
Catalyst
Operating System

Reference Manual

Catalina C Catalyst Reference Manual

Table of Contents
What is Catalyst?... 4

Status... 4
Features... 4
License... 5

Installing Catalyst... 5
Overview.. 5

Catalyst Directory Structure... 6
Building Catalyst from Source.. 6
Catalyst HMI options.. 7
Compiling Programs for Catalyst..9

Compiling C programs to run under Catalyst... 9
Compiling SPIN programs to run under Catalyst..10

Using Catalyst.. 11
Using the Catalyst Loader.. 11
Catalyst File Extensions... 12
Catalyst Program Size Limits... 13
The SDCARD Memory Mode (SMM)... 14
Catalyst Commands... 15

Catalyst Built-in Commands... 15
CLS...15

Catalyst External Commands...15
HELP.. 15
LS... 15
MV.. 16
RM.. 16
CP...17
MKDIR.. 17
RMDIR..18
CAT...18

Catalyst Lua Scripts... 19
Wildcard Support..19
Catalyst Optional Commands...20

BOOTn.m... 20
RESETn.m..21

Catalyst Auto-Execution... 21
Catalyst Scripting... 22
Catalyst Applications.. 23

DUMBO BASIC.. 23
LUA...23

Copyright 2013 Ross Higson Page 2 of 41

Catalina C Catalyst Reference Manual

MLUA..24
JZIP.. 25
PASCAL..25
SUPER STAR TREK.. 26
VI.. 26
YMODEM... 26
CATALINA...28
BCC.. 33
P2ASM... 33

Propeller 1 Platform-specific Notes..35
C3...35
DracBlade...35
Hydra..36
Hybrid... 36
RamBlade...37
TriBladeProp.. 37
SuperQuad and RamPage...38
Progress Messages on Multi-Prop platforms... 38

Propeller 2 Platform-specific Notes..39
P2 EDGE..39

Catalyst Development.. 41
Reporting Bugs...41
If you want to help develop Catalyst...41
Okay, but why is it called “Catalyst”?..41
Acknowledgments.. 41

Copyright 2013 Ross Higson Page 3 of 41

Catalina C Catalyst Reference Manual

​ What is Catalyst?
Catalina is an SD card-based program loader, plus a set of utility programs for the
Parallax Propeller. Catalyst supports both the Propeller 1 and the Propeller 2.
When used as intended, Catalyst looks very much like a fully functional Propeller
operating system. However, strictly speaking, Catalyst is just a program loader – it is
not really a true operating system because it does no resource management –
however, it can be used to load programs that do perform various common resource
management tasks – it even comes with a few – e.g. various utilities for doing SD
card file management.
While it can be used with any Propeller programs, Catalyst is specifically intended to
facilitate loading and using programs compiled with the Catalina C compiler.
Catalyst comes with various applications that can be used for self-hosted Propeller
development, including the vi text editor, and such tools as a BASIC interpreter, a
Pascal compiler and interpreter, and the Lua scripting language. It even comes with
a version of Catalina itself, that can be used to compile C programs on Propeller 2
platforms with supported PSRAM. It could also be used to edit, compile and then run
SPIN programs using the Sphinx SPIN compiler (not included – see
http://www.sphinxcompiler.com/).

​ Status
This is a full release of Catalyst. It supports both the Propeller 1 and the Propeller 2,
but it requires a Propeller platform with an SD Card.

​ Features
● Compatible with any Propeller 1 or Propeller 2 platform that supports Catalina

and has an SD card available (e.g. Hydra, Hybrid, TriBladeProp, RamBlade,
DracBlade, C3, P2_EVAL, P2_EDGE);

● Support for SPIN or Catalina CMM (Compact Memory Mode) or LMM (Large
Memory Mode) programs on any supported Propeller 1 platform;

● Support for SMM (SDCARD Memory Mode) and EMM (EEprom Mode) on the
Propeller 1, which maximizes the memory available to Catalina CMM and
LMM programs on any supported Propeller 1 platform;

● Support for Catalina CMM, LMM or NMM (Native Memory Mode) programs on
any supported Propeller 2 platform;

● Support for Catalina XMM (External Memory Mode) programs on any
supported Propeller 1 or Propeller 2 platform equipped with external XMM
RAM (e.g. Hybrid, TriBladeProp, RamBlade, DracBlade, C3, P2_EVAL,
P2_EDGE);

● Support for multi-CPU platforms (e.g. TriBladeProp);
● Support for serial, TV or VGA Human Machine Interface on any supported

Propeller 1 or Propeller 2 platform;

Copyright 2013 Ross Higson Page 4 of 41

http://www.sphinxcompiler.com/

Catalina C Catalyst Reference Manual

● Provides familiar SD card file management commands (e.g. ls, cp, mv, rm,
mkdir, rmdir);

● Provides the vi full-screen text editor (requires a VT100 compatible terminal
emulator if used with a serial HMI, such as Catalina’s payload program loader
executing in interactive mode);

● Supports self-hosted Propeller development (in Pascal, Basic and Lua) on the
Propeller 1 and Propeller 2;

● Supports self-hosted Propeller development (in C) on the Propeller 2;
● Supports Lua scripting – Lua scripts can be executed directly from the

command line;
● Supports passing command line parameters to both C programs and Lua

scripts and to SPIN or SPIN2 programs;
● Supports the YModem serial file transfer protocol, for transferring text and

binary files between the Propeller and a PC;
● Supports auto-execution of command scripts on reboot and script execution

from the command-line or from C or Lua;

​ License
All components of Catalyst are free and open source. Many of the components are
licensed under the MIT license. Others are free but are licensed under the GNU
General Public License, or other terms and conditions. All licenses are open-source,
and free for non-commercial use – however, they are subject to various copyright
and other conditions and you should consider the license terms of each component
before using any of them in a commercial application.

​ Installing Catalyst

​ Overview
Catalyst is now only released as part of Catalina, and requires no further installation
– but you must still build the appropriate binaries for your Propeller platform.
The Catalyst files will be in the catalyst folder. If you installed Catalina in its default
location, this will be as follows:

Under Windows: C:\Program Files (x86)\Catalina\demos\catalyst
Under Linux: /opt/catalina/demos/catalyst

Copyright 2013 Ross Higson Page 5 of 41

Catalina C Catalyst Reference Manual

​ Catalyst Directory Structure
The directory structure for Catalyst should be similar to the following:

Catalina
|
+--- demos

|
+ catalyst
| |
. +--- bin
. |
. +--- catalina

|
+--- core
|
+--- demo
|
+--- dumbo_basic
|
+--- fymodem
|
+--- jzip
| |
| +--- doc
|
+--- lua-5.4.4
| |
| +--- doc
| +--- etc
| +--- src
| +--- test
|
+--- pascal
| |
| +--- p5_c
| +--- p5_pascal
| +--- ptoc
|
+--- sst
|
+--- xvi-2.51

|
+--- doc
+--- src

​ Building Catalyst from Source
If you have write permission to the Catalina installation folders, you can compile
Catalyst in-place. Otherwise, you should copy either the entire demos folder, or just
the Catalyst folder, to your own user directory and compile Catalyst there.
The catalyst directory contains a build_all script that can be used to build Catalyst
for all platforms. For example, some commands to build Catalyst would be:

build_all HYBRID VT100
build_all TRIBLADEPROP CPU_2 PC VT100
build_all C3 CACHED_1K FLASH TTY VT100 OPTIMIZE
build_all P2_EVAL TTY VT100 MHZ_200
build_all P2_EVAL COMPACT SIMPLE VT100 OPTIMIZE MHZ_200
build_all P2_EVAL LORES_VGA COLOR_4 OPTIMIZE MHZ_200
build_all P2_EDGE SIMPLE VT100 COMPACT OPTIMIZE MHZ_200

Copyright 2013 Ross Higson Page 6 of 41

Catalina C Catalyst Reference Manual

Building Catalyst and its demo programs requires that you have a version of make
installed. Note that the Windows Catalina installer can install make when you install
Catalina if you do not already have it installed.
Do not specify a memory model on the command line when compiling Catalyst for a
Propeller 1 platform. When compiling for a Propeller 2, you can specify a memory
model (e.g. COMPACT, TINY, NATIVE) on the command line, but note that even if
you do, some parts of Catalyst will always be built using COMPACT mode to save
memory (e.g. Lua). If your platform requires a special build, you may need to build
each Catalyst component separately.
There is an interactive script called build_catalyst which will prompt for arguments.
It is intended mainly to be invoked from the Catalina Geany Integrated Development
Environment (see the document Getting Started with the Catalina Geany IDE for
more details) but it can also be used from the command line.
The build_all script copies all Catalyst binaries and example programs to catalyst's
bin folder, ready to be copied to an SD Card.
On the Propeller 1, you can use payload to program Catalyst into EEPROM. Note
that because the file in the bin directory has been renamed to be CATALYST.BIN
(because DOSFS requires MSDOS 8.3 file names) you need to use the -o1 option to
payload, otherwise it will assume the binary is for a Propeller 2 (because it now has
a .bin extension). For instance, use a payload command like:

payload -o1 -e catalyst.bin

In the same command you can also specify that payload open an interactive
terminal to interact with Catalyst:

payload -o1 -e catalyst.bin -b115200 -i

See the README.TXT file in the demos/catalyst directory for more details, and also
the README files in each of the subdirectories.

​ Catalyst HMI options
Catalyst can be built using any of the usual Catalina HMI options supported by the
platform, such as TTY, LORES_TV, HIRES_TV, LORES_VGA, HIRES_VGA etc.
Also, note that just because Catalyst is built to use a specific HMI option does not
mean that the programs it loads must use the same option, and this includes the
various Catalyst utility programs. For example, Catalyst might be compiled to use a
LORES_VGA option itself, but then be used to load programs that use HIRES_VGA.
Or vice-versa.
However, note that some of the Catalyst demo programs work best using either a
serial HMI option (e.g. TTY or PC on the Propeller 1, or TTY or SIMPLE on the
Propeller 2) and a VT100 terminal emulator (such as payload), or when using the
HIRES_TV or HIRES_VGA options.
Also, memory limitations on the Propeller 1 means there are some specific things to
note about the HIRES HMI options, as follows.

Copyright 2013 Ross Higson Page 7 of 41

Catalina C Catalyst Reference Manual

Catalyst on the Propeller 1 can use the HIRES_VGA option. However, Hub RAM
limitations mean that Catalyst itself needs to be built as an EEPROM program, and
some of the Catalyst utilities may only work if they are built as LARGE programs.
This means that while Catalyst itself will work in HIRES_VGA mode on all platforms,
some utilities (such as cp & mv) may only work in HIRES_VGA mode on platforms
with XMM RAM.
To facilitate this, two options are available that can be used with the Catalyst
build_all scripts:

EEPROM_CATALYST specifies that the Catalyst binary should be built as
an EEPROM program.

LARGE_UTILITIES specifies that the Catalyst utilities should be built as
LARGE programs.

Whether you need to specify one or both of these options can depend on the HMI
option specified, but also on other options. For instance, if you need to use the cache
to access XMM RAM, then you will generally need to use both of these options to
build Catalyst in HIRES_VGA mode. For example, here is how you might build
Catalyst to use HIRES_VGA on the C3:

build_all C3 FLASH CACHED_1K HIRES_VGA EEPROM_CATALYST LARGE_UTILITIES

When you build Catalyst to use LORES_VGA or HIRES_TV HMI option, you may
also find that catalyst.binary exceeds the size of Hub RAM and in that case you need
to specify the EEPROM_CATALYST option, but you may not need the
LARGE_UTILITIES option – e.g:

build_all C3 FLASH CACHED_1K HIRES_TV EEPROM_CATALYST

Note that to program Catalyst into EEPROM when the CATALYST_EEPROM option
is used, you will need to run the build_utilities script to build the EEPROM loader,
and then use that with payload. For example, to build and load Catalyst to use
HIRES_VGA on the C3, you might use commands like:

cd demos\catalyst
build_all C3 FLASH CACHED_1K HIRES_VGA EEPROM_CATALYST LARGE_UTILITIES
build_utilities
payload -o1 EEPROM ..\bin\catalyst.bin

Note that these options are applicable only when using the Catalyst build_all scripts
and Makefiles – they are not Catalina symbols that can be used in other
circumstances (i.e. specifying -C EEPROM_CATALYST when compiling catalyst.c
manually will not have any effect. It is the Makefile that intercepts this symbol and
instead uses -C EEPROM, but only when building catalyst.binary).
On Propeller 2 platforms, and on Propeller 1 platforms where HIRES_VGA or
HIRES_TV is not specified, then both Catalyst itself and its utilities will be built as
COMPACT programs, and do not need either XMM RAM or special loaders.
If you want to use HIRES_VGA with Catalyst, but do not have a platform with XMM
RAM, you can do so – you may just need to rebuild some of the utilities to use

Copyright 2013 Ross Higson Page 8 of 41

Catalina C Catalyst Reference Manual

LORES_VGA. Just re-run the build_all script, and then copy the specific binaries
you want to use each time.

​ Compiling Programs for Catalyst
The main feature that Catalyst adds to existing programs is the ability to run them
from the SD card, and to accept command line parameters to be passed to them on
startup. This functionality is available both to Catalina C programs as well as SPIN
programs.

​ Compiling C programs to run under Catalyst
Nothing special is required to make C programs run under Catalyst. Any parameters
specified on the Catalyst command line will be available to the C program in the
normal argc and argv parameters.
An example program (demo.c) is contained in Catalyst's demo directory.
To compile the example program as an LMM program, use a command like:

catalina demo.c –lci -C C3
All Catalyst programs can also be compiled as CMM programs, which substantially
reduces their memory size. To do so, use a command like:

catalina demo.c –lci -C C3 -C COMPACT
For programs that do not need to accept command line parameters, the NO_ARGS
option can be specified during compilation – e.g.:

catalina demo.c –lci -C C3 -C NO_ARGS
Of course, in the case of the demo.c program, using this option makes the whole
program a bit pointless since printing out its arguments is all the demo program does
– but for some programs using this option can save a small amount of Hub RAM.
All the above applies also to the Propeller 2, provided you add the -p2 compiler
option. For example:

catalina demo.c –lci -C P2_EDGE -C COMPACT -p2

Note that Catalina uses. binary as the default file extension for binary files on the
Propeller 1, but. bin on the Propeller 2.
To compile a program to use the SDCARD Memory Mode (SMM) available on the
Propeller 1, the executable must have a .smm extension, so use commands like:

catalina demo.c –lci -C C3 -C SDCARD
mv demo.binary demo.smm

The advantage of the SDCARD Memory Mode on the Propeller 1 is that it uses a
two-phase loader, with all the plugins and the kernel itself loaded separately from the
C program. This means that on LMM platforms, a C program can use all the
available Hub RAM (at least up to 31kb) as application code space, instead of being
limited to what is left after all the plugins and the kernel itself are included (which can
be up to 16kb, or half the available Hub RAM!). Without SMM mode, the space
occupied by these is available as data space to the C program, but not as code
space. No special load options are required on the Propeller 2.

Copyright 2013 Ross Higson Page 9 of 41

Catalina C Catalyst Reference Manual

​ Compiling SPIN programs to run under Catalyst
SPIN and SPIN2 programs can be compiled to be able to access some of Catalyst's
special features.
To enable Propeller 1 SPIN programs to interpret command line parameters passed
by Catalyst, a special SPIN module is provided called Catalyst_Arguments.spin.
A similar module is provided for Propeller 2 SPIN2 programs, called
Catalyst_Arguments.spin2.
An example program (demo.spin for the Propeller 1, or demo.spin2 for the
Propeller 2) is contained in the Catalyst/demo directory. To compile them, use a
SPIN or SPIN2 compiler such as the Parallax Propeller 2 tool to produce a binary
output. On the Propeller 1, you can also use the spinnaker spin compiler provided
with Catalina:

spinnaker demo.spin –b
Note that the example program must be manually modified to suit the platform on
which you intend to run it – by default the Propeller 1 demo is configured to run using
the TV output on a C3, and the Propeller 2 demo is configured to use the serial
output of the P2 EVAL or EDGE boards, at 230400 baud. The clock speed, pins and
perhaps the TV and video drivers will need to be manually modified to suit other
platforms (as is normal for Spin programs).
The Catalyst_Arguments module provides three methods:

init(buffer) buffer must point to a buffer of 1200 bytes (300 longs). This
method must be called before any of the other argument
methods.

argc this function returns the number of arguments (which may be
zero).

argv(i) this function returns a pointer to a zero terminated string that
contains the ith command line argument.

Note that if you run the demo programs but give them no arguments, you will see
that argc is 0 (i.e. zero). This is a difference between the C and SPIN/SPIN2
command line processing. Catalyst does not start the CogStore if the program to be
executed is given no arguments – but while this is fine for Spin programs (which do
not generally expect any arguments anyway) it can cause problems with some C
programs, which generally expect argc/argv to have at least one argument. So if a
Catalina C program finds CogStore is not running on startup, it creates one "null"
argument.

Copyright 2013 Ross Higson Page 10 of 41

Catalina C Catalyst Reference Manual

​ Using Catalyst

​ Using the Catalyst Loader
The main Catalyst binary is intended to be executed in interactive mode whenever
the propeller is reset, to allow the interactive entry of commands.
On the Propeller 1 this means the main Catalyst executable is normally loaded into
EEPROM. On the Propeller 2 the same effect can be achieved by calling the
Catalyst binary _BOOT_P2.BIX. Catalyst can also be used in a non-interactive mode
as a stand-alone loader for Catalina programs in other Propeller operating systems –
see the section titled Catalyst Auto-Execution later in this document for more details
on this option.
Note that you can format an SD card as either FAT16 or FAT32 for use with Catalyst,
but the Propeller 2 can only boot from an SD card formatted as FAT32, not FAT16.
However, if Catalyst is programmed into FLASH RAM (e.g. using flash_payload)
and booted from there, programs can be executed from SD cards formatted as
FAT16 on both the Propeller 1 and 2.
When executed in interactive mode, Catalyst should display a simple banner line
similar to the following:

Catalyst v6.0
>

Where this prompt appears will differ depending on the Propeller platform. For
example, on the RAMBLADE the Catalyst HMI will by default use a serial terminal
emulator running at 115200 baud (e.g. on a PC), on the C3 it will appear by default
on the VGA display, and on the HYBRID Catalyst will a local TV display. The
P2_EVAL and P2_EDGE boards will default to using a serial terminal emulator at
230400 baud.
Catalyst may use either a serial terminal, or a local TV or VGA display and keyboard
depending on the configuration parameters used when Catalyst is compiled. See the
notes on each supported platform given later in this document.
When Catalyst is configured to use the PC serial terminal emulator HMI option, some
of the commands expect a VT100 compatible terminal emulator, such as Catalina’s
payload program loader in interactive mode.
At this point, Catalyst commands can be entered. Catalyst contains a few simple
built-in commands (e.g. dir, cat, help) described below, but most of the Catalyst
commands are external commands, loaded from the SD card.
Note that whenever the SD Card is removed and reinserted, Catalyst must be
restarted by rebooting the Propeller. Otherwise the SD file system access will not
work correctly.

Copyright 2013 Ross Higson Page 11 of 41

Catalina C Catalyst Reference Manual

​ Catalyst File Extensions
Catalyst can be used to load and execute normal SPIN binaries as well as Catalina
binaries. Generally, such files should be placed on the SD Card with a .bin extension
(the extension does not need to be specified when executing the program).
However, the main reason for using Catalyst is that it also knows how to load
Catalina XMM programs1, and Catalina SMM programs. On platforms that can
support Lua2, Catalina can also be used to directly execute Lua scripts. Here are the
rules Catalyst applies when loading and executing a command:

1. If the command matches the name of a built-in command, that command is
executed. Built-in commands are described elsewhere in this document.

2. If the command has a .lua or .lux extension, or matches a file with such an
extension, then Lua is loaded and the command is passed to Lua for
execution as a Lua script. By default, files with a .lux extension will be
executed with LUAX.BIN and files with a .lua extension will be executed with
LUA.BIN. If no extension is specified on the command line and files with both
extensions exist,. lux will be used.

3. If the command exactly matches the name of a file, then that file is loaded.
Otherwise, if the command has no extension, the loader looks for a filename
that matches the command with the following extensions added (in the order
shown), and it loads the first one it finds:

.bin

.bix (Propeller 2 only)

.xmm (Propeller 1 only)

.smm (Propeller 1 only)

.lmm (Propeller 1 only)
Catalyst will try two places when searching for each file name:

The root directory of the SD Card;
The bin directory of the SD Card (if one exists);

4. If the file has a .xmm extension, it is loaded as an XMM file;
5. If the file has a .smm extension, it is loaded as an SMM file;
6. If the file has any other extension, then on the Propeller 1 it is loaded as a

simple binary. On the Propeller 1 it will be assumed to be an LMM (or CMM)
file if it is 32 kb or under in size, or an XMM file if it is over 32 kb in size. On

2 Executing Lua requires either a Propeller 1 with sufficient XMM RAM, or a Propeller 2.

1 Note that when Catalyst is used to load XMM programs, both Catalyst and the XMM programs
must use the same cache and flash options. For instance, if Catalyst is compiled with the
options FLASH CACHED_1K, then so must all XMM programs (but note that they can be
SMALL or LARGE programs). Applies to the Propeller 1 only, and only to XMM programs, and
not to LMM, CMM, SMM, Spin or Lua programs.

Copyright 2013 Ross Higson Page 12 of 41

Catalina C Catalyst Reference Manual

the Propeller 2 all programs are loaded the same way (and should just have a
.bin or .bix extension).

Note that a binary file does not need to be a compiled C program – any valid
Propeller binary (e.g. a compiled Spin program) can be loaded using these rules.
All commands can have parameters. Lua and C programs know how to process
command-line parameters. For Spin programs on the Propeller 1, there is a Spin or
Spin2 module provided that can be used to process Catalyst command-line
parameters. See the Demo.spin or Demo.spin2 program in the demos/catalyst/demo
folder.

​ Catalyst Program Size Limits
Catalyst has a limit for the size of the programs it can load and execute. This is
determined by the size of the cluster list and the cluster size itself, and is critical
when loading large XMM programs.
The size of the cluster list is set (as MAX_FLIST_SIZE) in various places:

● Catalina_Common.spin in the Propeller 1 targets (target/p1, embedded/p1
and minimal/p1)

● constant.inc in the Propeller 2 target (target/p2)
● catalyst.h in the Catalyst source (demos/catalyst/core)

Note that these definitions must all match!
The default setting is for a maximum program size of 4Mb but this will only be
achieved when using a cluster size of 32k. For limits when using other cluster sizes,
see the table below:

Cluster Size Max Program Size

============ ================

512 bytes 64 kbyte

1 kbyte 128 kbyte

2 kbyte 256 kbyte

4 kbyte 512 kbyte

8 kbyte 1 Mbyte

16 kbyte 2 Mbyte

32 kbyte 4 Mbyte

It is generally recommended to format SD Cards as FAT32 and with a cluster size of
32 kilobytes, especially on the Propeller 2. Some of the Catalyst programs, such as
Catalina itself, have very large executables that will not be loadable otherwise.

Copyright 2013 Ross Higson Page 13 of 41

Catalina C Catalyst Reference Manual

​ The SDCARD Memory Mode (SMM)
The SMM memory mode is a unique feature of Catalyst. It allows Catalina LMM
programs on the Propeller 1 to make much more effective use of the Propeller’s
limited Hub RAM by loading the program in two phases. This means all plugins/cog
programs are loaded first, then the application program is loaded separately –
allowing up to 31kb to be used for Catalina application program code. Compare this
to normal programs (both Spin and Catalina LMM programs) where up to 16 kb of
Hub Ram may be needed simply to hold the programs to be loaded into the various
cogs – which makes this space unavailable for use as application program code at
run time (it can still be used as data space, but not as application code).
This means that using the SMM memory mode can almost double the amount of
code space available to Catalina LMM programs!
The SDCARD memory model is enabled by defining the SDCARD symbol on the
command line, and also by saving the program with a .smm extension (instead of a
.bin extension).
For example:

catalina othello.c –lc -C SDCARD
mv othello.binary othello.smm

A more detailed description of the SMM load process is given in the file
README.SMM_Loader in the main Catalina directory.
There are some limitations when using the SMM memory model:

​ SMM programs must be 31kb or less (less if they use plugins that allocate
buffer space in Hub RAM).

​ SMM programs will load the SD plugin even if the program would not normally
need it. This may mean the program requires one more cog than usual.

Copyright 2013 Ross Higson Page 14 of 41

Catalina C Catalyst Reference Manual

​ Catalyst Commands

​ Catalyst Built-in Commands
Some commands are built into the Catalyst loader itself so that they are always
available. They will work on any Propeller platform supported by Catalina.

​ CLS
Clear the screen.
For CLS to work correctly when using a serial HMI, a VT100 compatible
terminal emulator (such as payload in interactive mode) must be used.

​ Catalyst External Commands
The external commands may be normal SPIN programs or C programs. On Propeller
1 and 2 platforms with sufficient RAM to execute Lua, they may also be Lua scripts.
The C external commands will work on any Propeller platform supported by Catalina.
They do not require XMM RAM, but they depend on being loaded by Catalyst so that
command line arguments can be entered.

​ HELP
Display some simple help about Catalyst.

​ LS
list the details of a file or the contents of a directory.
This command accepts wildcards. See the WildCard Support section for
details.
syntax:

ls [options] [file_or_dir] ...
options:

-h or -? print help
-l long format listing
-l -l very long listing format
-r recursively list subdirectories
-d print diagnostics

e.g. to list the current (top level) directory:
ls

or
ls /

To list directory a/b/c:
ls a/b/c

For arguments that may be interpreted as files or directories, adding a trailing
/ ensures they will be treated as directories. For example:

ls bin -- list just the entry "bin" (if it exists)

Copyright 2013 Ross Higson Page 15 of 41

Catalina C Catalyst Reference Manual

ls bin/ -- list the contents of directory "bin" (if it exists)

​ MV
Move one file to another, or one or more files to a directory. If there are only
two arguments, and the target does not exist, you must tell mv whether the
target is supposed to be a file or a directory.
NOTE: mv is essentially a cp followed by an rm – with the rm only performed
if the copy succeeds. This means that there must be enough free space to
hold two complete copies of the file. It also means that like cp, mv can be
quite slow to execute.
This command accepts wildcards. See the WildCard Support section for
details.
syntax:

mv [options] src [src_ ...] target_file_or_directory
options:

-h or -? print help
-f force overwrite (if target is read-only)
-i interactive mode
-t target is a directory
-T target is a file
-d print diagnostics

e.g:
mv a.txt b.txt c.txt my_dir
mv a.txt b.txt

In interactive mode, this command will prompt before moving each file. Press
y or Y to process the specified file, a or A to process ALL files without further
prompting, or any other key to skip the specified file and continue with the
next file.

​ RM
Remove one or more files, optionally also removing directories. To remove
directories, use -f. To remove the contents of a directory as well as the
directory itself, use -r (recursive).
This command accepts wildcards. See the WildCard Support section for
details.
syntax:

rm [options] file_or_dir ...
options:

-h or -? print help
-f remove directories
-r recursive remove
-i interactive mode
-d print diagnostics

Copyright 2013 Ross Higson Page 16 of 41

Catalina C Catalyst Reference Manual

-k kill (suppress) information messages
-r recursive removal

e.g:
rm a/b.txt
rm a.txt b.txt

In interactive mode, this command will prompt before removing each file.
Press y or Y to process the specified file, a or A to process ALL files without
further prompting, or any other key to skip the specified file and continue with
the next file.

​ CP
Copy one file to another, or one or more files to a directory. If there are only
two arguments, and the target does not exist, you must tell cp whether the
target is supposed to be a file or a directory.
This command accepts wildcards. See the WildCard Support section for
details.
syntax:

cp [options] src [src_ ...] target_file_or_directory
options:

-h or -? print help
-f force overwrite (if target is read-only)
-i interactive mode
-t target is a directory
-T target is a file
-d print diagnostics

e.g:
cp a.txt b.txt c.txt my_dir
cp a.txt b.txt

In interactive mode, this command will prompt before copying each file. Press
y or Y to process the specified file, a or A to process ALL files without further
prompting, or any other key to skip the specified file and continue with the
next file.

​ MKDIR
Make one or more directories, optionally making each parent directory in turn
if they do not exist.
syntax:

mkdir [options] directory ...
options:

-h or -? print help
-p create parent directories if required
-d print diagnostics

Copyright 2013 Ross Higson Page 17 of 41

Catalina C Catalyst Reference Manual

e.g:
mkdir a/b/c <- will make directory c only if a/b exists
mkdir -p a/b/c <- will make directories a, then a/b,

then a/b/c if they do not already exist

​ RMDIR
Remove one or more directories, optionally removing each parent directory
recursively (if they are empty).
syntax:

rmdir [options] directory ...
options:

-h or -? print help
-p remove parent directories if empty
-d print diagnostics

e.g. to remove directory c (but leave a and b intact):
rmdir a/b/c

To remove directory a/b/c, then a/b, then a (provided they are empty):
rmdir -p a/b/c

​ CAT
Display one or more text files on the display.
The external version of this command accepts wildcards. See the WildCard
Support section for details.
syntax:

cat [options] src [src ...]
options:

-h or -? print help
-i interactive mode (paged)
-d print diagnostics

e.g. to display two files, pausing at each page:
cat -i file1 file2

Copyright 2013 Ross Higson Page 18 of 41

Catalina C Catalyst Reference Manual

​ Catalyst Lua Scripts
On platforms with enough RAM to execute Lua, Catalyst can execute Lua scripts
directly from the command line, which makes it very easy to add new Catalyst
commands written in Lua. Catalyst provides three example scripts designed to
demonstrate this functionality:

​ list.lua – a simple directory listing program (similar to Unix "ls").
​ find.lua – a simple file searching program (similar to Unix "find").
​ freq.lua – a simple word frequency counting program.

You invoke Lua scripts from the Catalyst command line just like any other command.
You do not need to include the .lua extension. For example:

list <-- list file details of all files
list *.lua <-- list file details of Lua files
find *.bas PRINT <-- find PRINT statements in all BASIC files
freq *.txt <-- count word frequency in all text files

Note that Lua scripts can be compiled to improve load and execution times, but they
should still have the extension ".lua". You can also execute other Lua programs
directly from the command line. For example:

fact <-- execute the factorial example
star <-- execute the Lua version of Super Star Trek

​ Wildcard Support
The following Catalyst commands have wildcard support:

ls – list files and/or directories
rm – delete files or directories
cp – copy files
mv – move files
cat – concatenate and print files

The following wildcard syntax is accepted:
* matches zero or more characters
? matches any single character
[set] matches any character in the set
[^set] matches any character NOT in the set where a set is a group of

characters or ranges. a range is written as two characters
separated with a hyphen, so a-z denotes all characters between a
to z inclusive.

[-set] matches a literal hyphen and any character in the set
[]set] matches a literal close bracket and any character in the set

Copyright 2013 Ross Higson Page 19 of 41

Catalina C Catalyst Reference Manual

char matches itself except where char is '*' or '?' or '['
\char matches char, including any pattern character

Some wildcard examples:
Example: Matches:
a*c ac abc abbc ...
a?c acc abc aXc ...
a[a-z]c aac abc acc ...
a[-a-z]c a-c aac abc ...

Some actual command examples:
ls *.bin *.dat
mv [a-f]*.bin bin
rm ???.dat
cat *.bas

Note that wildcards can only be used in the file name portion of a path, not in the
directory portion, so you cannot specify an argument like /b??/*.* and expect it to
match bin/*.*
There is a Lua program provided (wild.lua) which can be used to add wildcard
support to any existing program that accepts multiple files as parameters. It requires
Lua support and Lua scripting enabled. Just edit wild.lua to specify the command.
For example, if the command specified in wild.lua is "vi" (which it is by default) then

luac -o xvi.lux wild.lua
will create a command xvi which can then be used on the command line to invoke vi
on multiple files – e.g:

xvi ex*.lua
will execute vi on all the Lua example files.

​ Catalyst Optional Commands
On platforms that contain multiple CPUs (such as the TRIBLADEPROP) it may also
be convenient to have the normal Catalina multi-CPU utilities loaded onto the
Catalyst SD card.
Note that the relevant Catalina utilities are called CPU_n_Boot.spin and
CPU_n_Reset.spin, but if you use the build scripts provided, they may end up being
called something like BOOTn.m (e.g. BOOT2.1).

​ BOOTn.m
Reboot the Propeller CPU n, loading the Catalina Generic SIO Binary Loader
so that another program can be loaded (note that this utility is compiled
specifically to be run on CPU m).
syntax:

boot_1
boot_2

Copyright 2013 Ross Higson Page 20 of 41

Catalina C Catalyst Reference Manual

boot_3

​ RESETn.m
Just reset the Propeller CPU n. Whatever program is loaded into EEPROM
will be run (note that this utility is compiled specifically to be run on CPU m).
syntax:

reset_1
reset_2
reset_3

​ Catalyst Auto-Execution
To facilitate the use of Catalyst as a loader from within other operating systems,
Catalyst can check on startup for the existence of the files EXECONCE.TXT and
AUTOEXEC.TXT3 (in that order) in the root directory of the SD Card. it can process
either one only or more than one command from these files.4

For backwards compatibility, Catalyst can optionally delete the AUTOEXEC.TXT file
after processing it, but it is now recommended to use the EXECONCE.TXT file if this
capability is required.
If the ONCE capability is enabled in Catalyst, and the file EXECONCE.TXT exists
when Catalyst starts, then one command will be read from that file (up to the first
zero byte, line terminator or EOF) and the command will be executed as a Catalyst
command – including parameters. If the MORE capability is not enabled, then the file
will then be deleted. If the MORE capability is enabled, then the command so
executed is then removed from the EXECONCE.TXT file, so that when the Propeller
is rebooted, the next command will be executed – see the next section for more
details on this capability. If the MORE capability is not enabled, the file is simply
deleted.
This functionality requires that the SD Card be writable to work correctly.
If Catalyst does not find EXECONCE.TXT and the AUTO capability is enabled, then
Catalyst looks for AUTOEXEC.TXT. If it finds that file, it will read one command out
of the file (up to the first zero byte, line terminator or EOF) and attempt to execute it
as a Catalyst command – including parameters. If the command execution fails,
Catalyst will enter interactive mode, otherwise the specified command (which may be
any SPIN or C program executable) will be run, with the specified command line
parameters. For example, the file may contain a command such as:

vi autoexec.txt
This would start the vi editor on the AUTOEXEC.TXT file itself!

4 Whether the AUTO, ONCE, MORE and DELETE capabilities are enabled can be configured in
catalyst.h. By default, AUTO and ONCE are enabled, but DELETE is not. MORE is enabled unless
the platform is a Propeller 1 and the HIRES_VGA option is specified, in which case there is not
quite enough Hub RAM, so to enable MORE you may need to disable something else.

3 These are the default names used. They can be modified in catalyst.c.

Copyright 2013 Ross Higson Page 21 of 41

Catalina C Catalyst Reference Manual

This facility allows other Propeller operating systems to load Catalina LMM, SMM, or
XMM programs without having to include the appropriate Catalina loader – Catalyst
already incorporates the code to load such programs, and is used strictly as a
non-interactive program loader. All the host operating system has to do is create an
appropriate AUTOEXEC.TXT file and execute Catalyst – which is a normal Propeller
executable.
When compiling Catalyst, you can optionally enable the DELETE capability, which
tells Catalyst to delete the AUTOEXEC.TXT file after it has been executed once.
This capability still exists, although it is now recommended to use the ONCE
capability instead.

​ Catalyst Scripting
If the Catalyst ONCE and MORE capabilities described in the previous section are
both enabled, then Catalyst can support very simple scripting.
For example, if you have a file called COMMANDS.TXT which contains all the
commands you want executed, then executing the Catalyst command:

cp command.txt execonce.txt
at the Catalyst prompt, or executing the Lua statement:

propeller.execute("cp command.txt execonce.txt")
will cause all the commands in the file to be executed in sequence. This assumes
that each command in the file reboots the Propeller when it has completed.
The vi text editor can also be used to create such a command file (which if it is called
EXECONCE.TXT will be executed as soon as vi exits) or the Lua execute function
can be used to easily add multiple commands to the file, one per line. For example,
executing the Lua statement:

propeller.execute("vi abc\n vi def")
will cause the propeller to first reboot and execute the command vi abc, and then
when vi exits, the propeller will reboot and execute the command vi def.
Note that this capability is enabled by default on both the Propeller 1 and the
Propeller 2, but on the Propeller 1 there may not be enough Hub RAM available,
depending on the HMI in use and other options selected. You may need to disable
either the MORE capability, or the LUA capability that allows Lua commands to be
executed directly from the command line (you can still execute them by specifying
them to Lua – e.g. by entering a command like lua list.lua instead of just list).
Note that when a script is executing, rebooting the Propeller will abort the command
being executed and restart Catalyst, but when Catalyst restarts it will resume the
script and execute the next command. To terminate an executing script, hold down
any key while rebooting the Propeller. A message like the following will appear:

Continue auto execution (y/n)?

Press Y to continue the script, or N to terminate it.

Copyright 2013 Ross Higson Page 22 of 41

Catalina C Catalyst Reference Manual

To assist in writing scripts, lines whose first character is a @ are not echoed (but the
@ is otherwise ignored) and lines with # as the first character are treated as
comments and not executed. The two can be combined as @#
For instance:

this line will be echoed but not executed
@# this line will be neither echoed nor executed
the following command will be not be echoed but will be executed:
@ls
the following command will be both echoed and executed:
ls

If enabled, the scripting capability applies to both the AUTOEXEC.TXT and
EXECONCE.TXT files. however, unlike the EXECONCE.TXT file, when the last
command in the AUTOEXEC.TXT file has been executed, the entire file will then be
re-executed.

​ Catalyst Applications
Catalyst provides a rich set of application programs. However, all the example
applications provided require XMM RAM to run on a Propeller 1. Some will run only
on platforms with 512k of XMM RAM or more installed. On the Propeller 2, which has
512kb of Hub RAM, all the application programs should run normally.
This section does not describe each application in detail – it only describes how to
run the application programs from the Catalyst command line. See the individual
application program documentation for more details on the application itself.

​ DUMBO BASIC
Load the Dumbo BASIC interpreter. Note that Dumbo BASIC is just an
interpreter – the programs must be created externally (e.g. using the vi text
editor).
syntax:

dbasic [basic_program.bas]
e.g:

dbasic eliza.bas
If no parameter is specified, dbasic will prompt for the name of the basic file to
execute.

​ LUA
Load the Lua interpreter (lua), the Lua execution engine (luax) or run the Lua
compiler (luac).
syntax:

lua [script [parameters]]
luac –o output_filename script
luax [script [parameters]]

e.g:

Copyright 2013 Ross Higson Page 23 of 41

Catalina C Catalyst Reference Manual

lua fact.lua
luac –o f.out fact.lua
luax f.out

If no file is specified to the lua command, commands can be entered directly
on the terminal.
The Lua interpreter (lua) can be used to execute both text lua programs, or
compiled lua programs. It can also be used interactively if no parameters are
specified.
The Lua execution engine (luax) does not load the Lua parser, and so it can
only be used to execute lua programs where all the Lua code to be executed
is pre-compiled.
The Lua compiler (luac) compiles a Lua program to byte code, which speeds
up loading – but the resulting file can be executed with lua or with luax.
NOTE: when using luac, if you omit the –o parameter (which must be the first
parameter) then lua will output the binary result to the file luac.out.
NOTE: Just because an example Lua program is included does not guarantee
it can be executed – on the Propeller 1 this depends on how much XMM RAM
is available, and some of the Lua examples will not execute correctly.

​ MLUA
Mlua is a version of Lua with Catalina's threads multi-processing module
compiled in. Size limitations mean mlua is supported only on the Propeller 2.
For more details, refer to the document Lua on the Propeller 2 with
Catalina.
Load the Multi-processing Lua interpreter (mlua), or the Multi-processing Lua
execution engine (mluax). Note that there is no Multi-processing Lua compiler
– the normal Lua compiler can also be used to compile Multi-processing Lua
programs.
syntax:

mlua [script [parameters]]
mluax [script [parameters]]

e.g:
mlua ex1.lua
mluax e.lua

If no file is specified to the mlua command, commands can be entered directly
on the terminal.
The Lua interpreter (mlua) can be used to execute both text lua programs, or
compiled lua programs. It can also be used interactively if no parameters are
specified.

Copyright 2013 Ross Higson Page 24 of 41

Catalina C Catalyst Reference Manual

The Lua execution engine (mluax) does not load the Lua parser, and so it can
only be used to execute lua programs where all the Lua code to be executed
is pre-compiled.
The Lua compiler (luac) compiles a Lua program to byte code, which speeds
up loading – but the resulting file can be executed with mlua or with mluax.
Note that there is no multi-processing version of the lua compiler – the normal
lua compiler (luac) can compile both normal Lua and Multi-processing Lua
programs.
NOTE: when using luac, if you omit the –o parameter (which must be the first
parameter) then lua will output the binary result to the file luac.out.

​ JZIP
Load the JZIP Infocom game interpreter. The number of rows and columns to
use for the screen size can be specified on the command line, but the game
will detect the actual screen size when local devices are used, and assume
80×24 when using the PC HMI option.
syntax:

jzip [-ccols] [-lrows] [game.dat]
e.g:

jzip zork1.dat
If no parameter is specified, jzip will prompt for the name of the game file to
execute.

​ PASCAL
Load the Pascal interpreter (pint), or run the Pascal compiler (pcom).
syntax:

pint [compiled_program]
pcom [program_to_compile [compiled_program]]

e.g:
pint startrek.p5
pcom startrek.pas startrek.p5

The output files from the compiler must be executed with the interpreter.
If no file is specified to the pcom or pint commands, the programs will prompt
for a file name.
By convention, the compiled version of the Pascal program prog.pas is
normally called prog.p5
In addition to a few sample programs, two precompiled programs are provided
– startrek.p5 and basics.p5. The first is yet another version of the classic
Star Trek game and the second is a basic interpreter. These programs are
provided compiled because they can each take several hours to compile on
the Propeller – even loading the precompiled programs can take a minute or
two.

Copyright 2013 Ross Higson Page 25 of 41

Catalina C Catalyst Reference Manual

​ SUPER STAR TREK
Play a game of Super Star Trek.
syntax:

sst
There are no parameters to this command. See the document sst.doc for
help.

​ VI
Load the XVI text editor (the binary is renamed to vi for convenience). The
program accepts various options – see the xvi documentation for more
details.
syntax:

vi [options] [filename ...]
e.g:

vi sample1.txt
A common option to specify is –s format=msdos or –s format=unix to
specify whether msdos or unix line termination is to be used (the default is
unis, so if you open an msdos file you may see extraneous ^M characters at
the end of each line).
If more than one filename is specified, vi will open the first two in separate
windows. After that, use :n (i.e. colon n) to move to the next file.
To exit vi, use :q (i.e. colon q). If you have modified the file but want to quit
anyway, use :q! (i.e. colon q exclamation mark).
Within vi you can type :help to get help, and :close to close the help window.

​ YMODEM
Use the Free YModem program, which implements the YMODEM serial file
transfer protocol to send text or binary files between the Propeller and the
Host PC. When Catalyst is built, it will build four executables – a stand-alone
send and receive program for the Propeller, and a stand-alone send and
receive program for the Host PC (either Windows or Linux).
Syntax (on the Propeller or the Host PC):

send [options] file

receive [options] [file]

options:
-h or -? print a helpful message and exit (-v for more help)
-b baud use specified baudrate
-B baud same as -b
-d diagnostic mode (-d again for more diagnostics)
-p port use port
-s msec small/slow mode - use 128 byte packets, msec char time

Copyright 2013 Ross Higson Page 26 of 41

Catalina C Catalyst Reference Manual

-t msec set general timeout in milliseconds
-v verbose mode (and include port numbers in help)
-x no exit mode (e.g. to read output)

e.g. on the Host:
send my_file.bin -s0 -b115200 -p11
receive -v -b 115200 -p11

e.g. on the Propeller:
send my_file.txt
receive

The main difference in options between the send and receive programs are
that file name is required for send, but is optional for receive, and the -s
option applies only to the send program.
The main difference in options between the Propeller and Host versions is
that the Propeller versions cannot specify the baud rate on the command line
– it must be pre-configured in the platform configuration files (on the Propeller
1, this is the file Extras.spin, on the Propeller 2 it is in the platform.inc file –
e.g. P2_EDGE.inc).
While YModem is quite reliable, serial communications can never be
guaranteed, so it is worth checking that the received file size matches the
sent file size. YModem is a self-correcting protocol that uses a 16 bit CRC
check on each block and re-transmits the block if an error is detected, so if
the file size matches it is highly unlikely there will be any errors in the file.
The Propeller send and receive programs will be copied to the
demos/catalyst/bin directory by the Catalyst build_all script, but the Host PC
executables are left in the demos/catalyst/fymodem directory. You may want
to manually copy them to Catalina's bin directory, or to the directory in which
they will be used.
Note that by default, the build_all script builds the Propeller executables with
the -C NO_HMI option, because if a serial HMI option is in use it would
interfere with the YMODEM protocol which generally uses the same serial
port as the serial HMI. However, if your Propeller uses another HMI option you
can edit the Makefile to remove the -C NO_HMI option with your own HMI
option (e.g. -C VGA). Without this, the -v -d and -h command line options,
which control the messages generated by the program, are a bit useless.
Typically, you use these by starting the Propeller end first (either send or
receive) and then the corresponding PC program (i.e. receive or send).
Currently, each YModem session only transfers a single file and then
terminates. The filename must be specified on the sending end, but is
optional on the receiving end – if not provided, the file name specified by the
sender will be used.

Copyright 2013 Ross Higson Page 27 of 41

Catalina C Catalyst Reference Manual

The file name can be up to 64 characters, and it can include a path – e.g.
myfolder/mysubfolder/myfile.txt. Such a name would be fine when transferring
a file between a Propeller and a Linux host, but not when transferring files
between a Propeller and a Windows Host, because Catalyst on the Propeller
uses / as a path separator, but Windows uses \ as a path separator. In such
cases, you must specify a suitable file name to the receiver as well as the
sender. Or only transfer files to and from the current directory on either side
so that no path is required.
You can terminate an executing receive or send program by manually
sending two successive [CTRL-X] characters.
The default baud rate for all programs is 230400 baud. This is fine on the
Propeller 2 but is generally too fast on the Propeller 1, where a baud rate of
115200 should be specified. Also, the Propeller 1's smaller serial buffer sizes
and slower serial plugins means the -s option must usually be specified for
the sender (the -s option applies ONLY to the sender). This option does two
things:

1. Tells the sender to only send 128 byte blocks, not 1024 byte blocks.
2. Adds a delay of the specified number of milliseconds between each

character sent – often -s0 will work fine, but if not try -s5, -s10 etc.
When the YMODEM program is executing, you may see C characters being
printed repeatedly in the terminal window – this is normal, and is how the
YMODEM send and receive programs synchronize with each other.
The payload loader has built-in support for the YModem protocol, which
means you use the stand-alone send and receive programs on the Propeller,
but on the host you can just use payload, or another terminal emulator that
supports YMODEM (such as minicom on Linux).
The payload loader must be used in interactive mode to use YModem, but
note that this does not mean that Catalyst has to be using a serial HMI option
– it can do so, but it does not have to do so. However, note that the send and
receive programs must not do so.
When using a terminal emulator that has YMODEM protocol support5, you
typically execute the send or receive on the Propeller first, and then initiate
the YModem transfer in the terminal emulator. For examples of using payload,
see the section on Catalina YModem Support section in the Catalina
Reference Manual.

5 For the Propeller 1, the terminal emulator must use 128 byte blocks, and not assume it can use
1024 byte blocks – i.e. it must be able to use YMODEM and not just YMODEM-1K. Some
programs (e.g Tera Term, ExtraPuTTY) assume they can always use 1024 byte blocks. If you use
the payload terminal emulator you can choose to use either.

Copyright 2013 Ross Higson Page 28 of 41

Catalina C Catalyst Reference Manual

​ CATALINA
Catalyst supports a self-hosted version of the Catalina C compiler. This is only
supported on Propeller 2 platforms with sufficient XMM RAM, such as
P2_EDGE with 32MB PSRAM installed (i.e. the P2-EC32MB) or a P2_EVAL
with the HyperRAM add-on board.
If it is installed, the self-hosted version of Catalina will be contained in the
following directories:

bin Catalina executables
include C include files
lib C libraries
target Catalina runtime support files
tmp a directory used to store temporary files

The executable files in the bin directory will include:
catalina.lua a Lua version of the PC catalina command, which

manages the compilation process.
binstats.lua a Lua program to print statistical information about a

binary file (code size, data size etc). This can be invoked
stand-alone, and is also used internally by Catalina.

cpp.bin C preprocessor. This is used internally by Catalina.
rcc.bin C compiler. This is used internally by Catalina.
bcc.bin Catalina binder and library manager (see the separate

description of this command, below)
spp.bin PASM preprocessor. This is used internally by Catalina.
p2asm.bin PASM assembler (see the separate description of this

command, below).
pstrip.bin a utility to reduce the size of PASM files. This is used

internally by Catalina.
xl_vi The vi text editor for very large files (the normal Catalyst

vi is fine for editing most C source files, but large C
source files (such as chimaera.c) or the intermediate files
generated by Catalina can be too large for it, so this XMM
LARGE version is also included.

The Lua version of the catalina command supports many but not all of the
command-line options of the PC version. Use the command catalina -? to
see what options are currently implemented.
You can compile C programs at the Catalyst prompt using the catalina
command, just as you would on a PC.

Copyright 2013 Ross Higson Page 29 of 41

Catalina C Catalyst Reference Manual

A selection of C demo programs is included. These programs are the same
as the PC-based Catalina demo C programs, but in some cases the names
have been changed to meet the Catalyst file naming limitations (i.e. to use
DOS 8.3 file names):

hello.c the classic C "Hello, World" program.
pintest.c a demo program to toggle an LED.
my_prog.c & my_func.c

programs used to demonstrate libraries (see the
description of the bcc command)

othello.c the othello (aka reversi) game.
startrek.c the classic Star Trek game.
chimaera.c an adventure game. Note that you will need to use xl_vi

to edit this file - it is too large for the normal Catalyst vi
program.

diners.c a demo of Catalina multi-threading.
station.c a demo of POSIX pthreads.
intrrpt.c a demo of interrupt handling.
psram.c a demo of using PSRAM.

You can compile the demo programs using the following commands:
catalina hello.c -lci -v

catalina othello.c -lci -v

catalina startrek.c -lc -lmc -v

catalina chimaera.c -lcx -lmc -v

catalina diners.c -lci -lthreads -v

catalina station.c -lci -lthreads -v -C NO_REBOOT

Note that some of the demo programs require the platform and/or specific
libraries to be specified to compile correctly:

catalina pintest.c -lci -C P2_EDGE -v

catalina psram.c -lci -lpsram -C P2_EDGE -v

catalina intrrpt.c -lci -lthreads -lint -C P2_EDGE -v

or
catalina pintest.c -lci -C P2_EVAL -v

catalina psram.c -lci -lhyper -C P2_EVAL -v

catalina intrrpt.c -lci -lthreads -lint -C P2_EVAL -v

The -v flag is optional in all cases, but is recommended.

Copyright 2013 Ross Higson Page 30 of 41

Catalina C Catalyst Reference Manual

The -C CR_ON_LF option can be added when using a VT100 terminal
emulator, or you can instead adjust the settings of your emulator to implicitly
execute a CR every time it receives an LF. Payload, Comms, PuTTY, and
Tera Term all have such a configuration option.
NOTE: Catalyst has a limit of 23 arguments that can be specified in a single
command, including in a command script. If this number is exceeded when
generating the compilation script, the catalina command will print the
message “too many command line arguments” and stop. This will usually
be because there are too many -C or -D options being specified. This limit
may be increased in a future Catalina release.
NOTE: Catalina has very large executable programs (rcc is over 2.5 Mbytes),
which means that it will only be executable on an SD card formatted as FAT32
and with a cluster size of 32Kb (see the section of this document titled
Catalyst Program Size Limits).
WARNING: The larger C demo programs can take a long time to compile.
Even the standard C "hello world" program (hello.c) takes almost 10 minutes.
Compiling the chimaera game (approx 5,500 lines of C code) takes around 2
hours. This is why the -v option is recommended - without it, there is no way
of telling that anything is actually happening until the compilation completes.
WARNING: There is currently no error detection done by the catalina
command, so if (for example) the wrong file name is specified in the
command, error messages may be generated during the compilation, but the
script will continue to execute all the sub-processes - but note that an
executing script can be terminated the by holding down any key and rebooting
the Propeller.
All the C demo programs are copied to the root directory, but it is worth noting
that neither the source nor the output needs to be in this directory. They
could, for example, be in a demos subdirectory. However, note that Catalina
has no concept of a 'current' directory, and will generally store its output in the
same directory as the source it is compiling. So, for instance to compile the
file hello.c if it was in a directory called demos, a command like the following
might be used6:

catalina -v demos/hello.c -lci

This command would leave its output (hello.bin) in the demos directory. This
means that to execute the output, the whole file name including the extension
has to be entered, since Catalina only automatically tries adding various
extensions to things that look like commands, and those must be either in the
root or bin directories.
So to execute it from the demos directory, use the following command:

demos/hello.bin

6 Remember that Catalyst uses / and not \ as the path separator - i.e. it is more
like Linux than Windows.

Copyright 2013 Ross Higson Page 31 of 41

Catalina C Catalyst Reference Manual

To store the output in the root or bin directories instead of the demos
directory, add an explicit -o option to the catalina command. For example:

catalina -v demos/hello.c -lci -o hello

or
catalina -v demos/hello.c -lci -o bin/hello

Now when the compilation is complete, the result will be in the root or bin
directory, and can be executed by just entering the command:

hello

Note that the -v (for verbose) option is generally recommended when using
catalina on the Propeller - it makes Catalyst echo each command in the script
as it is executed. Given that some compilations can take a long time, this
gives a useful indication of how far the compilation has progressed.
For example, here is the output that might be produced by the above catalina
command if -v is not included:

Catalina Version 6.0

code = 5380 bytes
cnst = 104 bytes
init = 332 bytes
data = 0 bytes
file = 14368 bytes

And here is the output that might be produced by the above catalina
command if -v is included:

Catalina Version 6.0
rm -k /tmp/hello.cpp /tmp/hello.rcc hello.s catalina.s
catalina.cmd /hello.bin
cpp -I/ -I/include -D_POSIX_SOURCE -D__STDC__=1
-D__STRICT_ANSI__ -D__extension__="" -D__cdecl=""
-D__signed__=signed -D__CATALINA__ -Dlibci -D__CATALINA_libci
-D__CATALINA_NATIVE -D__CATALINA_P2 demos/hello.c
/tmp/hello.cpp
rcc -target=catalina_native_p2/catalyst /tmp/hello.cpp
/tmp/hello.rcc
bcc -x11 -L/lib/p2/nmm -tdef -lci -p2 /tmp/hello.rcc -o
catalina.s
pstrip catalina.s
spp -I/ -I/target/p2 -Dlibci -DNATIVE -DP2 /target/p2/nmmdef.t
/hello.s
p2asm -v33 /hello.s
rm -k /tmp/hello.cpp /tmp/hello.rcc hello.s catalina.s
catalina.cmd
binstats /hello.bin

code = 5380 bytes
cnst = 104 bytes
init = 332 bytes
data = 0 bytes
file = 14368 bytes

Copyright 2013 Ross Higson Page 32 of 41

Catalina C Catalyst Reference Manual

Also note that if you include the -u (untidy) option in the catalina command,
Catalina will not delete any intermediate files, including the catalina.cmd file it
created to execute each sub-process of the compilation. This means that it is
easy to re-do the same compilation again. To do so, just add the -u option to
any catalina command, then to re-do it enter the following:

cp catalina.cmd execonce.txt

​ BCC
​ The self-hosted version of the Catalina C compiler includes a Binder and

Library Manager, now known as bcc.
​ You can demonstrate creating and using a library using bcc with the C source

files my_prog.c and my_func.c. First, note that you can compile this program
without using a library as follows:

​ catalina my_prog.c my_func.c -lci -v

​ However, you can also choose to put my_func.c in a library (we will call it
my_lib), and then compile my_prog.c using the library. To do so, use the
following commands:

​ catalina my_func.c -c
bcc -i -e my_func.s
mkdir lib/my_lib
mv my_func.s lib/my_lib
mv catalina.idx lib/my_lib
catalina my_prog.c -lci -lmy_lib -v

​ The bcc command-line options are the same as the PC version. To see them,
try bcc -?

​ P2ASM
​ The self-hosted version of the Catalina C compiler includes the PASM

assembler p2asm. Like Catalina, this is only supported on Propeller 2
platforms with sufficient XMM RAM, such as P2_EDGE with 32MB PSRAM
installed (i.e. the P2-EC32MB) or a P2_EVAL with the HyperRAM add-on
board.

​ You can use the p2asm command to assemble PASM assembly files. For
example, consider the following simple PASM program7:

​ CON
LED_PIN = 38 ' Pin 38 is LED on the P2 EDGE
TIME = 180000000/2 ' 1/2 second @180 Mhz
DAT

org 0
Loop

drvnot #LED_PIN

7 Note that on boards other than the P2_EDGE you may need to change the value of
LED_PIN. For instance, on the P2_EVAL board you might use pin 56 instead of pin 38.

Copyright 2013 Ross Higson Page 33 of 41

Catalina C Catalyst Reference Manual

waitx ##TIME ' Toggle pin every half second
jmp #Loop

​ If you use the vi text editor to create this file (e.g. as pintest.asm), then you
can assemble it using p2asm as follows:

​ p2asm pintest.asm

​ This will produce pintest.bin.
​

The p2asm command-line options are the same as the PC version. To see
them, try p2asm -?

​
​

Copyright 2013 Ross Higson Page 34 of 41

Catalina C Catalyst Reference Manual

​ Propeller 1 Platform-specific Notes
Since there is a wide variety of Propeller 1 platforms, each with different HMI options
and different amounts of XMM RAM, this section describes various platform-specific
differences in Catalyst support.

​ C3
BY default, C3 programs use the high resolution NTSC TV and keyboard connected
to the Propeller. However, you cannot use the TV HMI option when using the FLASH
RAM – only the serial options (e.g. TTY or PC).
On the C3, the SPI Flash is used to execute the external demo programs. This
means loading programs can take several seconds, during which time there may be
no indication that the command is being processed.
Also, the C3 has only 64kb of SPI Ram available, which is not sufficient space to
execute some of the larger demo programs – notably the pcom/pint pascal
interpreter, or the jzip interpreter.
Here are some example commands you could try:

cat SAMPLE.PAS <---- list a text file
vi CATALYST.TXT <---- edit a text file
dbasic STARTREK.BAS <---- run a basic program
mkdir my_dir <---- make a directory
vi my_dir/my_file.txt <---- edit a file in a directory
ls my_dir <---- list the contents of a directory
rm my_dir/my_file.txt <---- remove a file from a directory
sst <---- play a game of Super Star Trek
dbasic ELIZA.BAS <---- get some psychiatric help

On the C3, it is possible to recompile Catalyst to use a VGA or PC HMI option if
desired.

​ DracBlade
On the DracBlade, all the Catalyst binaries are built to use a High resolution VGA
HMI plugin, which uses the display and keyboard connected to the Propeller.
However, you cannot use the HiRes VGA HMI option when using the XMM RAM –
only the LoRes VGA or serial options (e.g. LORES_VGA, TTY or PC).
Note: After each external command or demo program is run, the screen is cleared.
Catalyst will usually ask you to enter a key to continue so that you can read the
output of the command.
Here are some example commands you could try:

cat SAMPLE.PAS <---- list a text file
pcom SAMPLE.PAS SAMPLE.P5 <---- compile a pascal program
pint SAMPLE.P% <---- run the compiled program
vi CATALYST.TXT <---- edit a text file
dbasic STARTREK.BAS <---- run a basic program
mkdir my_dir <---- make a directory
vi my_dir/my_file.txt <---- edit a file in a directory
ls my_dir <---- list the contents of a directory

Copyright 2013 Ross Higson Page 35 of 41

Catalina C Catalyst Reference Manual

rm my_dir/my_file.txt <---- remove a file from a directory
jzip ZORK3.DAT <---- play a game of Zork
sst <---- play a game of Super Star Trek
dbasic ELIZA.BAS <---- get some psychiatric help

On the DracBlade, it is possible to recompile Catalyst (or some parts of Catalyst) to
use a PC HMI option (or a low resolution VGA option). This may be required to run
some large applications (such as the Pascal compiler) since the High Resolution
VGA driver consumes a large amount of Hub RAM space, which limits the stack
space available to other programs.

​ Hydra
All the binaries in this release (as well as Catalyst itself) are built to use a High
resolution NTSC TV and keyboard connected to the Propeller.
Note: After each external command or demo program is run, the screen is cleared.
Catalyst will usually ask you to enter a key to continue so that you can read the
output of the command.
The Hydra cannot simultaneously use the SD Card and XMM RAM, so while
Catalyst itself runs, and the demo programs can be compiled and loaded serially
(using payload) none of the demo programs can be loaded from SD Card using
Catalyst. However, both Catalina LMM programs and normal Spin programs can be
loaded and run with Catalyst.
Here are some example commands you could try:

cat SAMPLE.PAS <---- list a text file
vi CATALYST.TXT <---- edit a text file
mkdir my_dir <---- make a directory
ls my_dir <---- list the contents of a directory
rm my_dir/my_file.txt <---- remove a file from a directory

On the Hydra, it is NOT possible to recompile Catalyst to use a PC HMI option if the
XMM RAM is being used – the HX512 does not allow the serial port to be used at the
same time.

​ Hybrid
All the binaries in this release (as well as Catalyst itself) are built to use a High
resolution NTSC TV and keyboard connected to the Propeller.
Note: After each external command or demo program is run, the screen is cleared.
Catalyst will usually ask you to enter a key to continue so that you can read the
output of the command.
Here are some example commands you could try:

cat SAMPLE.PAS <---- list a text file
pcom SAMPLE.PAS SAMPLE.P5 <---- compile a pascal program
pint SAMPLE.P% <---- run the compiled program
vi CATALYST.TXT <---- edit a text file
dbasic STARTREK.BAS <---- run a basic program
mkdir my_dir <---- make a directory
vi my_dir/my_file.txt <---- edit a file in a directory

Copyright 2013 Ross Higson Page 36 of 41

Catalina C Catalyst Reference Manual

ls my_dir <---- list the contents of a directory
rm my_dir/my_file.txt <---- remove a file from a directory
jzip ZORK3.DAT <---- play a game of Zork
sst <---- play a game of Super Star Trek
dbasic ELIZA.BAS <---- get some psychiatric help

On the Hybrid, it is NOT possible to recompile Catalyst to use a PC HMI option if the
XMM RAM is being used – the HX512 does not allow the serial port to be used at the
same time.

​ RamBlade
On the RamBlade, Catalyst is configured to use the PC HMI option, and some
programs expect a VT100 compatible PC Terminal emulator (such as payload in
interactive mode).
Here are some example commands you could try:

cat SAMPLE.PAS <---- list a text file
pcom SAMPLE.PAS SAMPLE.P5 <---- compile a pascal program
pint SAMPLE.P% <---- run the compiled program
vi CATALYST.TXT <---- edit a text file
dbasic STARTREK.BAS <---- run a basic program
mkdir my_dir <---- make a directory
vi my_dir/my_file.txt <---- edit a file in a directory
ls my_dir <---- list the contents of a directory
rm my_dir/my_file.txt <---- remove a file from a directory
jzip ZORK3.DAT <---- play a game of Zork
sst <---- play a game of Super Star Trek
dbasic ELIZA.BAS <---- get some psychiatric help

​ TriBladeProp
On the TriBladeProp, Catalyst is configured to use the PC HMI option, and some
programs expect a VT100 compatible PC Terminal emulator (such as payload in
interactive mode).
Here are some example commands you could try:

cat SAMPLE.PAS <---- list a text file
pcom SAMPLE.PAS SAMPLE.P5 <---- compile a pascal program
pint SAMPLE.P% <---- run the compiled program
vi CATALYST.TXT <---- edit a text file
dbasic STARTREK.BAS <---- run a basic program
mkdir my_dir <---- make a directory
vi my_dir/my_file.txt <---- edit a file in a directory
ls my_dir <---- list the contents of a directory
rm my_dir/my_file.txt <---- remove a file from a directory
jzip ZORK3.DAT <---- play a game of Zork
sst <---- play a game of Super Star Trek
dbasic ELIZA.BAS <---- get some psychiatric help

It would be possible to recompile Catalyst to use the local display and keyboard on
CPU #1, via a proxy driver from CPU #2 (which has access to the SD card).

Copyright 2013 Ross Higson Page 37 of 41

Catalina C Catalyst Reference Manual

​ SuperQuad and RamPage
The SuperQuad and RamPage are not separate platforms – refer to the notes
appropriate to the platform to which they are attached.
However, note that the SuperQuad has no XMM RAM, so only SMALL mode
programs can be created. This mode does not provide sufficient RAM space to
execute any of the larger demo programs.

​ Progress Messages on Multi-Prop platforms
On multi-prop platforms (such as the TriBladeProp), it is routine to have to load
programs into different CPUs. On platforms where the target CPU supports a directly
connected screen, Catalyst can display progress messages on that screen (e.g. on a
TV connected to the TriBladeProp CPU 1).
This makes it easy to tell that the program is in fact being loaded correctly - but
displaying this information can both slow down the load process slightly, and also
reduce the size of programs that can be loaded.
Therefore, this functionality is disabled by default. It can be enabled by defining the
DISPLAY_LOAD command line symbol when compiling the programs in the
Catalina/utilities folder.
To enable this functionality, run the build_all script (build_all.bat under Windows) in
the Catalina/utilities folder, adding DISPLAY_LOAD to the command line. For
example:

build_all TRIBLADEPROP DISPLAY_LOAD

Copyright 2013 Ross Higson Page 38 of 41

Catalina C Catalyst Reference Manual

​ Propeller 2 Platform-specific Notes
Propeller 2 boards fitted with supported PSRAM, such as the P2-EC32MB, or which
can use the Parallax HyperFLASH/HyperRAM add-on board can use this as External
Memory.
The only Propeller 2 platform specific functionality is that Lua can also support
executing program code from suitable PSRAM on platforms that have it, such as the
P2 EDGE.

​ P2 EDGE
If the P2 EDGE is fitted with suitable PSRAM (e.g. it is a P2-EC32MB), the PSRAM
can be used specifically to store Lua code, which allows larger Lua programs to be
executed, at the cost of a slight speed reduction8.
To enable the use of PSRAM specifically for Lua program code storage, specify
ENABLE_PSRAM to the Catalyst or Lua build_all scripts. For example:

build_all P2_EDGE SIMPLE VT100 ENABLE_PSRAM

Note that using the PSRAM this way is supported only by the Lua execution engine
(luax) which executes compiled Lua programs, and not for the interactive version
(lua) that executes text programs or the Multiprocessing version (mlua or mluax).
So if ENABLE_PSRAM is specified, only luax will be built by the script. This means
you may need to build Lua twice – once to build the Lua programs that do not use
PSRAM, and then again to build luax (only) to use PSRAM.
For example, to compile Lua in directory demos\catalyst\lua-5.4.4, put the
executables in demos\catalyst\bin and call the PSRAM version luaxp rather than
overwrite the standard luax command, you might use commands such as:

cd demos\catalyst\lua-5.4.4
build_all P2_EDGE SIMPLE VT100
copy src*.bin ..\bin\
build_all P2_EDGE SIMPLE VT100 ENABLE_PSRAM
copy src\luax.bin ..\bin\luaxp.bin

Note that specifying ENABLE_PSRAM is applicable only when using the Catalyst
and Lua build_all scripts and Makefiles – it is not a general Catalina symbol that can
be used on the Catalina command-line to enable PSRAM in other cases (which is
done via the usual mechanism of linking the program with the psram library – i.e.
adding -lpsram to the catalina command, or compiling the programs in SMALL or
LARGE mode).

8 Note that this is not the same as compiling Lua as either a SMALL or LARGE XMM program,
which uses the PSRAM as general purpose External Memory for both C and Lua code. While it is
faster than either of these options, there will be less data space available for Lua programs and
so it is far more limited as to the size of programs that can be executed. For more information on
using External Memory, see the Catalina Propeller 2 Reference Manual.You cannot use the
PSRAM as both Lua code storage and XMM RAM.

Copyright 2013 Ross Higson Page 39 of 41

Catalina C Catalyst Reference Manual

Finally, note that for small Lua programs, the Hub RAM usage of the PSRAM version
may not be much smaller than that of the non-PSRAM version – it may even be
larger. This is not only because of the additional PSRAM support code required, it is
also because the PSRAM version allocates a fixed amount of Hub RAM on startup to
use as a PSRAM cache, and for small Lua programs the cache may be larger than
the program being loaded. However, the amount of Hub RAM used for Lua code will
never increase beyond the cache size no matter how big the program code gets.

Copyright 2013 Ross Higson Page 40 of 41

Catalina C Catalyst Reference Manual

​ Catalyst Development

​ Reporting Bugs
Please report all Catalyst bugs to ross@thevastydeep.com.
Where possible, please include a brief example that demonstrates the problem.

​ If you want to help develop Catalyst
Anyone who has ideas or wants to assist in the development of Catalyst should
contact Ross Higson at ross@thevastydeep.com

​ Okay, but why is it called “Catalyst”?
In chemistry a catalyst is a substance that facilitates a chemical reaction, but is not
itself consumed. Catalyst is intended to facilitate the use of Catalina on the Propeller,
but it does not itself consume any Propeller resources.

​ Acknowledgments
Dr_Acula, for his work on the auto-execute mode.

Copyright 2013 Ross Higson Page 41 of 41

mailto:ross@thevastydeep.com
mailto:ross@thevastydeep.com

