_500_000
HUBSET ##clkmode_ & !%11 'start external clock, stay in RCFAST mode
WAITX ##20 000 000/100 'allow 10ms for external clock to stabilize
CON _xinfreq = 32_000 000 01_11 HUBSET ##clkmode_ 'switch to external clock mode
_clkfreq = 297_500_000
CON _xtlfreq = 16_000_000 1x_10
CON _xinfreq = 100_000_000 e1_10
CON _rcslow 00 _01 HUBSET #1 'switch to RCSLOW mode
CON _rcfast 00_00 HUBSET #9 'stay in RCFAST mode

Parallax Spin2 Documentation Page 52 of 52

