Catalina C Release History

Catalina Release History

INErOAUCHION. 1ottt ettt e e e e e e, 3
REIEASE 6.0, 1 ENTal8. e ettt e e e e e ee e e e ettt eeeeeeseseeeetssnn e seeeeeeseesssssnnneaaaaaass 3
Release 6.0.1. . e 3
REIEASE 6.0, uuuuu ittt e e 4
REIEASE 5.0, 3. . it e et et i et eeeeree e eeeeerr e eeeees 9
RelEaSE 5.9.2. ...ttt 11
RElEASE 5.9 1 . et e e e et et eiteeetrte e eeeeeeeierre s 11
Release 5.9 12
Release 5.8,ttt 14
RElEASE 5.7 ettt e et e e e e e e 16
RelEaSE 5.6, ettt 18
RElEASE 5.5.2. . ittt 20
Release 5.5. 1 .. ittt 22
Release 5.5, . ..uuiiiiiiiiiiiiiei it 23
ReleaSe 5.4 .ttt 25
REIEASE 5.4 ... e e e et e et e et eiieetteteeer i eeieeerterrearaass 25
RelEaSE 5.3 it 30
Release 5.3,ttt ettt 31
REIEASE 5.2, . it e e ettt i ieeteere e i eeerre e e 34
Release 5.1.2. ... 35
REIEASE 5.0 ittt e et e e e e i e, 36
RIS 5.0 ettt e oo e e e ettt eeeieeeetessetsssiieiesessssssssssiisesieeesssssssssssiiieeesreseessisiaiais 37
Release 5.0.3 . ..cuuiiiiiiiieii ittt et 38
RelEaSE 5.0.2. ... ittt e e e e e 38
Release 5.0.1 39
ReEIEASE 5.0 ittt 39
REIEASE 4.9.8. ... i e e e et it et iteeetere et eeeerrerrr st 42
Release 4.9.5 43
Release 4.9.4couiiiiiiiiieee et 44
REIEASE 4.0, 3. . e i eteeeeete e ieiieeteeteee e ieieeerterrerraes 45
ReleaSE 4.9.2. ... 47
ReElEASE 4.9. 1 ettt e e e e 48
ReleaSEe 4.9, . ettt e e e 48
Release 4.8........couiiiiiiiiiiiiiiii e 55
REIEASE 4.7 oottt e et e ettt e e e e e e e e e 55
REIEASE 4.6 ...ttt e e ee st et eeieeeteteer e eeeeeeeterrerr s 56
Release 4.5, . oo 56
Release 4.4,ottt ettt 57
REIEASE 4.3 .. e et e ettt eeeeteer e ieeeeeerre e 57
REIEASE 4.2, o ittt ettt 58
REIEASE 4.0 oottt ettt e e e e e e, 58

Copyright 2011 Ross Higson Page 1 of 113

Catalina C Release History

Release 4.0, i 62
REIEASE 3.1 7. 2. ittt e e ettt i eeeteer e ieeerrerre e 63
Release 3.7 ittt 63
REIEASE 3.4 7 ittt ettt e e e e e e e e 63
REIEASE 3.4, . it e e e e et e et eieeeetete e eeeeeterre st 64
Release 3.15.4.......oeeuieieeeii et 66
Release 3.15. 3. ...ttt ettt e e e e 66
REIEASE 3.15. 2. i e ettt eeeeteer e e ieeeeeerre s 68
RelEaSE 315, ittt 68
RElEASE 3.4, ittt e e e, 69
R (= ST T L PP 72
Release 3. 13,2 . ittt 72
ReElEaSE 3.1 3. ittt ettt e ettt e e e e e e, 73
ReleaSE 3.2 it 74
Release BT . e 77
A (== ST T PP 80
Release 3.9ttt 82
RelEaSEe 3.8:. . ittt ettt 83
REIEASE 3.7 ettt e ettt e e eieeettrteee e eeeeeeiterrrarass 84
RelEASE 3.8: it 85
Release 3.5:ttt ettt e 88
REIEASE 3.4 . e it e e ettt i ieeterree e ieeeere e e 92
Release 3.3: . ittt 92
REIEASE 3.2: ittt et ettt e e et e, 93
RIS 3.0 i ettt ittt e e oo e e e e e ettt eeieeeetsssissssiieieseessssssssssseseeeessssssssssssiiieeessereessssiaieis 94
Release 3.0.4:.......ouuuuiueieeeeiiiiiiiiiiiii i et e et e ettt e 95
Release 3.0.3: . .. ittt ettt e e et 95
REIEASE 3.0, 2: ittt eteeeetteee e eiiieettererrr e ieieeerterrerr e 96
RelEaSE 3.0 ittt 96
REIEASE 3.0 e et e et e et s te et eiteettrrrrrr e eeeeererrrrr s 97
Release 2.9: 100
Release 2.8:.ttt 101
REIEASE 2.7 ettt et ee i e e e ettt eieeeeerreeeieaaan, 103
RelEASE 2.8: . it 103
ReElEASE 2.5: . ittt e e e, 105
ReleaSsSe 2.4 . .. ettt et e e e e, 107
Release 2.3:. . ittt r e 108
RElEASE 2.2: ittt 109
REIEASE 2.0 ettt e i et eeter et eeieetiterrer i aeeieeeetirrerrananans 110
Release 2.0 i 110

Copyright 2011 Ross Higson Page 2 of 113

Catalina C Release History

Introduction

The release history was getting too large to keep including it in the Catalina
reference manual, so it has now been moved to its own document.

This release history is mainly of interest to maintainers of Catalina, or those users
who have installed a previous version of Catalina and who wish to understand the
benefits or consequences of upgrading their version.

It is of little or no interest to new Catalina users, who should read the Catalina
Reference Manual or the various tutorial documents instead.

Release 6.0.1 Errata

New Functionality

1. A default clean_all script has been added to the bin directory. If the current
directory does not have a clean_all script, this provides a default one that will
delete any Catalina binaries, listings, and also some temporary files from the
current directory.

2. The catalina.lua script (used by the self-hosted version of Catalina) has been
updated to print a help message when it is invoked with no parameters.

Other Changes
1. Fixed some errors in the 6.0.1 README.TXT file.

2. Updated the Catalyst reference manual to include details about aborting
auto-execution scripts, and maximum program sizes.

3. Modified some demo programs to use Unix line terminators, not DOS - this
makes them easier to view and edit in the vi text editor.

Release 6.0.1

New Functionality

1. Catalina now has the option of caching SD card sector reads and writes
when PSRAM or HYPER RAM is available. The cache supports two modes:

Write Through if the sector is in the cache then it is used for reads, but
all writes are done both to the cache and to the SD card.
This is the default mode.

Write Back if the sector is in the cache then it is used for reads, and
all writes are done only to the cache, with the sector in
the cache marked as dirty. To write all the dirty sectors in
the cache back to the SD card, an explicit cache flush
must be performed. It is fine not to flush the cache if the
cache has not been filled, but once it has been filled then
any sectors not cached will be written directly to the SD
card, and so if the cache is NOT subsequently flushed
then the SD card can end up in a corrupt or inconsistent
state.

Copyright 2011 Ross Higson Page 3 of 113

Catalina C Release History

The cache is supported only on the P2_EDGE and P2_EVAL boards, and is
enabled by compiling the library with the PSRAM or HYPER option specified
and then linking the programs that use it with both the extended C library
and the appropriate PSRAM or HYPER library (i.e. -lcx or -Icix and -Ipsram
or -lhyper). Since all programs linked with the library built to use the cache
will HAVE to be linked this way, it is recommended that the general version
of the library NOT enable the cache, but that a separate version of the
library be compiled to use with this option. For an example, see the
build_psram and build_hyper scripts in the source/lib folder, and how
these are used by the build_all script in demos/catalyst/catalina

The P2 _EVAL board with onboard PSRAM has 32MB of PSRAM, so
Catalina uses the lower 16MB as XMM RAM, and the upper 16MB as SD
card cache. Catalina can only use 16MB of XMM RAM, but if some of the
PSRAM is required for other purposes, the size of the SD card cache can be
adjusted - see source/lib/include/sd_cache.h.

The HyperFlash/HyperRAM add-on board has 16MB of PSRAM, so by
default Catalina uses the lower 14MB as XMM RAM, and the upper 2MB as
SD card cache. The amount used for the SD card cache can be adjusted -
see source/lib/include/sd_cache.h. Note that no checking is done on the use
of XMM RAM - so if the program uses XMM RAM above the 14MB (e.g. if it
allocates too much heap space), then it will overwrite the cache. In that
case, it is better to not use the cache at all.

The SD card cache is currently only used by the self-hosted version of
Catalina. When compiled as a Catalyst demo, the following catalina-related
programs use the cache (in Write Back mode) to significantly improve SD
card performance:

cpp
rcc

bcc
Spp

pstrip
p2asm

Using the cache can reduce the time required for the self-hosted version of
Catalina to compile a C program by 20% to 33%.

For details of the functions supported by the cache, see the file
sourcellib\include\sd_cache.h

Other Changes

1.

The reduction in SD card driver delay time made in release 5.9.2 has been
reverted because it did not work reliably on all SD cards, some of which
appear to require the longer delay. However, this change only made a small
improvement in very SD card intensive programs (such as catalina itself)
when compared to the new sd card cache option.

Copyright 2011 Ross Higson Page 4 of 113

Catalina C Release History

Release 6.0

New Functionality

1.

There is a new Catalyst demo - Catalina itself! The demos\catalyst folder
has a new subdirectory called catalina, in which a self-hosting version of
Catalina can be built. Since it is supported only on a limited number of
Propeller 2 platforms, this new demo is not built by default when you build
Catalyst. If you have a P2 EDGE board with PSRAM or a P2 EVAL board
with HyperRAM then you can build it manually - go to the catalina
subdirectory, and use the build_all script with the same options you used to
build Catalyst. For example

cd catalina
build_all P2_EDGE SIMPLE VT100 CR_ON_LF USE_COLOR OPTIMIZE MHZ_200

or

cd catalina
build all P2_EVAL VGA COLOR 4 OPTIMIZE MHZ 200

Note that the build_all script will automatically use the copy_all script to
copy the results to the Catalyst image folder.

The self-hosted version of Catalina currently has the following limitations:
- it supports the Propeller 2 only.

- it supports the TINY, COMPACT and NATIVE modes only.

- it does not support the Catalina debugger, optimizer or parallelizer.

Since the self-hosting version of catalina introduces a bin directory to hold
the catalina executables, the build_all and copy_all scripts now put their
output in a directory called image instead of bin. See the Catalyst Reference
Manual for more details on the self-hosted version of Catalina.

Local user libraries must now be created in a local subdirectory called lib.
For example, if you specify -liberty on the command line, previous versions
of Catalina would first look for a local library in a subdirectory in the current
directory called libiberty, but now Catalina will look for a it in a local
subdirectory called lib\iberty.

A new Catalina symbol P2_REV_A can now be defined (e.g. using -C
P2_REV_A to the catalina command) to indicate that p2asm should not
generate instructions not supported by the Rev A version of the Propeller 2.
Previously, the p2_asm batch script had to be edited to do this. Note that
this applies only to the Catalina compiler itself, which no longer uses the
p2_asm script. The p2_asm script must still be manually edited (to remove
the -v33 option to p2asm) if the Catalina Optimizer is used.

Other Changes

1.

There have been no changes to functionality, but the spin preprocessor has
been renamed from spinpp to spp. This better reflects that this program is
mainly used not to preprocess Spin source files, but to preprocess assembly
language source files, which by convention are given a .s extension.

Copyright 2011 Ross Higson Page 5 of 113

Catalina C Release History

2. There have been no changes to functionality, but the C library has been
extensively modified in both file names and structure to allow it to be used on
systems that support only DOS 8.3 file names. This includes changing the
names of various propeller include files, as follows:

catalina cog.h ==> cog.h

catalina_ commondrv.h == commdrv.h
catalina float.h == floatext.h
catalina fs.h == fs.h

catalina gamepad.h== gamepad.h
catalina graphics.h ==> graphics.h
catalina hmi.h == hmi.h

catalina hyper.h == hyper.h
catalina icc.h ==> caticc.h
catalina_interrupts.h == int.h
catalina plugin.h == plugin.h
catalina psram.h == psram.h
catalina rtc.h == rtc.h

catalina sd.h == sd.h

catalina serial2.h== serial2.h
catalina serial4.h== seriald.h
catalina_serial8.h== serial8.h
catalina sound.h == sound.h
catalina spi.h == spi.h

catalina threads.h== threads.h
catalina tty.h == tty.h
catalina_vgraphics.h ==> wvgraphic.h
mathconst.h == mathcnst.h
propeller.h == prop.h
propeller2.h == prop2.h
smartpins.h == smartpin.h
thread utilities.h== thutil.h

To ease the transition, the existing include files have been retained for
systems that support long file names, including Windows and Linux, so on
those platforms you can either use the old names or the new names.
However, it is recommended that new programs use the new file names so
that they can be compiled on any system that supports Catalina.

3. There have been no changes to functionality, but the target files have been
extensively modified in both file names and structure to allow them to be used
on systems that support only DOS 8.3 file names. This includes putting the
Propeller 1 specific target files in a subdirectory called p1, and the Propeller 2
specific target files in a subdirectory called p2, and also changing the names
of various target files, as follows:

Catalina reserved null.inc => reserven.inc
Catalina reserved.inc => reserve.inc
Catalina defines.inc => define.inc
Catalina constants.inc => constant.inc
Catalina_arguments.inc => argument.inc
Catalina platforms.inc => platform.inc
Catalina plugins.inc => plugin.inc
Catalina threading.inc => thread.inc
Catalina blackcat.inc => blackcat.inc
catalina_compact.inc => compact.inc
debug_led.inc => debugled.inc
catalina default.s => def.t

Copyright 2011 Ross Higson Page 6 of 113

Catalina C

catalina blackcat.s

P2 _CUSTOM. inc
P2_EVAL.inc
P2_EDGE.inc

PSRAM XMM.def
PSRAM XMM.inc
HYPER XMM.inc
Cached XMM.inc

Catalina kernel library.inc
Catalina_thread library.inc
Catalina pre_sbrk.inc

Catalina CMM kernel library.inc
Catalina ILMM kernel library.inc
Catalina NMM kernel library.inc

unscii-1l6.inc
unscii-8.inc
unscii-8-fantasy.inc
unscii-8-thin.inc

BlackCat DebugCog.spin2
Cache.spin2

P8X32A ROM TABLES.spin2
Flash loader 1.2 mod2.spin2

Catalina Cache.spin2

Catalina CogStore.spin2
cogserial.pasm

hyperdrv.spin2

psramlédrv.spin2
MultiPortSerial.pasm

Catalina SD_Plugin.spin2
Catalina vga tile driver.spin2
Catalina 1CogKbM A.spin2

Catalina 1CogKbM B.spin2
Catalina 1CogKbM Common.spin2
Catalina 1CogKbM pre sbrk A.spin2
Catalina 1CogKbM pre sbrk B.spin2

Catalina Float32 A Plugin.spin2
Catalina Float32 B Plugin.spin2
Catalina Float32 C_Plugin.spin2

Catalina HMI Plugin_ SIMPLE.spin2
Catalina HMI Plugin TTY.spin2
Catalina HMI Plugin VGA.spin2

Serial2.spin2
Serial8.spin2

Catalina RTC_Plugin.spin2
Clock.spin2

SDCard.spin2

PSRAM. spin2

HYPER.spin2

Float.spin2

HMI.spin2

Copyright 2011 Ross Higson

dbg.t

P2CUSTOM. inc
P2EVAL.inc
P2EDGE. inc

psram.def
psram.inc
hyper.inc
cached.inc

klib.inc
thlib.inc
presbrk.inc

cmmklib.inc
lmmklib.inc
nmmklib.inc

fontl6.inc
font8.inc

font8f.inc
font8t.inc

debugcog. t
cache. t

plrom.t
flshload.t

cogcache.t
cogstore.t
cogs2.t

coghyper.t
cogpsram. t
cogs8.t
cogsd. t
cogvga.t
cogkbma .
cogkbmb .
cogkbmc.
kbmprea.
kbmpreb.

o o o

floata.t
floatb.t
floatc.t

hmisimpl.t
hmitty.t
hmivga.t

serial2.t
serial8.t
cogrtc.t
clock.t
sd.t
psram.t
hyper.t
float.t
hmi.t

Release History

Page 7 of 113

Catalina C Release History

Catalina HUB XMM Loader.spin2 => hubload.t
Catallna SD__ Loader. spin2 => sdload.t
Catalina CMM library.spin2 => cmmlib. t
Catalina ILMM library.spin2 => lmmlib.t
Catalina NMM library.spin2 => nmmlib.t
Catalina XMM library.spin2 => xmmlib.t
cmm_progbeg.s => cmmbeg.t
cmm_progend.s => cmmend.t
cmm_default.spin2 => cmmdef.t
cmm_blackcat.spin2 => cmmdbg.t
emm progbeg.s => emmbeg.t
emm progend.s => emmend.t
emm default.spin2 => emmdef.t
emm blackcat.spin2 => emmdbg.t
smm_progbeg.s => smmbeg.t
smm_progend.s => smmend.t
smm_default.spin2 => smmdef.t
smm_blackcat.spin2 => smmdbg.t
lmm progbeg.s => lmmbeg.t
lmm progend.s => lmmend.t
lmm default.spin2 => lmmdef.t
lmm blackcat.spin2 => lmmdbg.t
nmm progbeg.s => nmmbeg.t
nmm progend.s => nmmend.t
nmm_default.spin2 => nmmdef.t
nmm_blackcat.spin2 => nmmdbg. t
xmm progbeg.s => xmmbeg.t
xmm progend.s => xmmend.t
xmm default.spin2 => xmmdef.t
xmm_blackcat.spin2 => xmmdbg. t
Catalina CMM.spin2 => cmm. t

Catallna CMM dynamic.spin2 => cmmd. t

Catallna CMM threaded.spin2 => cmmt. t

Catal1na_CMM_threaded_dynam1c.spin2 => cmmtd. t

Catalina LMM.spin2 => 1lmm.t
Catallna LMM dynamic.spin2 => 1lmmd.t
Catallna LMM threaded.spin2 => 1lmmt.t

Catal1na_LMM_threaded_dynam1c.spin2 => lmmtd.t

Catalina NMM.spin2 => nmm. t
Catallna NMM dynamic.spin2 => nmmd. t
Catallna NMM threaded.spin2 => nmmt.t

Catal1na_NMM_threaded_dynam1c.spin2 => nmmtd.t

Catalina XMM.spin2 => xmm. t
Catalina XMM dynamic.spin2 => xmmd. t

Note that the extension .t is used instead of .s for assembly language source
files in the target directory. This prevents name collisions with user programs.

Copyright 2011 Ross Higson Page 8 of 113

Catalina C Release History

There have been no changes to functionality, but the way Catalina names and
structures its system libraries has been modified to accommodate systems
that support only DOS 8.3 file names. The changes are as follows:

compact_1lib => lib\pl\cmm
compact_lib p2 => 1lib\p2\cmm
large 1lib => 1lib\pl\xmm
large lib p2 => 1lib\p2\xmm
1lib => 1lib\pl\lmm
lib p2 => 1lib\p2\lmm
native lib p2 => 1lib\p2\nmm

So, for example, when you use an option like -Ithreads on the command line
to use the threads library when compiling an XMM LARGE program for a
Propeller 1, previous versions of Catalina would expect the library to be in
directory large_lib\libthreads, but it now expects the same library to be in
lib\p1\xmm\threads.

There have been no changes to functionality, but the catbind program now
uses the default name catalina.idx for library indexes (instead of
catalina.index) to accommodate systems that support only DOS 8.3 file
names. Any existing catalina.index files can simply be renamed, or deleted
and regenerated using catbind or bcc.

There have been no changes to functionality, but Catalina now uses the
default target directory of target\p1 for the Propeller 1, or target\p2 for the
Propeller 2, to accommodate systems that support only DOS 8.3 file names.

There have been no changes to functionality, but Catalina now uses the name
vgraphic for the virtual graphics library instead of vgraphics, to accommodate
systems that support only DOS 8.3 file names. So programs that used to use
the command-line option -lvgraphics should now use -lvgraphic instead.

There have been no changes to functionality, but to accommodate platforms
that support only DOS 8.3 file names, Catalina now looks in a subdirectory of
the target directory to find the target files based on the version of the
Propeller. For the Propeller 1 it expects the files to be in a subdirectory called
p1 and for the Propeller 2 it expects them to be in a subdirectory called p2. On
the catalina and catbind command lines, the target is still specified without the
version, so to use the minimal target, you still just use a command like:

catalina hello_world.c -T "$LCCDIR%\minimal"

Release 5.9.3

New Functionality

1.

Catalyst auto-execution is now slightly more sophisticated. First, the
AUTOEXEC.TXT file can also now contain a script consisting of multiple
commands - however, unlike the EXECONCE.TXT file, when the last
command in the AUTOEXEC.TXT file has been executed, the entire file will
then be re-executed.

Also, just before it executes each command, Catalyst now checks for a key
press and offers to abort the command auto-execution if one is detected.
Previously, there was no way to abort the execution of a sequence of

Copyright 2011 Ross Higson Page 9 of 113

Catalina C Release History

commands once initiated other than removing the SD card. Note that since
the key buffer is reset on each reboot and so the key will only be detected
between the reboot and the execution of the next command, it will usually be
necessary to hold a key down until the current command completes. To
abort the current command, hold a key down and reset the Propeller.

Also, Catalyst now echoes commands in the AUTOEXEC.TXT or
EXECONCE.TXT files before execution unless the first character of the
command is '@' (which is ignored). Also, if the first character in the
command line is '# then the line is treated as a comment. Note that this
functionality does not interfere with the use of the "', '@' and '#' characters to
specify the CPU if multi-cpu support is enabled, since that only applies to
commands entered interactively.

Note that since it takes too much space on some Propeller 1 platforms
(depending on the XMM and HMI options selected) the default is to disable
command scripting. To enable scripting it may be necessary to disable
something else to make enough space. For example, Lua commands could
be disabled instead.

Note that disabling Lua commands does not disable Lua itself, it just
disables the auto-detection and execution of Lua programs directly from the
command line. Lua programs can always be executed by explicitly passing
them to Lua. For example, if Lua commands are enabled, the lua program
list.lua can be executed using a command like:

list *.bas

If Lua commands are disabled, the command required would be:

lua list.lua *.bas

2. The Catalyst rm command now has a -k option to kill (suppress) information
messages.

Other Changes

1. Payload was incorrectly interpreting the VT100 escape sequence ESC[2 J
as ‘erase to end of screen’, instead of ‘erase entire screen’. Affected both the
Propeller 1 and 2.

2. Payload was incorrectly interpreting the VT100 cursor position escape
sequence ESC [r ; ¢ H when 0 was specified as the row or column position.
It now accepts either 0 or 1 to mean the first position. Payload also now
accepts ESC [r ; ¢ f to mean the same thing. Affected both the Propeller 1
and 2.

3. The vi text editor was using the VT100 escape sequence ESC c to reset the
terminal to the initial state when it started - but it is not clear what the initial
state for some of the DEC private options should be, so it now simply clears
the screen instead - this avoids resetting some VT100 options (such as Auto
Wrap) with some VT100 terminal emulators. Affected both the Propeller 1 and
2.

4. The demos\p2 ram examples would not compile correctly for the P2_EVAL
board with the HyperRAM add-on board. Affected the Propeller 2 P2_EVAL
only.

Copyright 2011 Ross Higson Page 10 of 113

Catalina C Release History

5. The demosl\interrupts\ example programs now use the correct LEDs on the
P2_EDGE boards (pins 38 & 39) and P2_EVAL boards (pins 56, 57 & 58).

6. The Lua execution engine (luax) was not being built correctly when the
ENABLE_PSRAM option was specified.

7. The embedded target had not been updated with recent changes to the
default target, such as the improved CLOCK plugin.

Release 5.9.2

New Functionality
1. None.

Other Changes

1. The changes in the round() and trunc() functions in Release 5.9 stopped the
Catalyst pascal compiler from compiling correctly. Affected the Propeller 1 and
Propeller 2.

2. The p2asm assembler has been modified to improve its speed. Thanks to
Wuerfel_21.

3. The p2asm assembler is used on the Propeller 2 only.The SD card plugin had
an error that could cause a failure to write a sector to go undetected. Also,
some delays have been reduced to speed up the writing of sectors. Affected
the Propeller 2 only.

Release 5.9.1

New Functionality
1. None.

Other Changes

1. Fixed a bug in the copying of components of structures in the XMM LARGE
mode on the Propeller 2. Components were being copied as longs, which
could fail if the start and end were not both aligned on long boundaries.
Affected the Propeller 2 only - on the Propeller 1 all components of
structures are copied as bytes.

2. The _cogstart XMM functions added in release 5.6 have been removed
from the C library and added as stand-alone functions where needed (e.g.
see the folder demos/p2_ram).

The functions affected are:
_cogstart XMM SMALL() ;
_cogstart XMM SMALL cog(qg)
_cogstart XMM LARGE() ;

_cogstart XMM LARGE cog();
_cogstart XMM SMALL 2();
_cogstart XMM SMALL cog 2();

Copyright 2011 Ross Higson Page 11 of 113

Catalina C Release History

_cogstart XMM LARGE 2();
_cogstart XMM LARGE cog 2();

When these functions were introduced Catalina supported only one type of
XMM RAM on the Propeller 2, but now that multiple types of XMM RAM are
supported (currently Catalina supports the internal PSRAM on the P2 Edge,
and the HyperRAM add-on board on the P2 Edge or P2 Eval boards) these
functions now need to be compiled specifically for the platform on which
they are to be used, and so can no longer be included in the C library.

3. The Propeller 1 CUSTOM configuration did not have
ACTIVATE_EACH_USE_SD defined in Custom_CFG.inc, which made the
SD plugin too large to load.

4. Payload's simple-minded internal VT100 emulator now ignores color escape
codes, so if vi is compiled with USE_COLOR defined (e.g. to work better
with the external VT100 emulator) then using payload's internal terminal
emulator will still work correctly (but note no color will be displayed).
Previously, color escape codes were not recognized and were treated as
output to be displayed on the terminal, which garbled the output, whereas
now they are recognized and ignored.

Release 5.9

New Functionality

1. The multiport serial libraries (serial2, serial4, serial8) have each had two
new functions added:

int sX txcount (unsigned port)
int sX rxcount (unsigned port)

where X = 2, 4 or 8. The functions return the current count of characters
waiting in the transmit or receive buffers.

2. New variants of the maths functions to truncate and round floats have been
added, called Itrunc() and Iround(), which return longs. The original versions
of trunc() and round() were incorrectly defined in the include file
catalina_float.h as returning floats - in fact, they both returned long values.
These functions have been retained, but have been renamed as _round()
and _trunc(). These functions were only available when a maths
co-processor library option was specified - e.g. if -lma, -lmb (P1 or P2) or
-Imc (P2 only), and were not available in the software-only library option
-im.

The new variants are called Iround() and Itrunc() and return longs. They
are available when any maths library option is used - i.e. including the -Im
option. Also, new functions have been added called fround() and ftrunc()
which return floats.

So now a program that needs round() or trunc() can choose which to use
either by calling them directly, or by adding suitable #defines, such as

EITHER:

#define round(x) lround (x)
#define trunc(x) ltrunc(x)

Copyright 2011 Ross Higson Page 12 of 113

Catalina C Release History

OR:

#define round(x) fround (x)
#define trunc(x) ftrunc (x)

OR:

#define round(x) _round (x)
#define trunc(x) _trunc(x)

depending on whether it needs versions that return longs, versions that
return floats (or doubles - in Catalina doubles are the same as floats, so if
the program expects these functions to return doubles, it will work perfectly
well with the new versions) or it wants to use the original versions.

3. On the Propeller 1, the functions _waitsec(), _waitus() and _waitms() use
the WAITCNT instruction, and are "thread-safe", but on the Propeller 2 they
use timer 2 and the WAITCT2 instruction. This means they are not
"thread-safe" since waiting on a timer also stalls interrupts. However, there
are now ‘interrupt-safe" versions provided for the Propeller 2, called
_iwaitsec(), _iwaitms() and _iwaitus(). These use the POLLCT2
instruction and so do not stall interrupts, but they busy-wait. This means
they consume more power, and they will also be very slightly less accurate,
but accuracy cannot be guaranteed in a multi-threaded program, or one that
uses interrupts.

Other Changes

1. The Catalina Propeller 2 Reference Manual said the 8 port serial functions
s8_openport() and s8_closeport() returned an int. In fact, they both return
void - i.e. they don't return anything. The manual has been updated.

2. The Catalina maths functions round() and trunc() were incorrectly defined
in catalina_float.h as returning floats - in fact, they both returned long values.
See the New Functionality section for more details.

3. Catalina's original implementation of trunc(), which was also used when a
float was "cast" to an integer, was based on Cam Thompson's original
Float32_A co-processor, which unnecessarily limited the range in which it
would return a value. That range has been extended to include the
maximum range that can be encoded accurately in a float. Note that this
does not mean all longs in this range can be encoded - the way IEEE457
floats are implemented means there are "gaps" in the integers that can be
encoded as floats once you exceed the number of bits in the mantissa.
However, within the newly extended range (which corresponds to the integer
range of -2,147,483,583 to 2,147,483,583) the implementation of both
Itrunc() and lround() will now return the correct integer value. Outside that
range they will return zero.

4. The documentation regarding the 8 Port Serial plugin was a little
contradictory regarding the meaning and use of S8 _MAX_ PORTS. Setting
this determines the maximum number of ports that CAN BE OPENED, not
the number of ports that will be opened automatically. A port will only be
opened automatically if the port number is less than S8_MAX_PORTS, AND
it has pins specified in the range 0 .. 63 in the platform configuration file. If
the port has pins specified outside this range (e.g. as -1) then the port will

Copyright 2011 Ross Higson Page 13 of 113

Catalina C Release History

not be opened automatically but can be opened manually using the
s8_openport() function. A port number greater or equal to S8 _MAX_PORTS
will never be opened. If you want different baud rates or large buffer sizes, it
is recommended to open the ports manually.

The accuracy of the various _wait functions (i.e. _waitsec(), _waitms(),
_waitus()) has been improved significantly. Also, the calculations of how
long each unit of time is in clock ticks are now only done on the first call, not
on every call as in previous releases. They are also recalculated on any call
where a change in clock frequency is detected, This speeds up the calls, but
it means that the very first call in such cases will be very slightly longer than
subsequent calls - if this is a problem, add a call like:

_waitus(0);

to force a re-calculation - subsequent waits will then be more consistent.
Note that any call calculates the times for all the _wait functions, not just the
one actually called. Also note that for _waitus() there is a minimum number
of microseconds that can be waited for accurately - the actual value
depends on the memory model used, but for Propeller 2 in NATIVE mode
(the default mode) it is about 5 10us, and on the Propeller 1 in TINY mode
(the default mode) it is about 30us. If shorter accurate wait times are
required, consider using an inline PASM assembly language function
instead of the C _wait functions.

In previous versions, the 8 port serial plugin would discard the entire receive
buffer if a character was received and the buffer was full. It now discards
the character received instead if there is no space left in the receive buffer.

All the Catalina documents have been revised to correct various typos, and
also make the formats more consistent between documents. Also, some
have been renamed to make the file names more consistent with the titles
and the file contents.

The main window of the Windows Installer has been enlarged slightly to
ensure all options are displayed (previously, some installation options were
only visible if the window was scrolled).

The Catalina Command Line menu entry was not being shown in the
Windows Start Menu in some versions of Windows - a new batch script
called catalina_cmd.bat has been created for this purpose - all it does is
open a command window and then execute the use catalina batch script,
which is what the Catalina Command Line start menu entry does.

Release 5.8

New Functionality

1.

The Parallax P2 HyperRAM/HyperFlash add on board can now be used
either additional RAM & Flash storage or as XMM RAM. It is supported on
the P2_EDGE and P2_EVAL boards. There is a new library (libhyper) that
supports this board, so to use it simply include the -lhyper option on the
Catalina command line. The hyper library is functionally similar to the
existing psram library, but it has additional functions to support the Hyper
Flash memory on this board.

Copyright 2011 Ross Higson Page 14 of 113

Catalina C Release History

It is not normally necessary to specify the type of XMM RAM when building
programs for the P2_EDGE or P2_EVAL. Just specify -C SMALL or -C
LARGE on the command line. On the P2_EVAL Catalina will assume you
have a Hyper RAM add-on board, and on the P2 _EDGE Catalina will
assume you want to use the on-board PSRAM.

For example - to use Hyper RAM on the P2_EVAL.:
catalina -p2 -lci -C P2_EVAL -C LARGE hello_world.c

Or, to use PSRAM on the P2_EDGE:
catalina -p2 -lci -C P2_EDGE -C LARGE hello_world.c

However, you can override this by specifying -C HYPER or -C PSRAM on
the command line. For instance, to use the Hyper RAM add-on board on a
P2_EDGE, you might say:

catalina -p2 -lci -C P2_EDGE -C SMALL -C HYPER hello world.c

Note that you have to use the build_utilities script to build the XMM utilities
appropriately. The build_utilities script has been updated to know how to
build the XMM utilities required to use the Hyper RAM as XMM RAM. Just
specify HYPER as the XMM add-on board when building utilities for either
the P2_EDGE or the P2_EVAL.

A simple demo program called ex_hyper.c has been added to the Catalina
demos\examples folder to illustrate the use of the HyperRAM library.

A more extensive HyperRAM & HyperFlash test program has been added in
a new folder called demos\p2 ram, which also contains utilities that can be
used to demonstrate PSRAM as well as Hyper RAM.

Some versions of the P2_EDGE have PSRAM and can use either PSRAM
or the Parallax HyperRAM & HyperFlash add-on board, but it is not currently
possible to use both the on-board PSRAM and Hyper RAM in the same
programs because of name conflicts between the two drivers.

On the P2_EVAL, the Hyper RAM module uses base pin 32. On the
P2_EDGE, it uses base pin 16. You can change this in the files P2_EVAL.inc
and P2_EDGE.inc in the target_p2 directory.

2. Payload has revised file extension processing:

o Use the bare filename if an extension is specified, but if not, then for the
first download try .binary, .eeprom, .bin, .bix, .biy in that order, and then
the bare filename if none of these are found.

o For the second and subsequent downloads, use the bare filename if an
extension is specified, but if not then for a Propeller 1 try .binary and
.eeprom then the bare filename. For a Propeller 2 try .bin, .bix and .biy
then the bare filename.

o Also, unless it has been overridden, set the default baud rate depending on
whether the first file has a Propeller 1 or Propeller 2 file extension.

o If a version override is specified (i.e. via command line option -0) then only
try the extensions appropriate for the version (.binary or .eeprom for a
Propeller 1, or .bin, .bix, .biy for a Propeller 2) for the first file as well as
the second or subsequent files.

o The local directory is always searched for all extensions first, then
%LCCDIR%\bin (Windows) or $LCCDIR/bin (Linux) if no matching file is
found in the local directory. This is mainly intended to allow payload to load

Copyright 2011 Ross Higson Page 15 of 113

Catalina C Release History

the various loader utilities, such as XMM, SRAM, EEPROM, FLASH etc.

Payload has revised override version processing. If an override version is
specified (using the -0 option on the command line), payload will only detect
Propeller chips with the specified version, and will not detect other versions
even if they are connected. This allows Propeller 2 .bin file to co-exist in the
same directory as a Propeller 1 .binary files provided the correct override
version is specified in the payload command. It also means you no longer
have to unplug Propellers if you routinely develop for both Propeller 1 and
Propeller 2 chips.

Comms now correctly decodes the comm port when it is specified on the
command line as /com=N. Previously, this only worked when N >= 10. It
was (and still is) possible to specify it as /com=comN on the command line.

Blackbox has been modified so that when duplicate source lines have the
same address, it associates the address with the LAST such line, rather than
the FIRST such line, because this is the line more likely to actually have any
code associated with that address.

Support has been added in the Propeller 1 target packages for the Parallax
Activity board. The Catalina symbol is ACTIVITY. This means you can now
specify -C ACTIVITY on the Catalina command line (or just add ACTIVITY to
the CATALINA_DEFINE environment variable) and Catalina will use the pin
definitions etc in the Activity configuration files (i.e. Activity DEF.inc,
Activity_CFG.inc, Activity HMI.inc).

For example:
catalina -lc -C ACTIVITY hello world.c

Other Changes

1.

The default VGA and USB pins on the P2_EVAL have changed from 32 & 40
to 0 & 8 — this was done to match the P2_EDGE, and also to allow the
default base pin used for the P2 HyperFlash & HyperRAM module on the
P2 _EVAL to be the same as in RogLoh's original Spin drivers — to encourage
users of those drivers to try Catalina! :) You can change this in the file
P2 _EVAL.inc in the target pZ2 directory.

The ex_psram.c demo program in the demos\examples folder has been
revised to demonstrate that a program that uses PSRAM for storage can
itself be compiled as an XMM program.

The build_utilities scripts have been extensively re-written to make them
more maintainable (e.g. the Linux and Windows versions are now much
more similar). The new scripts have been tested for all supported Propeller 2
boards and all the working Propeller 1 boards | still have, but just in case |
made a mistake and they do not work correctly, the previous scripts have
been left in the utilities folder and called build_utilities_5.7.

Release 5.7

New Functionality

1.

Catalina's stand-alone vt100 emulator (comms.exe) has an improved
ymodem implementation and dialog box:

A ymodem transfer can now be aborted in the middle of a send or receive

Copyright 2011 Ross Higson Page 16 of 113

Catalina C Release History

operation.

o The dialog box now responds to Windows messages. This stops Windows
complaining that the application is not responding during a long ymodem
transfer.

o The Abort button now attempts to abort both the local and the remote
ymodem applications if a transfer is in progress. Previously, it could only
abort the remote ymodem application and only while the local ymodem
application was not executing.

o The Start and Done buttons now check and give an error message if a
ymodem transfer is in progress. Previously, they simply performed their
respective actions, which could lead to a comms program lock up.

o Opening the dialog box no longer crashes comms if no port has been
opened.

2. Payload's interfile delay has been set to 500ms on Linux. This makes the
downloading of XMM programs more reliable on Linux (it was already 500ms
on Windows).

3. The blackbox source level debugger can now debug XMM programs on the
Propeller 2.

4. Some blackbox information messages have been changed to make them
more accurate.

5. Command line parameters (argc &argv) were not being correctly initialized
when programs were run under the blackbox debugger. However, note that
it is not possible to pass command-line parameters when using the debugger
so they should always be initialized to null values.

6. On all Propeller 2 platforms, the default pins to use for debugging are now
pins 62 & 63, which means that if you need to debug a program that uses a
serial HMI on those pins, you will need to have a Prop Plug connected to
some other pins, and then modify the pins specified in the platform
configuration file, which by default are as follows:

#define _BLACKCAT RX PIN 63
#define _BLACKCAT TX PIN 62

7. The blackcat debugger is no longer supported, and has not been updated to
debug Propeller 2 XMM programs. This debugger still works on Propeller 1
programs and non-XMM Propeller 2 programs, but it is now deprecated, and
has been removed from the release.

8. The Catalina-specific Geany commands (on the Build menu) have been
updated slightly to make them less confusing — e.g. 'Build' has been
changed to Build File and Compile to Compile File - these commands
operate on the currently selected file only, and not necessarily the files in the
project directory (even thought the currently selected file may have the same
name as a project file!). The Link command has been changed to Link All to
match Compile All, to indicates that these commands act on all files in the
project directory. Other changes ensure that any output generated when a
project is selected end up in that project directory.

9. Payload now accepts a baud rate of zero (i.e. -b0 or -B0) to indicate that the
default baudrate appropriate for the propeller should be used (which is
115200 on a P1 or 230400 on a P2). This was the default if NO baudrate
was specified, but Geany HAS to have a baud rate specified, so specifying it

Copyright 2011 Ross Higson Page 17 of 113

Catalina C Release History

as 0 is now allowed, and is equivalent to not specifying it. All the Geany
projects have been updated to use baud rate 0

Other Changes

1.

The compiler now reports the correct code size when compiling XMM
LARGE programs.

Release 5.6

New Functionality

1.

Catalina can now build and execute XMM SMALL and XMM LARGE
programs on Propeller 2 platforms with supported XMM RAM. Currently the
only supported type of XMM RAM is PSRAM, and the only supported
platform is the P2_EDGE, but this will expand in future. To compile programs
to use XMM RAM, simply add -C SMALL or -C LARGE to a normal Catalina
compilation command.

For example:
cd demos
catalina -p2 -lci -C P2_EDGE -C SMALL hello_world.c
or
cd demos
catalina -p2 -lci -C P2_EDGE -C LARGE hello_world.c
Note that a 64kb XMM loader is always included in the resulting binaries, so
the file sizes will always be at least 64kb.

The payload serial program loader can now load XMM programs to the
Propeller 2. Loading XMM programs requires a special XMM serial loader to
be built, which can be built using the build_utilities script. Currently, the
only supported type of XMM RAM is PSRAM, and the only supported P2
platform is the P2_EDGE. The script will build SRAM.bin (and XMM.bin,
which is simply a copy of SRAM.bin). These load utilities can then be used
with payload by specifying them as the first program to be loaded by the
payload command, and the XMM program itself as the second program to be
loaded.

For example:
cd demos
catalina -p2 -1lc -C P2_EDGE -C LARGE hello_world.c
build utilities <-- follow the prompts, then ...

payload xmm hello world.bin -i

The Catalyst SD loader can now load XMM programs from SD Card on the
Propeller 2. Just build Catalyst as normal, specifying a suppored P2 platform
to the 'build_all' script. Currently, the only type of XMM RAM supported is
PSRAM, and the only supported P2 platform is the P2_EDGE.

For example:

cd demos\catalyst
build all P2_EDGE SIMPLE VT100 CR ON_LF

Note that now that Catalyst and its applications can be built as XMM SMALL
or LARGE platforms on the Propeller 2, it is no longer possible to specify a
memory model on the command line when building for Propeller 2 platforms.
This is because some parts of Catalyst MUST be build using a non-XMM

Copyright 2011 Ross Higson Page 18 of 113

Catalina C Release History

10.

1.

memory model. However, it is possible to rebuild the non-core component of
Catalyst as XMM SMALL or XMM LARGE programs. See the README.TXT
file in the demos\catalyst folder for more details.
New functions have been added to start a SMALL or LARGE XMM kernel:
_cogstart XMM SMALL() ;
_cogstart XMM SMALL cog(qg);
_cogstart XMM LARGE() ;
_cogstart XMM LARGE_cog() ;

_cogstart XMM SMALL 2();

_cogstart XMM SMALL cog 2();

_cogstart XMM LARGE 2();

cogstart XMM LARGE cog 2();
These are supported on the Propeller 2 only. The _2 variants accept two
arguments rather than just one, to allow the passing of argc and argv to the
program to be started.

Refer to catalina_cog.h for details of parameters etc.

The Cache and Cogstore cogs are now explicitly registered and can now
therefore be listed by a C program interrogating the register (e.g. by the
demo program ex_regqistry.c)

The p2asm PASM assembler now allows conditions to be specified as
wc,wz or wz,wc which both mean the same as wcz, It also does more
rigorous checking about which instructions should allow such conditions.

OPTIMISE can now be used as a synonym for OPTIMIZE. Both enable the
Catalina Optimizer when used in CATALINA_DEFINE environment variable
or as a parameter to one of the build_all scripts. For Catalina command-line
use you can use either -C OPTIMISE or -C OPTIMIZE or the command-line
argument -O5.

COLOUR_X can now be used as a synonym for COLOR_X, where X =1, 4,
8 or 24. Both specify the number of colour bits to be used in conjunction with
the VGA HMI options. For example, on the Catalina command-line you could
use either -C COLOUR_24 or -C COLOR_24.

The build_catalyst script now looks for Catalyst in the current directory first,
then the users home directory (for folder demos\catalyst) before finally
resorting to building Catalyst in the Catalina installation directory.

The build_utilities script now looks for utilities to build in the current
directory first, then the users home directory (for folder utilities) before finally
resorting to building the utilities in the Catalina installation directory.

There are now more pre-built demos of Catalyst. In the main Catalina
directory you will find:

P2 DEMO.ZIP compiled to suit either a P2_EVAL or a P2_EDGE
without PSRAM, using a serial HMI on pins 62 & 63 at
230400 baud. Built to use a VT100 emulator, or
payload with the -i and -q1 options.

P2 _EDGE.ZIP compiled to suit a P2_EDGE with 32 Mb of PSRAM,
using a serial HMI on pins 62 & 63 at 230400 baud.
Built to use a VT100 emulator, or payload with the -i
and -q1 options.

P2_EVAL_VGA.ZIP compiled to suit a P2_EVAL using a VGA HMI with

Copyright 2011 Ross Higson Page 19 of 113

Catalina C Release History

VGA base pin 32 and USB base pin 40.

P2 EDGE VGA.ZIP compiled to suit a P2_EDGE with 32Mb of PSRAM
using a VGA HMI with VGA base pin 0 and USB base
pin 8.

In all cases, unzip the ZIP file to an SD Card, and set the pins on the P2

board to boot from the SD Card.

Other Changes

1.

2.

Fixed a bug in the C clock() function, which could return incorrect values.
Affected both the Propeller 1 and Propeller 2.

The vtXXX scripts (e.g. vt100 or vt100.bat) now start the emulator with the
wrap option specified, to match payload's built in terminal emulator.

The Pascal P5 compiler and interpreter are now explicitly started with -C
CLOCK to ensure that the clock plugn is started.

On the Propeller 2, the Super Star Trek demo now specifies the maths
library as -Imc instead of -Ima. No functional difference, but this makes the
binary smaller when compiled in XMM SMALL mode on the Propeller 2.

To enable the dynamic XMM kernels to be built, the spinc program has been
updated to allow it to extract data from files that identify themselves as XMM
SMALL or XMM LARGE. However, this is not full XMM support — it is only
sufficient support to allow the code segment to be extracted from such files
when built as part of the Catalina library, and these are not true XMM binary
files.

Release 5.5.2

New Functionality

1.

The Catalyst vi editor (xvi) demo program has been updated to version 2.51,
which is the latest version and contains some new functionality and some
bug fixes. See the documents in demos\catalyst\xvi-2.51\doc for details.

The Catalyst vi editor now processes the keypad keys PgUp, PgDown,
Home, End, Ins & Del appropriately.

The Catalyst vi editor can now be compiled to use colour when the VT100
HMI option is used, since colour is supported by the new external terminal
emulator (comms.exe). Just define the Catalina symbol USE_COLOR in
addition to VT100, either on the Catalina command line or by adding it as a
parameter to the build_all command. For example:

cd demos/catalyst/xvi-2.51

build all P2_EDGE CR_ON_LF VT100 USE_COLOR
Note: Only foreground colours can be set within vi itself — the current
background colour (typically the background colour in use before vi was
started) will be used. The default colours are that text will be grey, the status
line will be green (normal files) or red (read-only files). Try the vi command
:help to see an example.

You can manually set the colours (for the text, status line, or read-only status
line) in vi as follows:

:set colour=n
:set statuscolour=n

Copyright 2011 Ross Higson Page 20 of 113

Catalina C Release History

:set roscolour=n

where n is:

0 : black
> red
. green
. yellow
: blue
: magenta
: cyan
. grey
: default foreground colour
: bold and bright black (dark grey)
: bold and bright red
: bold and bright green
: bold and bright yellow
: bold and bright blue
: bold and bright magenta
: bold and bright cyan
17 : bold and bright grey (white)

Note that when vi is compiled to use colour, the default vi colours will
override the current foreground colour on startup. To get it back again, use
the vi command :set colour=9

Any value other than those specified will set the colour to the default
foreground colour (typically, the foreground colour before vi was started). If
you are using comms.exe then you can also select the default colours using
the Format menu (remember to select the Format->Set All To Colours
menu item after choosing your new colours, or the changes will apply only to
new characters, not existing ones).

Note that you can also have other effects, such as inverse video - (i.e. black
text on white bg). To do this, start vi and then set the foreground colour to
black (i.e. :set colour=0) - note that any text on the screen may temporarily
disappear. Then use the Format->Bg Color menu item to select a white
background, then use the Format->Set All to Colour menu item to refresh
the colours of the characters already on display. You can choose to have any
background colour you want.

O NO OGO A WOWDN =

T G G N G |
O~ WODN-=O

Other Changes

1. A change to the clock and SD Card plugin code (made in release 5.4) means
that the Catalyst Super Star Trek demo now needs to be explicitly built with
the -C CLOCK option. The Makefile has been modified accordingly.

2. When the external terminal emulator's YModem dialog box is open, it is now
always on top. Otherwise, it could get hidden by other windows and it was
not obvious why the main comms window would not respond.

3. The external terminal emulator's YModem dialog box Start button is no
longer styled as if it was a default button, since it was not. There is no default

Copyright 2011 Ross Higson Page 21 of 113

Catalina C Release History

button for this dialog box.

The new external terminal emulator now locks the screen and view. This
makes it easier to set the initial screen size (can now be done just using the
IScreenSize option, instead of also requiring the /ViewSize option). This is
more appropriate when emulating a physical terminal, where the screen size
would normally be the same as the view size. They can be unlocked again (if
required) via the Options->Advanced menu.

The scripts that call the external terminal emulator (vt100.bat etc) now add
/Wrap to enable wrap mode on startup. This option can also be changed via
the Options—Advanced menu. Setting it on by default makes the external
terminal emulator behave more like the internal terminal emulator.

The payload internal terminal emulator now limits the number of restart
retries on ymodem_receive, to avoid locking up permanently in case the
other end has not been started.

The file P2 EVAL.ZIP has been renamed P2_DEMO.ZIP, and the
README_P2.TXT file has been updated to indicate that this demo version
of Catalyst should work on the P2 EVAL, P2 EDGE or any other P2 board
with a similar SD Card configuration.

Release 5.5.1

New Functionality

1.

The Windows version of Catalina now includes a new serial comms program
with a full-function terminal emulator, which can be used as a replacement
for payload's very simple interactive mode by specifying -l terminal instead
of just -i on the payload command line — see below for more details).

The binary for the program (comms.exe) is in Catalina's bin folder, and the
source is in source\comms, but note that the source is not built by default if
Catalina is rebuilt, since it requires GNAT (the GNU Ada Translator) and the
GNAT Studio development environment to be installed. See the file
BUILD.TXT in source\comms for details on how to rebuild the comms
program from source.

Payload now allows an external terminal emulator program to be executed in
place of the simple internal one. The -i option still enables the internal
emulator, but a new -l option (i.e. upper case) calls an external terminal
emulator program. The -l option accepts one parameter which specifies the
command to be used. The port name (not the port number) and baud rate
will be passed to this program on startup.

For example, if the payload command executed was:
payload program.bin -pll -b230400 -I vtl1l00

Then after loading the program.bin file, the command executed (on
Windows) would be:
vt100 COM11 230400

On Linux, the command would be something like:
vt100 /dev/ttyUSBO 230400

A suitably named script (i.e. on Windows a batch file called vt100.bat, or on
Linux a shell script called vt100) can be used to specify any other required
parameters.

Copyright 2011 Ross Higson Page 22 of 113

Catalina C Release History

The following Windows scripts are provided (each one is a batch file):

PCc <-- start comms, specifying PC emulation

vt52 <-- start comms, specifying VT52 emulation
vt100 <-- start comms, specifying VT100 emulation
vtl01l <-- start comms, specifying VT10l1l emulation
vt102 <-- start comms, specifying VT102 emulation
vt220 <-- start comms, specifying VT220 emulation
vt320 <-- start comms, specifying VT320 emulation
vt420 <-- start comms, specifying VT420 emulation
vtl1l00_putty <-- start PuTTY, specifying VT100 emulation

The following Linux scripts are provided (each one is a shell script):

ansi <-- start minicom, specifying ANSI emulation
vt100 <-- start minicom, specifying VT100 emulation
vt1l02 <-- start minicom, specifying VT102 emulation

Note that these scripts can be used independently of payload. They all
accept two parameters — the com port to use, and the baud rate. For
example:

vt100 COM11l 230400

vt102 /dev/ttyUSBl 115200
Note that the comms program executable is provided as part of the
Windows version of Catalina, but PuTTY and minicom executable will have
to be installed separately. Ensure the appropriate executable is in the PATH.

Other Changes

1. Payload now interprets either ESC [? 6 n or ESC [6 n as a DEC DSR
request and responds with a DEC CUP. Strictly speaking, ESC [? 6 n is not
a correct DEC DSR command, and would not be recognized by other
terminal emulators, so the Catalyst xvi program now uses the more correct
ESC[6n

Release 5.5

New Functionality

1. A version of the YModem serial file transfer protocol has been added to
Catalyst. When Catalyst is built, there will be two more Propeller programs
added to the demos\catalyst\bin directory:

send.bin — send a file from the Propeller to the host.
receive.bin — receive a file on the Propeller sent from the host.

Also, in the demos\catalyst\fymodem directory, there will be two
corresponding host binaries (on Windows these will be .exe files):

send — send a file from the host to the Propeller
receive — receive a file on the host sent from the Propeller
See the README.TXT file in demos\catalyst\fymodem for more details.

2. A version of the YModem serial protocol has been integrated into payload's
interactive mode. This can be used for file transfers even if the Propeller
does not use a serial HMI option.

3. Payload now supports configuring the line termination mode from within
interactive mode as well as on the command line (i.e. using the -q command
line option).

Copyright 2011 Ross Higson Page 23 of 113

Catalina C Release History

4. Payload now has menus. Pressing the "attention" key (CTRL-A by default) in
payload's interactive mode now brings up a menu from which you can select
either Terminal Configuration, YModem Transfer, or to Exit from payload (as
an alternative to pressing CTRL-D twice).

5. The ex leds 1.c and ex leds 2.c example programs in demos\examples
now support the P2_EDGE board.

6. Payload now responds correctly to the DEC VT100 Cursor Position
Requests (CUP) and responds to a Device Status Report (DSR) specifying
parameter 6 with a Cursor Position Report (CPR). Taken together, this allows
programs expecting a VT100 compatible terminal to determine the actual
terminal window size, rather than simply assuming it will always be 80x24.

7. The Catalyst vi program now uses the DEC VT100 CUP and DSR requests
to elicit a CPR, which allows it to determine the actual window size. This
means that vi is no longer limited to 80x24 windows when a serial HMI
option is used. In particular, when payload is used, the actual window size
will now be reported correctly to vi on startup, and vi will use it rather than
defaulting to 80x24 whenever a serial HMI is used. The default VT100
window size (80x%24) will still be used if VT100 is specified in the build and
the terminal emulator cannot respond to CUP and DSR requests.

8. For example, to use vi in a terminal window of 50 lines and 120 columns,
and assuming you are using a serial HMI and specified the VT100 option
when vi was built, then you might start payload as follows (assuming N is the
comms port connected to your Propeller):

payload -i -gl120,50 -b230400 -pN
Then within payload just start vi as normal and it will use the correct
window size — e.g:

vi catalyst.txt

Other Changes

1. The files s2_serial.h, s4_serial.h and s8_serial.h were not correctly defining
the symbols s2_getc, s4_getc and s8_getc respectively. These names
were only intended to be used to emulate the original Spin names — the
actual underlying C functions (i.e. s2_rxcheck, s4_rxcheck and
s8_rxcheck respectively) were all fine.

2. The Catalina Optimizer may have reported undefined symbols when
optimizing programs that used the serial2 or serial8 libraries.

3. The header files for the tty, tty256, serial2, serial4 and serial8 libraries now
check and issue a message (using #error) if the libraries they represent are
not supported on the Propeller type for which the program is being compiled:

o The serial2 and serial8 libraries are only supported on the Propeller 2.

o The tty, tty256 and serial4 libraries are only supported on the Propeller
1 (but note this has nothing to do with the TTY HMI option, which
applies to both the Propeller 1 and Propeller 2 — the b HMI option does
not use these libraries).

4. The rs232 interface module (rs232.h, rs232.c) used by payload and
fymodem included code intended to prevent DTR being toggled when
opening a serial port. This code no longer works correctly on Debian Linux
and has been disabled. If it is required on other platforms, it can be

Copyright 2011 Ross Higson Page 24 of 113

Catalina C Release History

re-enabled by setting rs232_DTR_FIX to 1 in the file rs232.h. Note that
copies of this file exist in both the folder source/catalina as well as the folder
demos/catalyst/fymodem folder, and will need to be modified in both places.

5. The help text for payload's -q command line option had the values for
enabling CR_TO_LF and LF_TO_CR translation the wrong way around.

Release 5.4.1

New Functionality

6. p2asm now supports the "IF_NN" and "IF_NOT_NN" (where N=0,1 or X)
PASM instruction prefixes, as well as "IF_SAME" & "IF_DIFF". For example,

the following two statements will generate the same PASM instruction:
if c or z mov r0, #1
if not 00 mov r0, #1

Other Changes

1. Programs compiled in SMALL mode and loaded using Catalyst were not
setting up the argc and argv parameters to the C main function correctly.
Affected the Propeller 1 only.

2. The arg.c argument diagnostic program in the utilities folder was not working
correctly on the Propeller 1.

3. It was not clear in the Catalyst documentation that when Catalyst is used to
load XMM programs, then both Catalyst and the XMM programs must use
the same caching and flash options. For example, if Catalyst is compiled
using FLASH CACHED_1K then so must all XMM programs (but note that
they can be SMALL or LARGE programs). This only applies to XMM
programs, and not to LMM, CMM, SMM, Spin or Lua programs. Applies to
the Propeller 1 only.

4. The Catalina Optimizer was failing to perform some optimizations when the
optimization level was 3 or greater, so that -O3 could result in a larger code
size than -O2. Affected all memory models except COMPACT on both the
Propeller 1 and the Propeller 2.

Release 5.4

New Functionality

1. Roger Loh's 16 Bit PSRAM driver has been added as a Catalina plugin. Itis
supported on the Propeller 2 only. It is enabled by linking with the new psram
library (i.e. adding -Ilpsram to the Catalina command). An example of its use
has been added in demos\examples\ex psram.c. The configuration
parameters for the driver must be specified in the platform files in the
target p2 directory, such as P2_EDGE.inc.

You would compile the PSRAM example program with a command like:
catalina -p2 -lc -lpsram -C P2 _EDGE ex psram.c

The only tested platform is the P2 EDGE, and like the driver itself, Catalina's

support for it should be considered a beta version until further notice.

2. As a demonstration of the use of the PSRAM plugin, Lua now has the option
to store code in PSRAM on those platforms that support it, such as the P2
EDGE. This allows larger Lua programs to be executed at the cost of a slight

Copyright 2011 Ross Higson Page 25 of 113

Catalina C Release History

speed reduction. Supported on the Propeller 2 only.

To enable the use of PSRAM in Lua, specify ENABLE_PSRAM to the
Catalyst or Lua build_all scripts. For example:
build all P2 _EDGE SIMPLE VT100 ENABLE PSRAM

Note that PSRAM is supported only by the Lua execution engine (luax)
which executes compiled Lua programs, and not for the interactive version
(lua) that executes text programs or the Multiprocessing version (mlua or
mluax). So if ENABLE_PSRAM is specified, only luax will be built. This
means you may need to build Lua twice — once to build the lua programs
that do not use PSRAM, and then again to build luax (only) to use PSRAM.

For example, to compile Lua in directory demos\catalyst\lua-5.4.4 and put
the executables in demos\catalyst\bin and call the PSRAM version luaxp
rather than overwrite the standard luax binary, you might use commands
such as:

cd demos\catalyst\lua-5.4.4

build all P2 _EDGE SIMPLE VT100

copy src*.bin ..\bin\

build_all P2_EDGE SIMPLE VT100 ENABLE _PSRAM

copy src\luax.bin ..\bin\luaxp.bin
Note that specifying ENABLE_PSRAM is applicable only when using the
Catalyst and Lua build_all scripts and Makefiles — it is not a general Catalina
symbol that can be used on the Catalina command-line to enable PSRAM in
other cases (which is done via the usual mechanism of linking the program
with the psram library — i.e. adding -Ipsram to the catalina command).

Finally, note that for small Lua programs, the Hub RAM usage of the PSRAM
version may not be much smaller than that of the non-PSRAM version — it
may even be larger. This is not only because of the additional PSRAM
support code required, it is also because the PSRAM version allocates a
fixed amount of Hub RAM on startup to use as a PSRAM cache, and for
small Lua programs the cache may be larger than the program being loaded.
However, the amount of Hub RAM used for Lua code will never increase
beyond the cache size no matter how big the program code gets.

3. Catalyst on the Propeller 1 can now use the HIRES_VGA option. However,
Hub RAM limitations mean that Catalyst itself needs to be built as an
EEPROM program, and some of the Catalyst utilities may only work if they
are built as LARGE programs.

This means that while Catalyst itself will work in HIRES_VGA mode on all
platforms, some utilities (such as cp & mv) may only work in HIRES_VGA
mode on platforms with XMM RAM. Alternatively, you might build Catalyst
itself in HIRES_VGA mode, but the utilities in LORES_VGA mode.
To facilitate this, two new options have been added that can be used with
the Catalyst build_all scripts:
EEPROM_CATALYST specifies that the Catalyst binary should be
built as an EEPROM program.
LARGE_UTILITIES specifies that the Catalyst utilities should be
built as LARGE programs.
Whether you need to specify one or both of these options can depend on the
other options used. For instance, if you need to use the cache to access

Copyright 2011 Ross Higson Page 26 of 113

Catalina C Release History

4.

XMM RAM, then you will generally need to use both of these options to build
Catalyst in HIRES_VGA mode. For example, here is how you might build
Catalyst to use HIRES_VGA on the C3:

build all C3 FLASH CACHED_ 1K HIRES VGA EEPROM CATALYST LARGE UTILITIES

When you build Catalyst to use LORES_VGA or HIRES_TV HMI option, you
may also find that catalyst.binary exceeds the size of Hub RAM and in that
case you can specify the EEPROM_CATALYST option, but you may not
need the LARGE_UTILITIES option — e.g:

build_all C3 FLASH CACHED_lK HIRES TV EEPROM CATALYST

Note that to program Catalyst into EEPROM when the
CATALYST_EEPROM option is used, you will need to run the build_utilities
script to build the EEPROM loader, and then use that with payload. For
example, to build and load Catalyst to use HIRES_VGA on the C3, you
might use commands like:

cd demos\catalyst

build all C3 FLASH CACHED_ 1K HIRES VGA EEPROM CATALYST LARGE UTILITIES

build utilities

payload -ol EEPROM ..\bin\catalyst.bin
Note that these new options are applicable only when using the Catalyst
build_all scripts and Makefiles — they are not Catalina symbols that can be
used in other circumstances (i.e. specifying -C EEPROM_CATALYST when
compiling catalyst.c manually will not have any effect. It is the Makefile that
intercepts this symbol and instead uses -C EEPROM, but only when building
catalyst.binary).

The Catalyst ONCE capability (i.e. to execute a command once on reboot)
has been extended to execute MORE than one command. If enabled when
building Catalyst (by setting both ENABLE_ONCE and ENABLE_MORE to
1) then the file (EXECONCE.TXT by default) can contain more than one
command. The commands in the file will be executed in sequence on
successive reboots. The Lua execute function can be used to easily add
multiple commands to the file, one per line. For example, if the MORE
capability is enabled, the Lua statement:
propeller.execute ("vi abc\n vi def")

will cause the propeller to first reboot and execute the command vi abc, and
then when vi exits, the propeller will reboot and execute the command vi
def.

This also allows a very basic scripting capability to be implemented. For
example, if you have a file called commands.txt which contains all the
commands you want executed, then executing the command:

cp command. txt execonce.txt

at the Catalyst prompt, or executing the Lua statement:
propeller.execute ("cp command. txt execonce.txt")

will cause all the commands in the file to be executed in sequence.

Note that this capability is enabled by default on the Propeller 2, and on the
Propeller 1 unless the HIRES_VGA HMI option is used, because there is not
enough Hub RAM available. If you want to enable it, you may need to
disable something else, such as the capability to allow Lua commands to be
executed directly from the command line (note that you can still execute
them by specifying them as parameters to Lua — e.g. by entering a command

Copyright 2011 Ross Higson Page 27 of 113

Catalina C Release History

like lua list.lua instead of just list). This can be disabled by editing
demos\catalyst\core\catalyst.h and rebuilding Catalyst.

5. The internal cat, dir and help commands have been removed from Catalyst.
The help and cat commands are now always external. The dir command has
simply been dropped since the Is command is far more capable. However, if
you prefer typing dir to Is, then just make a copy of Is.bin called dir.bin —i.e:

cp ls.bin dir.bin

6. Added a new Lua demo called wild.lua that can be used to add wildcard
capability to a Catalyst command that accepts multiple file names. For
example, if the command specified in wild.lua is "vi" (which it is by default)
then

luac -o xvi.lux wild.lua
will create a command xvi which can then be used on the command line to
invoke vi on multiple files — e.qg:

Xvi ex* . lua
will execute vi on all the Lua example files.

7. The length of a Catalyst command line has been increased to 300 characters
on the Propeller 1, and 1200 characters on the Propeller 2. Hub RAM is
limited on the Propeller 1, but 300 is enough to accommodate 24 MSDOS
8.3 filenames, which could be generated when using wildcards, and 1200 is
the maximum that CogStore can store. This maximises the potential
usefulness of the wildcard functionality added in the last few releases.

8. A new getrand() function has been added to the C library. It is defined in
propeller.h and is implemented on both the Propeller 1 and the Propeller 2
(but differently — see below). A program that demonstrates the use of the
function has been added in demos\examples\ex_random.c

On the Propeller 1, the first time this function is called it calls srand() with
the current CNT value and is therefore best called after some user input or
other random source of delay. It then returns the result of 3 combined calls to
rand() to make up 32 random bits (rand itself only returns 15 bits).

On the Propeller 2, the first time this function is called it calls srand() with
the result of the GETRND opcode, and also returns that value. Thereafter it
just returns the result of the GETRND opcode.

This means you can either use just this function, or use this function once to
generate a seed for srand() and thereafter use rand(), which is what most
traditional C programs would typically do.

Note that rand() only returns a value between 0 and RAND_MAX (inclusive)
(i,e. 0 .. 32727 on the Propeller) whereas getrand() returns 32 bits. To
simulate rand() using getrand(), use an expression like:

(getrand() % (RAND _MAX + 1))

9. On the P2_EDGE, the base pin for VGA has been changed to 0 (was 32),
and the base pin for USB has been changed to 8 (was 40). This makes it
possible to use the P2-ES VGA and USB accessory boards with Catalina on
the P2 _EDGE. The base pins can be edited if required in the file
P2 _EDGE.inc in the target _p2 folder.

Copyright 2011 Ross Higson Page 28 of 113

Catalina C Release History

9.

Other Changes

. Fixed a bug in Catalina's code generator that meant statements like "x = x op

y", where x was a complex Ivalue (e.g. an element of an array) and op was +
or — could cause the compilation to fail. Affected both the Propeller 1 and
Propeller 2.

Fixed a bug in p2asm, which was not correctly processing a count of zero in
BYTE, WORD or LONG statements — e.g:

pad LONG O[COUNT] ' should not generate data if COUNT is zero
Affected the Propeller 2 only.

Fixed a bug in p2asm, which did not understand the
should be

MOV r0O,##!'$21524110 ' should put $DEADBEEF into r0
Affected the Propeller 2 only.

Multi-Processing Lua example 12 (ex12.lua) has been reduced from using 5
factories (i.e. cogs) to 4. 5 cogs were not always available, depending on
which HMI plugins that were loaded. Affected the Propeller 2 only.

Lua example list.lua was using the wrong value for the DOSFS "archived" file
attribute. Affected both the Propeller 1 and Propeller 2.

Catalyst was supposed to be able to accept up to 24 command line
arguments but in fact CogStore would only correctly process the first 12.
Affected both the Propeller 1 and the Propeller 2.

Fixed an issue in some Makefiles intepreting the -p2 flag when it was
specified via the CATALINA_OPTIONS environment variable (which is
mostly used by the Geany IDE to pass options to the Makefile). Affected the
Propeller 2 only.
The Propeller 2 Catalina_platforms.inc configuration file was getting a bit
unwieldy, so the platform constants have now been split into a separate file
for each platform. The Catalina_platforms.inc file still exists but it now just
includes one of the following include files to define the platform constants:

P2_EVAL.inc

P2 _EDGE.inc

P2D2.inc

P2_CUSTOM.inc
These are all in the target_p2 directory. The default if no platform is specified
is to use P2 EVAL.nc, but this can be changed by editing
Catalina_platforms.inc.

Lua 5.1.5, which was deprecated in previous releases, has been removed
altogether from this release.

operator (which

10.Some of the Catalyst demo programs were either not specifying

11.

NO_MOUSE, or were using -Imb when they could have used -Ima. In most
cases this was fine, but it meant some were using additional cogs
unnecessarily, which prevented them running in HIRES_VGA mode (which
takes one more cog than the other HMI options on the Propeller 1). Affected
the Propeller 1 only.

On the Propeller 1, enabling the CLOCK no longer requires an extra cog
when the SD card plugin is also loaded. This was the case in early Catalina
releases, but it has not been the case since the new SD card plugin was

Copyright 2011 Ross Higson Page 29 of 113

Catalina C Release History

adopted, due to lack of code space in the newer plugin. This has been fixed
by adding a new (smaller) clock service and shifting most of the time
calculations to the C library instead. Support for the old SD card plugin
(which could be enabled by defining the Catalina symbol OLD_SD) has
therefore been dropped, because that was the only reason it was still
included. The new clock service has been added on both the Propeller 1 and
the Propeller 2 for consistency, even though it was not necessary on the
Propeller 2 because its SD plugin does have sufficient space to implement
the old clock services. You can force the inclusion of a separate clock plugin
even when the SD Card plugin is loaded by specifying the Catalina symbol
SEPARATE_CLOCK. This would be necessary if you have a custom
CLOCK plugin (e.g. one that uses a hardware clock).

12.The Catalina optimizer was still assuming it could use the Homespun spin
compiler, which is no longer included with Catalina. It has been modified to
use Spinnaker/OpenSpin in all cases.

13.The Lua demo programs and examples now pause before terminating, so
that if they are used with a non-serial HMI option (such as VGA) the output is
not lost before it can be read (Catalyst clears the screen when the program
terminates).

14.The Propeller Memory Card (PMC) had a timing issue which may have
caused the card initialization to fail. Added NOPs to extend the clock pulses.
Affected the Propeller 1 only.

15.1f you chose not to copy the utilities to the Catalina bin directory, the
build_utilities script said it would build the utilities in the "current" folder, but
what it meant was the "utilities" folder, assuming that was where it was
executed. In fact it can be executed in any directory, but will always either
leave the utilities in the utilities folder or copy them to the bin directory. The
text has been updated. Affected the Propeller 1 only.

Release 5.3.1

New Functionality

1. Catalyst now understands ".lux" as a filename extension, as well as ".lua".
Catalyst assumes ".lux" represents a compiled Lua script, whereas ".lua" can
represent either a compiled or a non-compiled Lua script. By default, files
with a ".lux" extension will be executed with LUAX.BIN and files with a ".lua"
extension will be executed with LUA.BIN. If no extension is specified on the
command line and files with both extensions exist, ".lux" will be used.

2. There is now a Propeller 2 version of the Catalyst Spin demo that shows how
to use Catalyst command-line arguments in Spin2 files. It is in the folder
demos/catalyst/demo and called Demo.spin2.

Other Changes

1. Fixed a race condition in the SD Card plugin, which meant that it could fail
when a sequence of SD Card operations was performed at a specific rate.
Affected the Propeller 2 only.

2. The demo program ex_time.c was not clearing the daylight savings flag
when setting the time, which meant that when the time was retrieved, the
hour would sometimes be one hour different than what was set. Affected

Copyright 2011 Ross Higson Page 30 of 113

Catalina C Release History

both the Propeller 1 and Propeller 2.

3. Dumbo Basic was not flushing its output buffers, so prompts and input was
not appearing in some cases when executing input statements until an
end-of-line character was entered

Release 5.3

New Functionality

1. The Catalyst utilities cp, mv, rm, Is and cat now ignore volume id entries,
except that the Is utility will still include them when long or very long listing
output is specified.

2. Catalyst now has the ability to execute a once-only command on startup.
This is similar to the existing AUTOEXEC.TXT file processing when the
AUTODELETE option was also enabled. The AUTOEXEC.TXT and
AUTODELETE functionality has been retained, but AUTODELETE is not
enabled by default, which means that normally the AUTOEXEC.TXT is
executed on every Propeller reboot. The new once-only execution
functionality overrides this if the file EXECONCE.TXT exists. If it does then it
will be executed and also deleted. This new functionality is used by the Lua
propeller module "execute" function, described in point 3 below. It requires
that the SD Card be writable.

3. The Lua propeller module now includes new propeller-specific functions.
Lua analogues of the C DOSFS wildcard/globbing functions:

mount ()
scan (function, directory, filename)

The filename can include wildcards. See the Catalyst Reference Manual for
details, and see list.lua for an example of using these functions.
A Lua function to execute any Catalyst command (reboots the Propeller):
execute (command, filename)
For example:
propeller.execute("list *.bas")
The first parameter is the command (which may include parameters), and
the second (optional) parameter is the file name to write this command to.
This defaults to "EXECONCE.TXT", which means the command will only be
executed once, but it can be used to write the command to any file. For
instance:
propeller.execute ("lua", "AUTOEXEC.TXT")
will cause the Propeller to execute lua on each reboot. To disable this from

within Lua, just delete the file by executing a Lua command like:
os.remove ("AUTOEXEC.TXT")

Lua analogues of the keyboard HMI functions:
k_get, k wait, k new, k_ready, k _clear

Lua analogues of the screen HMI functions:

t_geometry, t mode, t_setpos, t getpos, t_scroll,
t color, t_color fg, t color_bg

Lua analogues of the mouse HMI functions:
m_button, m_abs x, m abs y, m delta x, m _delta y, m reset,
m _bound limits, m bound scales, m bound x, m bound y

Copyright 2011 Ross Higson Page 31 of 113

Catalina C Release History

Each of these HMI functions accepts the same parameters and returns the
same values as their C counterparts. See the Catalina Reference Manual for
details.

Note that to save space, the mouse functions will not be included if the
Catalina symbol NO_MOUSE is defined when Lua is compiled (which it will
be if you use the build_all scripts to build Lua — to change this you can edit
the file Makefile.Catalina to remove the -C NO_MOUSE option). You can
detect whether mouse functions have been included from within Lua itself by
testing if any of them are nil, such as:

if (propeller.m button) then

-- mouse functions have been included
else

-- no mouse functions
end

4. Catalyst will now try to execute commands as Lua scripts, in addition to just
executing binary files. The order of priority for Catalyst command execution
iS now:

1. As a built-in command (e.g. dir)

2. As a Lua script, adding a ".lua" extension if none is specified
3. As a binary file, using the command as the file name
4

As a binary file, adding the following extensions (in this order if the
command does not specify an extension):

BIN

BIX (propeller 2 only)
XMM

SMM

LMM

Note that all command types accept command line arguments, including Lua
scripts. Several example Lua scripts are included:

list.lua — a simple directory listing program (similar to Unix Is).
find.lua — a simple file searching program (similar to Unix find).
freq.lua — a simple word frequency counting program.

You invoke Lua scripts from the Catalyst command line just like any other
command. For example:

list <-- list file details of all files

list *.lua <-- list file details of Lua files

find *.bas PRINT <-- find PRINT statements in all files
freq *.txt <-- count word frequency in all text files

Note that Lua scripts can be compiled to improve load and execution times,
but they should still have the extension ".lua".

As a consequence of this, the Lua versions of the Super Star Trek demo
programs have changed name, so that executing the command sst at the
Catalyst prompt will still invoke the C version (sst.bin) rather than now
executing the Lua version (which used to be called sst.lua):

sst.lua --> now called star.lua
sst-tos.lua --> now called star-tos.lua

5. The Propeller 2 Catalina command line argument processing has been

Copyright 2011 Ross Higson Page 32 of 113

Catalina C Release History

modified to match that of the Propeller 1. On startup, all Catalina programs
check if CogStore is running. If it is, the program fetches any arguments
stored in it. Previously on the Propeller 2, if CogStore was not running then
Catalina would set argc to zero and argv[0] to NULL — but some C
programs expect argc to always be at least 1, so now if CogStore is not
running argc will be set to 1 and argv[0] will point to a string with the value
"null" (since without CogStore the real program name is not available). This
functionality was already implemented on the Propeller 1.

6. 6. The wildcard/globbing doDir() function in storage.h and storage.c has
been extended to make it more useful — it now calls the file processing
function with the file size and the DOSFS file attributes of each file in addition
to the file name. One advantage of this is that programs that use doDir() do
not need to use DOSFS functions to retrieve the file attributes themselves,
and therefore only need to use standard C stdio file functions.

7. The build_catalyst script now detects whether it is being run in the current
directory. If so, it builds catalyst in this directory, otherwise it builds it in the
demos\catalyst folder in the Catalina installation tree (as it did in previous
releases). The purpose of this is that if you copy the Catalyst folder to your
own local user directory, you can build Catalyst locally and do not need to
have write permission for the Catalina installation tree. Note that the
build_all script already supported local builds, it was only the build_catalyst
script that did not.

8. The build_utilities script now detects whether it is being run in the current
directory. If so, it builds the utilities in this directory, otherwise it builds them in
the utilities folder in the Catalina installation tree (as it did in previous
releases). The purpose of this is that if you copy the utilities folder to your
own local user directory, you can build the utilities locally and do not need to
have write permission for the Catalina installation tree. Also, the
build_utilities script has been modified to prompt whether the utilities binaries
should also be copied to Catalina's bin directory, or simply left in the current
directory. Copying the utilities to Catalina's bin directory is convenient since
payload looks for them there if it does not find them in the current directory,
but it requires write permission to the Catalina installation tree. If you do not
have this permission, you can now copy the utilities folder to your own user
directory, build the utilities there, then copy the binaries to each directory
from which programs will be loaded — which may actually be a better solution
if you have multiple Propeller platforms or configurations which need different
versions of the utilities. Note that the utilities are required only for Propeller 1
platforms — there are currently none needed for any of the supported
Propeller 2 platforms.

9. The build_all script in the utilities folder has been removed (it was
deprecated quite a few releases ago). Use the build_utilities script instead.
The main difference is that build_all used to build binaries for all CPUs of
multi-CPU platforms (such as the TRIBLADEPROP) whereas the
build_utilities script has to be re-run for each CPU.

Other Changes

1. Implemented a workaround for an OpenSpin/Spinnaker bug that meant
compiling Spin programs with too many short symbol names could fail

Copyright 2011 Ross Higson Page 33 of 113

Catalina C Release History

unexpectedly. The current workaround is to simply use longer symbol names.
Affected only Propeller 1 programs that used the Catalina Optimizer (which
may generate many additional symbol names).

2. Fixed a typo in the DOSFS demo program that prevented it from compiling.

3. Updated the version of Lua used in payload and blackbox to Lua 5.4.4,
which is the current version. Lua 5.1.5 is still included as a Catalyst demo
program, but is no longer compiled by default (Lua 5.4.4 is now used
everywhere) and Lua 5.1.5 is now deprecated and may be removed from a
future release.

4. Since Lua is now compiled in COMPACT mode by default, the pre-compiled
P2 demo versions of Catalyst (in P2_EVAL.ZIP and P2_VGA.ZIP) are now
compiled in NATIVE mode, which improves execution speed, but at the
expense of larger executables for some of the demo programs. If this is a
problem, simply recompile Catalyst, specifying COMPACT mode as one of
the parameters to the build_all script.

1. 5. Updated the notes about compiling Catalyst — a memory model should
only be specified as an argument to the build_all script when compiling for
the Propeller 2, not for the Propeller 1.

Release 5.2

New Functionality

1. Added a new inline pasm demo ("test_inline_pasm_5.c") to demonstrate how
to CALL an inline PASM function from within an inline PASM function in a
COMPACT program.

2. Updated the validation suite. Now logs more details to make it easier to
identify what failed, and also added "short" scripts to do faster validation.

3. Updated the file 'globbing' demo (in folder demos\globbing). Tidied it up, fixed
a few bugs and it now uses the correct DOS filename syntax, prints the
filenames properly, and is now correctly case insensitive in all cases. The
listDir() function has been re-written to be an instance of a new generic
doDir() function, which calls a specified function on each matching filename.

4. Wildcard matching (‘globbing') has been added to many of the Catalyst
utilities. You can now specify wildcard expressions like *.bin or [a-g]*.b?? -
see glob.c for details. The options and syntax of the utilities have not
changed, except for Is (see 5 below).

The commands affected are:
Is — list files and/or directories
rm — delete files or directories
cp — copy files
mv — move files
cat — concatenate and print files
For example, you can now say things like:
Is *.bin *.dat
mv [a-f]*.bin bin
rm ??7?.dat

Copyright 2011 Ross Higson Page 34 of 113

Catalina C Release History

cat *.txt

Note that wildcards can only be used in the file name part of a path, not in
the directory part, so you cannot specify an argument like /b??/*.* expecting
it to match bin/*.*

For arguments that may be interpreted as files or directories, adding a
trailing / ensures they will be treated as directories. For example:

Is bin -- list just the entry "bin" (if it exists)
Is bin/ -- list the contents of directory "bin" (if it exists)

Note that the built-in dir command does not accept wildcards because there
is not enough space to do so. The same is true of the cat command when it
is compiled as a Catalyst build-in command (it is normally compiled as an
external command).

5. The Catalyst Is command now uses a short listing format (similar to that
used by Unix or the built-in dir command) by default. The previous default
listing format can be specified using the -l option, and the previous long
listing format (which used to be specified by -l) must now be specified by -l -l
or -ll. Also fixed interactive mode, which was not working in some cases.

6. 6. The Catalyst cp, mv and rm commands now accept a or A (for "all") at the
interactive prompt, to indicate that the command should assume "yes" for all
subsequent files.

7. The catalyst build_all script now does clean_all before building, to ensure
there are no binaries left from previous builds.

Other Changes

1. Updated the file catalina_compact.inc in the target and target p2 directories
to add more notes about writing inline PASM in COMPACT programs.

2. The tiny library had a version of the C stdio function gets(). This prevented
programs that used gets() from linking with the tiny library, because it ended
up being multiply defined. The version in the tiny library has been renamed
tiny_gets() in this library, but like the other tiny functions (i.e. tiny_printf() etc)
it will be used automatically if a program is linked with the tiny library.
Affected the Propeller 1 and Propeller 2.

3. Fixed a bug in the Propeller 1 SD Card plugin — multiple block writes must
not be used on platforms that must disable the SD Card to use XMM RAM
(e.g. because they share pins). Affected the Propeller 1 only.

4. Fixed a bug in Catalina's "unmanaged" file close function which meant that
only a limited number of files could ever be opened. Did not affect the normal
stdio open/close functions, but it affected the Catalyst cat command, which
uses the unmanaged versions of open/close to save space.

5. Catalyst's example basic files are now all Unix format, not DOS format. This
makes no difference to their functionality, but makes them easier to edit usng
vi or list using cat.

6. Fixed a bug in DOSFS which affected the ability to delete files with zero
length (e.g. using the Catalyst rm command) - doing so may have corrupted
the file system.

Copyright 2011 Ross Higson Page 35 of 113

Catalina C Release History

Release 5.1.2

New Functionality

1. The path that Lua uses to search for modules has changed. The old path
was the one used on Windows, which was not appropriate for the Propeller.
The path is now:

?.lua; ?/init.lua;lua/?.lua;lua/?/init.lua

This means that (for example) if you say require 'm' then Lua will search for
m.lua, m/init.lua, lua/m.lua and lua/m/init.lua in that order.

2. The Lua demos sst.lua and sst-tos.lua now use propeller.sbrk() instead of
threads.sbrk(), which means the mem command (which displays the top of
the C heap) now works when the program is run under both lua and mlua.

Other Changes

1. Fixed a bug in the threads library, which prevented some multithreaded
programs from compiling. Affected only Propeller 1 programs which were
compiled in LMM TINY mode.

2. Eliminated the file minit.c from Lua. This was a temporary replacement for
the Lua file /init.c which included the threads module. Now linit.c will include
the "threads" module if LUA_THREADS is defined in the file luaconf.h. For
completeness, there is also a corresponding LUA_PROPELLER that is used
to specify that the "propeller" module be included. This is more in keeping
with the way Lua normally defines compile-time options, eliminates the need
to have the extra file, and it also means that when compiling the executables
(e.g. lua and mlua or luax and mluax) under Catalina, Catalina can
automatically detect the compile options and include the correct modules.
But if you compile mlua or mluax using gcc and posix threads, you will now
need to explicitly define LUA_THREADS in luaconf.h to include the "threads"
module.

3. Fixed a bug that meant the Lua "propeller" module would not compile using
any compiler other than Catalina. Although it is only functional when
compiled using Catalina, it should still have compiled using other compilers
(such as gcc).

4. The number of threads the test_maximum_threads.c demo program creates
has been reduced to 145, since at 150 there are some plugin combinations
that do not have enough free Hub RAM to support 150 threads. Affected the
Propeller 1 only.

5. The build_all scripts and Makefiles now always build Lua in COMPACT
mode on the Propeller 2, because NATIVE mode does not leave enough
Hub RAM for the various demo programs.

Release 5.1.1

New Functionality

1. Added a new demo folder (xeprom) containing programs that demonstrate
how to read from the EEPROM from XEPROM XMM programs. In such
programs, the EEPROM cannot be read independently (e.g. using an 12C
driver) because it is constantly in use by the cache. This applies only to the

Copyright 2011 Ross Higson Page 36 of 113

Catalina C Release History

Propeller 1, and requires a platform with an EEPROM larger than 32k, such
as a FLIP, a C3 or a HYDRA.

Other Changes

1. Fixed a bug that meant the -e command line switch to Catalina, which is
used to specify that a .eeprom file be generated instead of a .binary file did
not work correctly in some instances. In particular, it could not be used in
conjunction with the -C XEPROM option. This affected the Propeller 1 only,
and only Catalina version 4.9.3 or later.

2. The catalina_clean utility script had not been updated recently, and would
miss cleaning some directories when the optional all parameter was
specified.

Release 5.1

New Functionality

1. Decoding the CATALINA_DEFINE environment variable was taking place
AFTER the symbols to specify the clock frequency were defined, so the
Catalina symbols MHZ_220, MHZ_260 & MHZ_300 only worked when
specified on the command line, and had no effect if specified using
CATALINA_DEFINE.

2. Added MHZ_200 as a Catalina symbol, to make it easier to build Catalyst
using 200Mhz on the Propeller 2 — this is now the recommended frequency
for building Catalyst on the P2, to work around an obscure bug that occurs at
180Mhz. Note that the Propeller 2 reference manual, the tutorial Getting
Started with Catalina and the documentation in the Propeller 2 VGA plugin
source file all mistakenly referred to this Catalina symbol when they should
have referred to the existing MHZ_220 symbol. All these documents have
now been updated.

3. The Lua "propeller" module has had the functions sleep, msleep and sbrk
added. These functions are the same as the ones in the "threads" module,
but are handy when the propeller module is used in a non-threaded Lua
program.

4. The Lua "threads" and "propeller" modules now accepts a string parameter. If
"lua" is specified, these functions return the version of Lua. Otherwise they
return the version of the module.

5. Lua versions of the classic Star Trek game (sst./lua and sst-fos.lua) are now
included as Lua test programs.

6. A change was made to the gettoken procedure in Dumbo Basic 1.0, which
was introduced in Catalina release 4.7. This change led to a syntax error
when executing TREK15.BAS. This change has been reverted in Dumbo
Basic 1.1, but if this breaks any existing basic code, it can be re-implemented
by modifying the file basic.c and changing the #define of NEW_GETTOKEN
to 1.

7. When compiled for the Propeller, Dumbo Basic now has a delay on exit of
100ms to allow time for any pending output to be printed. This prevents error
messages or final program output from being truncated.

Copyright 2011 Ross Higson Page 37 of 113

Catalina C Release History

Other Changes

1. The command-line options to set the clock frequency (-f, -F and -E) were not
described in the documentation. These options apply to the Propeller 2 only.

2. On the Propeller 2, it is now recommended that Catalyst be compiled using a
200Mhz clock speed. This is a work-around for an obscure bug which only
seems to affect some programs loaded from the SD card and which use a
clock speed of 180Mhz.

3. A bug in the SD Card plugin was preventing programs being able to write to
some SD cards (reading was ok). This affected the Propeller 2 only.

Release 5.0.3

New Functionality

1. The default version of Lua (e.g. built by the Catalyst build_all scripts) is now
Lua 5.4.4. However, Lua 5.1.5 is still included and can be built manually if
required.

2. The Lua threads module has a new version() function which returns the
LUA_VERSION_NUM associated with the Lua version. The main use for
this is to allow for changes made in Lua between versions, such as the
changes to the garbage collection options in various Lua releases.

The possible return values are:
501 — Lua Version 5.1.x
502 — Lua version 5.3.x
503 — Lua version 5.3.x
504 — Lua version 5.4.x

Other Changes

1. From version 5.2 onwards, Lua no longer "requires" the coroutines module
by default, so the Lua threads module now does this explicitly.

2. Some functions in the threads module were returning floating point values
when the value was really an integer. Lua versions 5.2 and earlier only
supported floating point values, so this was the only option. From version 5.3
onwards, Lua supports integers as well as floating point values, and in some
cases it is more appropriate for the function to return an integer.

3. For consistency with the threads.factories() function, threads.workers()
now returns the current number of workers. However, note that if this
function is used to CHANGE the number of workers then the value returned
may be anywhere between the old number of workers and the new number.
This function merely requests a new number of workers — actually creating
or destroys the workers may not happen immediately.

4. The Makefile for Lua-5.4.4 had not been updated to build Multi-processing
Lua on Windows or Linux.

5. The document Lua on the Propeller 2 with Catalina has been updated to
note a limitation of using coroutine.yield(), or the put and get message
passing functions — i.e. that you cannot hold a mutex locked while you use
these functions

Copyright 2011 Ross Higson Page 38 of 113

Catalina C Release History

Release 5.0.2

New Functionality
This release contains no new functionality.

Other Changes

1. Fixed a bug in the Lua threads module when sending and receiving
messages. The program could lock up under certain circumstances. Since
the Lua threads module is only supported on the Propeller 2, this affected
the Propeller 2 only.

2. Multi-threaded Lua examples 4 has been updated to eliminate a race
condition.

3. Multi-threaded Lua example 8 has been updated to make it more evident the
example is using preemptive multi-tasking.

4. Multi-threaded Lua examples 11 and 12 have been added to demonstrate
interactions between co-routines and threads.

5. The document Lua on the Propeller 2 with Catalina has been updated to
reflect the above changes. Also, some terminology issues have been
clarified.

Release 5.0.1

New Functionality

6. Modified various Catalyst commands to allow combined command-line
options — e.g. -dh now means the same as -d -h

Other Changes

1. Fixed a bug in the DOSFS file system which allowed a file to be opened as a
directory using the DFS_OPENDIR option to DFS_OpenFile instead of
returning that a directory of that name did not exist. This confused the
Catalyst cp command when copying files into a directory.

2. Fixed a bug in the Catalyst rm command that prevented recursive file
deletions.

3. Fixed a bug in the Lua threads module that prevented the number of
factories being reduced. Also, the Lua threads module documentation has
been updated to reflect the fact that reducing the number of factories now
necessarily terminates all workers first (they are restarted after the number
of factories has been reduced) and that this should therefore only be done
from the main thread and when that thread is executing on factory 1.

4. Modified Lua to zero all newly allocated blocks of memory. Lua seems to
assume all new blocks of memory will be initialized to zero, which is not
actually guaranteed by C, so this led to some Lua programs behaving
unexpectedly. While this fix resolves the issue, it does so at a small run-time
cost, so further investigation is required. Multi-threaded Lua example 9 was
badly affected by this issue and has been updated. The Lua threads module
documentation has also been updated.

Copyright 2011 Ross Higson Page 39 of 113

Catalina C Release History

Release 5.0

New Functionality

5. The standard C memory management functions (i.e. malloc, realloc, calloc,
free) and a new system break function (sbrk) are now all thread safe. For
details, see the "Multi-processing, Locks and Memory Management" section
in the Catalina Reference Manual.

6. Catalina's dynamic memory management has been modified to make it less
prone to running out of memory when lots of small randomly sized chunks of
memory are allocated, freed or re-allocated. For details, see the
"Multi-processing, Locks and Memory Management" section in the Catalina
Reference Manual.

7. A new function has been added that can be used to assign one or more
locks to protect services offered by plugins in multi-cog or multi-thread
programs. For details, see the "Multi-processing, Locks and Memory
Management" section in the Catalina Reference Manual.

8. An example of a public domain itoa function has been added to the folder
demos\examples — it is called ex_itoa.c. The itoa function is also used in the
new demo program test thread_malloc.c (as an alternative to using sprintf,
which can make the program too large for the Propeller 1).

9. Catalina used to use 4 bits for the lock in the service registry. The Propeller 1
only had 8 locks, so this was sufficient to represent all possible locks plus a
bit to indicate "no lock". But the Propeller 2 has 16 locks, so Catalina must
now use 5 bits for the lock. To make space for the extra bit, the number of
bits used to hold the cog-specific service code has been reduced from 8 to 7.
This still allows up to 127 services, but less than 40 such services are
implemented even by the most complex plugins (the HMI plugins), so this is
unlikely to be a problem. If it becomes so, the size of each service entry can
simply be increased from a 16 bit word to a 32 bit long.

Although this change is only required for the Propeller 2, to keep the library
functions consistent, it has been made on the Propeller 1 as well.

10. The speed of the p2asm assembler has been improved — it is now
approximately twice as fast. | am still not sure why it is so slow on Windows
compared to Linux, where exactly the same code executes about 10 times
faster on the same machine.

11. If a baud rate is not specified and a file with a ".bin" extension is loaded,
payload now assumes it is loading a Propeller 2 and sets the baud rate to
230400. This can be overridden by specifying a baud rate either on the
command line or via the PAYLOAD_BAUD environment variable.

12. Windows 10 has a bug in the Command-Line interpreter. When loading a
program using payload, it crashes (taking payload down with it) if the
Wndows option "Wrap Text Output on Resize" option is not set in the Layout
Options (in the Properties dialog box). This can leave a payload task
executing in the background which needs to be terminated manually (e.g.
using Task Manager) in order to release the USB port.

13. The translation of outgoing CR to LF has been disabled in the payload
interactive terminal mode by default, but mode 16 has been added to restore
the original behaviour if needed. The translation was preventing the use of

Copyright 2011 Ross Higson Page 40 of 113

Catalina C Release History

14.

15.

16.

17.

payload to interact with TAQOZ and the P2 Monitor - the correct mode to use
for these is now -q1.

For instance, if you have a Propeller 2 connected to port X, you can
communicate with TAQOZ by entering a command like:

payload -i -ql -pX
Then reset the Propeller 2 and enter the usual TAQOZ entry sequence (i.e.
'>' SPACE ESC) or P2 monitor entry sequence (*>' SPACE CTRL-D)
Catalina now supports a "thin" binding to Posix threads. See the "Posix
threads (pthreads) support" section in the Catalina Reference Manual.

Lua module "threads" adds multi-threading capabilities to Lua (for the
Propeller 2 only). The document Lua on the Propeller 2 with Catalina
describes this new functionality in detail.

The interactive versions of Lua (and Multi-threaded Lua) now support trivial
line editing (e.g. backspace is now recognized).

Catalina now supports setpin(), getpin() and togglepin() for both the Propeller
1 and 2. These are defined in propeller.h:

setpin(pin, value) - sets pin to output and sets value
setpin (pin) - sets pin to input and gets value
togglepin (pin) - sets pin to input and toggles value

These functions are also provided in the Lua propeller module, described in
the document Lua on the Propeller 2 with Catalina.

Other Changes

Support for the dual-CPU MORPHEUS platform has been dropped. The
Morpheus was supported up to Catalina 4.9.6. The Morpheus required
special complex build scripts, and some of the large demo programs would
not run because of the unique and expensive (in terms of cogs) VGA driver it
required. Also, many of the demo programs required both CPUs to run at all
since the keyboard and mouse was on one CPU but the VGA hardware was
on the other. This limited the usefulness of having dual CPUs. The
Morpheus-specific scripts and drivers from that release may contine to work
in subsequent releases, but installing, testing and maintaining them is now
up to the user. They will no longer be routinely included as part of each
Catalina release.

Support for the simpler three-CPU TRIBLADEPROP will remain, primarily as
an example of how to support multi-CPU Propeller systems, which typically
require the use of multi-stage loaders and proxy HMI drivers.

Changes to the Catalina Optimizer to allow it to recognize more code that
can be optimized. Generally only affected hand-coded PASM, where the
spacing in the code did not match exactly what the Catalina code generator
would produce (e.g. if you used tabs as a separator instead of spaces).
Make it more explicit in the documentation that the integer-only version of
the C standard library (libci) does not include support for sprintf() or
vsprintf() - if these functions are required, use one of the other libraries (e.g.
libc). This is to keep libci as small as possible.

Fixed some instances where the C library stdio was not re-entrant, and
hence not thread safe or multi-cog safe.

The Catalina HMI function t_float() was not re-entrant, and hence not thread

Copyright 2011 Ross Higson Page 41 of 113

Catalina C Release History

10.

1.

12.

13.

14.

15.

16.

17.

safe or multi-cog safe.

Use dynamic io buffers for stdio (previously, Catalina used static io buffers
which was more efficient but not multi-cog safe or thread safe).

Minor changes to the include files propeller.h, propeller2.h and
catalina_cog.h — it is now possible to include any or all of them, and in any
order on both the Propeller 1 and 2 and they should not interfere. (but of
course, propeller2.h defines functions that may not be available on the
Propeller 1, and vice-versa). There have been some changes to the function
definitions in these files (not to the functions themselves) that could
conceivably cause issues for programs that relied on specific definitions.

There was an error in the Makefile in the demos\p2 directory that prevented
some of the demo programs building.

The reference manual documentation for _lockset (etc) has been updated,
as both the Propeller 1 and 2 reference manuals had gotten out of sync with
the actual software.

The various reference manual sections dealing with Multi-Processor support
(i.e. multi-cog, multi-threading and multi-model) have been combined and
extended.

Fixed a bug in DOSFS that led to the Catalyst "rm" command thinking a file
to be deleted was a directory when in fact it simply didn't exist.

Fixed a bug in xvi (aka vi) which meant that if a yank or delete command
was the first thing attempted, it may have given a spurious "Not enough
memory to perform delete" error.

Fixed an issue in some of the build_all scripts that would not detect a
Propeller 2 if it was specified using CATALINA_DEFINE instead of on the
command line. Now, a P2 is assumed if the first 2 characters of the first
parameter to the build_all script are "P2" OR the first two characters in the
CATALINA_DEFINE environment variable are "P2"

Release 4.9.6

New Functionality

Updated the payload loader to allow EOT (Ctrl-D) to be passed to the
application program in interactive mode without also closing the terminal
emulator. Now pressing Ctrl-D ONCE passes an EOT to the application but
does not terminate payload. To terminate payload you must now enter TWO
SUCCESSIVE Ctrl-D characters.

Updated the minimalist Lua demo program (min.c) so that it would compile
under both Lua 5.1.5 and Lua 5.4.3 (which changed the names of some Lua
library functions).

Updated the Lua 5.1.5 and 5.4.3 Makefiles to include pattern templates.
This simplifies the compilation of Lua programs like min.c - you can now use
just the Catalina Makefile to build Lua programs. For example, to build the
minimalist demo:

make -f Makefile.Catalina clean min.bin

Added the Lua execution engine (luax) that executes only compiled Lua
programs to Lua-5.4.3. This saves Hub RAM by not loading the Lua parser if
all the Lua programs to be executed are pre-compiled.

Copyright 2011 Ross Higson Page 42 of 113

Catalina C Release History

18.

19.

20.

Added clean_all scripts to the Catalyst demo folders, to make it easier to
remove compiled versions of all the Catalyst programs.

Added clean_all scripts to the Catalina source folders, to make it easier to
remove compiled versions of all the Catalina programs.

Removed the -C NATIVE from the Catalyst build_all and Makefiles, and
some of the -O5 options on individual demo programs. This means that you
can now specify OPTIMIZE on the command line if you want Catalyst
programs to be optimized, and on the Propeller 2 you can now choose to
compile all the demo programs as COMPACT (instead of NATIVE). Note that
this applies to the Propeller 2 only. Do not specify a memory model on the
Propeller 1 — the core programs must always compiled as COMPACT on the
Propeller 1 because otherwise they would be too large for a Propeller 1
without XMM RAM, and the other programs must usually be compiled in
LARGE mode.

Other Changes

Fixed some errors in Dumbo Basic that stopped it compiling in COMPACT
mode. Affected the Propeller 2 only.

Release 4.9.5 fixed one bug in the COMPACT mode optimizer, but
introduced another, which has been fixed in this release. Affected the
Propeller 2 only (and the only program known to be affected was the vi text
editor, which would not compile in COMPACT mode)

Release 4.9.5

New Functionality

Updated Lua to version 5.1.5 in both payload (where it is used for scripting)
and Catalyst (where it is used as a demo program). Version 5.1.5 as the last
release of Lua 5.1. On a Propeller 1 it must be compiled in LARGE mode.
On a Propeller 2 it can be compiled in either NATIVE or COMPACT mode.

Catalyst will continue to incorporate Lua 5.1 because it is small enough to be
useful on a micro controller like the Propeller even when compiled in NATIVE
mode (for speed). Also, Lua 5.1.5 incorporates a new option to execute
compiled Lua programs using a Lua execution engine that does not load the
Lua parser (luax). This saves even more Hub RAM when all the Lua code to
be executed is pre-compiled using the Lua compiler (luac).

For example, to execute the life.lua demo program, you can now either do:
lua life.lua

or

luac -o life.out life.lua

luax life.out
Lua version 5.4.3 is also included as a Catalyst demo, but is not compiled by
default. Version 5.4.3 is the current release of Lua 5.4. It should be compiled
with the COMPACT option, or it may be too large to be much use. For
example:

build all P2_EVAL SIMPLE VT100 COMPACT

On the Propeller 2, the code sizes of Lua 5.1 vs Lua 5.4 are:
NATIVE COMPACT

Copyright 2011 Ross Higson Page 43 of 113

Catalina C Release History

Lua 5.1 (no parser) 139k 250k
Lua 5.1 (with parser) 166k 297k
Lua 5.4 (with parser) 227k 412k

Hence Lua 5.1 is quite usable in both NATIVE and COMPACT modes, and
with or without loading the parser, whereas Lua 5.4 is really only usable in
COMPACT mode. This is because Lua 5.4 itself takes so much Hub RAM
that there is not much left to run anything except small Lua programs (the
above sizes are the code sizes only — there is also stack and heap space
required to actually execute a Lua program). Note that there is currently no
option to execute Lua 5.4 programs without loading the Lua parser. This
option may be added in a later Catalina release.

Note also that on memory constrained systems such as a Propeller, the Lua
garbage collector sometimes requires a "tweak" to ensure it runs often
enough to stop Lua programs running out of memory. The life.lua demo
program is an example — it does many string concatenations per generation,
and if the garbage collection does not run often enough, the program can run
out of memory. To prevent this, the following line has been added to the
program:
collectgarbage ("setstepmul", 500)

Refer to the Lua documentation for more details.

2. Updated MAX_SYMBOLS in p2asm to be 20,000 (was 10,000) - this is
required to allow Lua 5.4.3 to be compiled with optimization enabled.

3. Added decoding of Catalina symbols MHZ_300 and OPTIMIZE. This allows
these options to be specified on the command line of the build_all scripts, or
via CATALINA_DEFINE:

MHZ_300 set the default Propeller 2 clock to 300Mhz. Note that this
may not work on all Propeller 2 platforms. USE THIS
OPTION WITH CAUTION, BECAUSE IT MAY NOT BE
IMMEDIATELY APPARENT THAT A PROGRAM IS NOT
EXECUTING CORRECTLY!

OPTIMIZE set the optimizer level to 5.

For example, you can now say:
build all P2 _EVAL MHZ 300 OPTIMIZE

or

set CATALINA_DEFINE=P2_EVAL MHZ_300 OPTIMIZE
build all

These symbols are not intended to be used on the command line, but they
can be used via the -C option. For example:
catalina hello world.c -p2 -lci -C MHZ 300 -C OPTIMIZE

would be the same as:
catalina hello world.c -p2 -lci -£300Mhz -05

Other Changes

1. Reformatted some Catalyst text files (e.g. Catalyst.txt) to be Unix format
instead of DOS. This makes them easier to view in the Catalyst text editor

(vi).
2. Fixed a bug in the Catalina Optimizer when optimizing COMPACT programs.

Copyright 2011 Ross Higson Page 44 of 113

Catalina C Release History

This may have resulted in programs that would not execute correctly.
Affected only Propeller 2 COMPACT programs.

3. Fixed a bug when compiling Catalyst — it would not compile on the Propeller
2 if the file sio_array.h was not present in the core folder, even though that
file is only required when compiling for the Propeller 1.

Release 4.9.4

New Functionality

1. Added a new serial HMI option called SIMPLE (supported on the P2 only).
This option uses P2 smartpins to implement a very simple serial interface.
The advantage of the new HMI option is that it saves a cog over the default
serial HMI option (TTY). The disadvantage is that may not support very high
baud rates — but baud rates up to 230400 are supported, which means it is
sufficient for a serial terminal. To use it, define the symbol SIMPLE on the
command line. For example:

catalina -p2 -lci hello_world.c -C SIMPLE
payload -i -b230400 hello world.bin

2. The serial baud rate can now be specified on the command line, either by
using the -B command line option, or by defining the symbol _BAUDRATE
using a complex definition such as -C "_BAUDRATE=xxx". This is
supported on the Propeller 2 only. The payload loader now also accepts -B
to specify the baud rate — i.e. payload now accepts either -b or -B (whereas
catalina only accepts -B since -b already meant something else). For
example:

catalina -p2 -lci -B9600 hello_world.c

payload -i -B9600 hello world.bin
or

catalina -p2 -1lci -C "_BAUDRATE=9600" hello_world.c

payload -i -B9600 hello world.bin
If it is not specified on the command line, the default value defined for the
platform (in Catalina_platforms.inc in the target p2 directory) will be used.

Other Changes

1. Complex symbols had not been implemented in the Catalina Optimizer,
which meant that the optimizer could not be used if the command line
contained a complex definition such as:

-C "name=value"

2. Payload now allows baud rates down to 300 baud. There was really no
reason payload ever limited the baud rates (it used to impose a minimum of
19200 baud) except that at the lower baud rates the program load times
become so long that it was not much use. However, this was before payload
could also be used as a serial terminal emulator, and in some cases low
baud rates are useful for testing. However, note that the P2 smart pin UARTs
use a 16-bit value for baud timing which can limit baud rates — to use baud
rates lower than 4800 baud you may need to also specify a lower system
clock frequency. For instance, to use a baud rate of 300 baud, you may need
to use a clock speed of 12Mhz or lower:

catalina -p2 -lci hello_world.c -C SIMPLE -B300 -f12Mhz

Copyright 2011 Ross Higson Page 45 of 113

Catalina C Release History

3. There was a bug in the Catalina HMI t_bin() function, which prints the 32 bit
binary representation of its integer or unsigned argument. The value was
effectively being shifted left by 3 bits.

Release 4.9.3

New Functionality

1. You can now define complex Catalina symbol definitions on the command
line to assign a symbol a value (i.e. in addition to simply defining the symbol
itself). This is currently supported only on the Propeller 2 — the Propeller 1
still only supports simply defining such symbols. You must put the complex
symbol definition in double quotes, such as:

-C "name=value"

Note that defining complex C symbols was already supported using similar
syntax (but using the -D command-line option).

2. You can now request a specific clock frequency, or specify arbitrary clock
parameters on the command line. This is normally done using the new -f, -F
and -E command line options. This is supported on the Propeller 2 only — on
the Propeller 1 you must still set the initial clock parameters in the
appropriate <platform>_DEF.inc file (e.g. C3_DEF.inc for the C3 platform).

The meaning of the new command-line options are as follows:
-f requested frequency for which to calculate clock parameters
-F xtal (XI) frequency to use in frequency calculation (default 20Mhz)
-E error limit for frequency calculation (default 100khz)

In most cases, you just use the -f option by itself. Note that m and k suffix
chars (case insensitive) are supported by these options, and mean to
multiply the value specified by 1,000,000 or 1,000 respectively. This means
you can say things like:

-f 260Mhz

or
-f 123456kHz

for example:
catalina hello_world.c -p2 -lc -f£300Mhz

Specifying a frequency via -f causes Catalina to calculate the clock
parameters required to achieve it, and defines and uses three Catalina
symboils if it is possible to achieve the specified frequency within the error
limit. These symbols are:

_CLOCK_XDIV : Xl divider (1..64)
_CLOCK_MULT : XI multiplier (1..1024)
_CLOCK_DIVP : VCO divider (1, or even numbers from 2 to 30)

These can also be defined manually, but they will only be used if all three are
defined. The following clock parameters can also be defined:

_CLOCK_XTAL : XI frequency
_CLOCK_OSC : 0=OFF, 1=0SC, 2=15pF, 3=30pF
_CLOCK_SEL : O=rcfast, 1=rcslow, 2=XI, 3=PLL

Copyright 2011 Ross Higson Page 46 of 113

Catalina C Release History

_CLOCK_PLL : 0=PLL off, 1=PLL on

To manually specify these parameters, use complex symbol definitions,
which means you need to enclose them in double quotes — e.g:

-C "_CLOCK_SEL=2"
or

-C " _CLOCK_ XTAL=25000000"

or
-C "_CLOCK XDIV=1" -C "_CLOCK MULT=9" -C "_CLOCK DIVP=1"

Note that the following two command-line options have the same effect:
-C " CLOCK XTAL=25000000"

and
-F 25Mhz

but that the "25Mhz" notation is not supported by the -C option. This means
you CANNOT also say:
-C "_CLOCK_XTAL=25Mhz" <-- WRONG!

The symbols MHZ_260 and MHZ_220 remain supported, but are now
translated internally into -f 260MHz and -f 220MHz options, which will have
the same effect.

If conflicting clock parameters are specified, the last one on the command
line will be used. If no clock parameters are specified, or the requested
frequency cannot be achieved, the default clock parameters defined for the
platform in catalina_platforms.inc will be used.

3. The Catalina parallelizer has had a bug fixed by adding new options that
allow better control of the locks used to control access to exclusive code
segments — they can now be local (i.e. local to the file in which they are
used) or global (i.e. used across multiple files). This is done by adding a lock
and extern option to the exclusive and shared pragmas (this is
demonstrated in a slightly updated test_6 in the demos\parallelize directory).
See the document Parallel Processing with Catalina for more details.

Other Changes

1. Improved the timing of interrupts and the use of the ticks value in the
NATIVE version of the multi-threaded kernel for the Propeller 2. Now,
interrupts occur about every millisecond irrespective of the value of the ticks
value of the thread. This makes threaded programs more responsive, timing
operations more accurate, and means that thread changes take effect
sooner — for instance, changing the ticks value will take effect after about a
millisecond, not at the next context switch, which may only occur several
seconds later.

2. The _lockclr() function now correctly returns the previous state of the lock
on the Propeller 2 (it already did so on the Propeller 1).

3. Fixed a bugin test_inline_pasm_2.c demo program which meant it would not
work in COMPACT mode.

4. Fixed bugs in various thread functions, which may have led to multithreaded
programs deadlocking on the Propeller 2.

Copyright 2011 Ross Higson Page 47 of 113

Catalina C Release History

1. Various minor improvements to the multithread demo programs.
Release 4.9.2

New Functionality

1. Added _waitsec(), _waitms() and _waitus() to the Propeller 1 and Propeller
2 libraries. Added _waitx() to the Propeller 1 library (as a synonym for
WAIT(). It already existed in the Propeller 2 library.

2. Added _pinstart() and _pinclear() to the Propeller 2 libraries.

3. Added a new include file (spin2cpp.h), which is included by propeller.h and
propeller2.h if the symbol __SPIN2CPP___ is defined. This allows for symbols
assumed to exist by the spin2cpp utility to be defined if they don't already
exist (e.g. due to name differences between C compilers).

4. The default for the CC field of the clock mode setting for the P2_EVAL,
P2_CUSTOM and default P2 platform is now %10 (15pf) and not %01 (OSC).
It is still %01 for the P2_EDGE.

5. Updated Catalina's version of p2asm to version 0.018. Minor bug fixes and
inclusion of "encod" keyword. Thanks to Dave Hein.

Other Changes

1. Updated the Makefiles in the demos folder to add -p2 to the command line
options if making a file with a .bin extension.

Release 4.9.1

New Functionality
None. Release 4.9.1 is a bug fix release for release 4.9.

Other Changes

5. Catalina Geany has been updated to fix a crash on startup under Windows.
This affected both Propeller 1 and Propeller 2 programs. Linux versions of
Catalina were not affected.

6. A bug in Catalyst support for SMALL FLASH binaries has been fixed. In
previous releases only FLASH programs with the LARGE memory layout
would load correctly under Catalyst. Now Catalyst will correctly load FLASH
programs compiled with the SMALL memory layout as well. Note that old
program binaries will not load correctly — they will need to be recompiled with
Catalina 4.9 to do so. This affected Propeller 1 programs only.

7. A bug in the PROPTERMINAL HMI support has been fixed. This affected
Propeller 1 programs only.

8. The project file chimaera.geany specified the -p2 flag in the project's
Catalina Options field. This meant the project would not compile correctly for
the Propeller 1 even if a Propeller 1 platform was specified (e.g. in the
CATALINA_DEFINE environment variable).

9. If the LCCDIR environment variable is not set, Catalina now assumes it is
installed in C:\Program Files (x86)\Catalina (it used to assume it was in
C:\Program Files\Catalina), which confused Icc.

Copyright 2011 Ross Higson Page 48 of 113

Catalina C Release History

Release 4.9

New Functionality

1. There has been a major rewrite of all the demo programs and build scripts in
the demos directory and all its subdirectories. Makefiles are now provided for
all the demo programs, which can be used either manually (i.e. by invoking
make on the command line) or via the Catalina Geany IDE. All platforms are
supported by these new Makefiles except for the MORPHEUS and
TRIBLADEPROP platforms (which still use the old batch scripts). To use the
Makefiles on Windows, this means you need to have a version of make and
some core utilities that it needs installed. The Windows installer can install
these for you if you do not already have them (e.g you don't already have
MinGW installed), or you can download them from here:

http://gnuwin32. sourceforge.net/packages/make.htm
http://gnuwin32.sourceforge.net/packages/coreutils.htm
The recommended version of make to use with Catalina is 3.81. The
recommended version of the core utilities is 5.3.0.

Note that Catalina can still be used as a command-line compiler without
installing make, and even Catalina Geany can still be used without it to
compile simple programs. But to build more complex examples (such as the
Catalyst demos) or use the various build_all scripts, a version of make is
required.

Most of the 'build_all' scripts have all been rewritten to just invoke make
internally, but other than that should work similarly to how they worked in
previous releases. So there are now four different methods you can use to
make the demo programs and your own C programs.

For instance, in the demos directory, there are now four ways to compile the
hello_world.c program ...

a) Manually, by invoking catalina yourself on the command line with

appropriate command-line options — e.g:

catalina hello world.c -lci
You can define Catalina symbols on the command line to specify
options for your compilation, or else use the CATALINA DEFINE
environment variable. For example, the following will give identical
results:

catalina hello world.c -lci -C C3 -C COMPACT -C HIRES VGA

and (on Windows)

set CATALINA DEFINE=C3 COMPACT HIRES VGA

catalina hello world.c -lci
or (on Linux)

export CATALINA DEFINE="C3 COMPACT HIRES VGA"

catalina hello_world.c -lci
The advantage of using the CATALINA_DEFINE environment variable
is that if you are working with a single Propeller platform, you don't
need to specify this in every compilation command. Note that you don't
use the -C command line switch when defining symbols using
CATALINA_DEFINE.

b) Using make. For all the Makefiles provided in the demo directory and

Copyright 2011 Ross Higson Page 49 of 113

Catalina C

Release History

its subdirectories, you can make either a single target, or all the targets
specfied in the Makefile — e.g:

make hello_world
or

make all

Note: if you see a message like the following:
make: Nothing to be done for “hello_world'

then it means that make did nothing because the program binary
already exists and is up to date. You can force make to rebuild the
program either by first saying 'make clean', or by invoking make with
the -B command line option — e.g:

make -B hello_world

Note that compiling with make, like all Catalina compilations, will use
any Catalina symbols defined in the CATALINA_DEFINE environment
variable. This allows generic Makefiles to be written more easily. All the
Makefiles provided as demos use the catalina_env command to print
out all Catalina environment variables before they build the programs to
remind you what is specified in CATALINA_DEFINE.

Using the build_all scripts, with or without appropriate Catalina
symbols specified to the command - e.g :

build all
or

build all P2 _EVAL NATIVE VT100 CR ON LF

The build_all scripts are now wrappers around make. They don't work
exactly the same way they did in previous releases, partly because the
demo directories have been restructured, but they still accept command
line parameters to specify the Catalina symbols to define for the build.
By convention, the first parameter is always the platform, and Propeller
2 platforms should always start with "P2" (e.g. P2_EVAL, P2_EDGE,
P2D2 etc).

The build scripts, like all Catalina compilations, will use any Catalina
symbols defined in the CATALINA DEFINE environment variable. Note
that if you specify conflicting symbols as parameters to the build_all
script, it will print a message about the conflict and not compile any
programs.

d) Using Geany. You can specify a Geany project on the command line, or

just start Geany with no project specified (which will start Geany with
whatever project was last loaded) and then manually load the project
file in Geany - e.qg:

catalina_geany hello_world
or

catalina_geany

Then, in Geany you have two sets of commands on the Build menu.
Note that in Geany the build menu is determined by the type of file you

have currently selected. You must have a C file (i.e. a file with a “.c
extension) open and currently selected to see the C Build commands.

The first set are the simple build commands:
Compile compile the current file only and produce an

Copyright 2011 Ross Higson Page 50 of 113

Catalina C

Release History

object file.

Build compile the current file only and link it to
produce an executable.

Compile All compile ALL the C files in the current
directory to separate object files, but do not
link them.

Link link ALL the object file in the current file to

produce an executable. The executable will
be named for the current file.

Clean remove all binary, object, listing and
executable files in the current directory
(similar to 'make clean').

These commands are suitable for C programs that consist of a single C
file, or when all the C files in the directory belong to the same project
and there are no dependencies between them, and no other steps
required except compiling and linking.

After the simple build commands on the Build menu, you will see the
two make build commands:

Make Make the current project using the Makefile
in the current directory — i.e. invoke make
specifying the current project as the target.

Make (Custom Target) Make a custom target. Geany will prompt for
the target name, which can be the special
targets 'clean’ or 'all'.

Like all Catalina compilations, Geany will use any Catalina symbols
defined in the CATALINA_DEFINE environment variable. You can set
this variable to specify to your platform and memory model. For
instance, on Windows you might say:

set CATALINA_DEFINE=P2_EVAL COMPACT

On Linux, the syntax to set environment variables is different. You
might instead say:
export CATALINA DEFINE="P2_ EVAL COMPACT"

Then, no matter which method you use, your programs will be
compiled as if you had specified -C P2_EVAL -C COMPACT on the
command line. Note that if you specify conflicting symbols as
parameters to the build_all script, it will print a message about the
conflict and not compile any programs.

Catalina Geany has the ability to specify options to its build commands.
You can specify these in the Project Properties menu item. Typically,
the options would include libraries, optimization levels, and any
Catalina symbols you might want to define. For instance, the options
specified for "hello_world" might be as follows (multiple lines are
acceptable here):

-p2

-lci

-05

-C NO_REBOOT

This means compile for the Propeller 2, use the integer version of the

Copyright 2011 Ross Higson Page 51 of 113

Catalina C Release History

standard C library, use optimization level 5, and define the Catalina
symbol NO_REBOOT, which prevents the program from rebooting the
Propeller on exit from the main function (which in some cases might
prevent all the output from being sent to the terminal before the
Propeller reboots).

These options are used by the simple build commands. In order to
make them accessible to the make commands, the Make command
actually used is as follows:

make "%n" CATALINA OPTIONS="%o0"

This allows Geany to pass the options defined for the project to the
project Makefile using the variable CATALINA_ OPTIONS. The
Makefiles provided for all the demo programs check whether
CATALINA_OPTIONS have been passed, and try and use sensible
default options if not. So even if you are using make stand-alone, it is
not usually necessary to specify options on the command line. This is
what allows you to say (for example) just:
make hello world

instead of having to say:
make hello world CATALINA OPTIONS="-lci -C NO_REBOOT"

Like the build_all scripts in the previous releases, all the Makefiles
provided in the demos folder attempt to determine automatically if you
are compiling for a Propeller 1 or 2, based on either the suffix, or (if no
suffix is specified) then on whether the substring "P2" appears in any of
the Catalina symbols defined in CATALINA_DEFINE or if "-p2" appears
in CATALINA_OPTIONS. This means you do not generally have to
explicitly add the -p2 option unless you are compiling for the default
platform (and are therefore not specifying any specific platform).

The Makefiles in the demo folders contain default rules that know how
to make .bin, .binary and .eeprom executables. So, for example, if
hello_world.c exists in the folder, you can simply say:

make hello world.bin

make hello world.binary

make hello world.eeprom
to build the executable with default options (which can also be
specified in the Makefile) and get the expected result. You can use the
Makefile in the main demo directory as a template for your own
Makefiles.

Note that make uses only the file date/time to determine if the
executable needs to be remade, and is not aware of any changes you
may make either to CATALINA_DEFINE or to Geany build options — so
in some cases you need to use 'make clean' to remove old
executables, or add the -B option to 'make' to force it to rebuild the
executable. Or you can specify clean as your first target — e.g:

make clean hello_world

2. A new build command option has been added to the Catalina version of
Geany. Now as part of a project build command, you can specify %n which
will be replaced with the name of the project. By default, this option is now
added to the 'make' build command which is now:

make "%n" CATALINA OPTIONS="%o0

Copyright 2011 Ross Higson Page 52 of 113

Catalina C Release History

The purpose of this is to allow a single Makefile to be used to make multiple
projects with sources in the same directory. This capability is used in many
of the Catalina demo folders, rather than having to have a separate
subdirectory (and a separate Makefile) for each individual demo program.
Instead, the Makefile can simply have multiple targets, named for each
project that uses the Makefile.

Catalina Geany has been modified to allow relative file paths. This allows
geany project files to be independent of where they are installed. This
means, for example, that you can more easily copy all or part of the demos
directory to another location to build the example programs. You no longer
need to build them in place in the Catalina program folder. Note that in
Geany you can specify “./” (without the quotation marks) as your project
base path in the project properties. This applies on both Linux and Windows
(even though Windows doesn't normally use "/" as a path separator) - it is
not really a path specifier, it is a signal to Geany to use the path to the
Geany project file as the base directory for the project.

A new set of definitions has been added for P2_EDGE in the configuration
file catalina_platforms.inc in the target_p2 folder. Currently, all the values
defined are the same as the P2_EVAL board, but they can be edited if
desired.

Other Changes

1.
2.

3.

The source code of the Catalina Optimizer is now included in this release.

A bug in the Catalina Optimizer led to it missing some opportunities to
optimize unnecessary assignments just before a function returned.

Removed the -F and -B command line options to catalina and catbind. These
options were used to invoke the srecord utility to produce output in another
binary format (e.g. Motorola S records or Intel Hex records). Generally, this
was used for stand-alone EEPROM programmers. If this functionality is still
required, then the srecord utility can be used stand-alone. See
http://srecord.sourceforge.net/ for the latest version of the srecord utility.

Catalyst has been moved to a subfolder of the demos folder. The main
purpose of this is to allow the entire demos folder to be easily copied to a
users directory, allowing all the Catalina demos to be build in place without
requiring administrator privileges or write permission to the Catalina program
folders (this is however still required to build the Catalina platform-specific
utilities).

The build_utilities batch script now warns you in advance that you need
administrator privileges (or at least write permission to Catalina's bin
directory) to install the resulting binaries in the Catalina program folder
before it begins compiling the utilities (the warning used to only be given at
the end).

A minor bug in decoding the CATALINA _INCLUDE environment variable has
been fixed.

Code::Blocks has been removed from the Windows release. The Catalina
Geany IDE should be used instead. Code::Blocks was removed from
Catalina's Linux release previously, but now that Catalina Geany projects
can be provided that support projects of arbitrary complexity (due to the

Copyright 2011 Ross Higson Page 53 of 113

Catalina C Release History

10.

1.

12.

13.

14.
15.

other changes in this release) Code::Blocks is no longer required.

For those who still want to use Code::Blocks with Catalina, install this
release to a different location than the previous release (i.e. do not simply
install it over the previous release). If you do this you can continue to use the
previous version of Code::Blocks with the Catalina compiler in this release
(you need to allow the installation process to update the LCCDIR
environment variable, or else do it manually). However, note that any
existing Code::Blocks workspaces will still point to the files in the previous
release, not the same files in this release. You will need to manually create
new workspaces to compile the demo programs included in this release,
which are now organized differently.

The MORPHEUS and TRIBLADEPROP platforms were Propeller 1
multi-Propeller boards which required many dedicated options and utilities to
support. The MORPHEUS had two Propeller 1 chips and the
TRIBLADEPROP had three.

The Catalina support for these boards included:

Multiple CPU support, including utilities to boot, reset or load
programs to RAM or EEPROM from one Propeller to another (e.g. if
only one CPU had a serial port to access the external world).

Proxy driver support, for allowing one CPU to use a display, keyboard,
mouse or SD Card connected to another CPU.

Catalyst support, to allow programs to be loaded and executed on
multiple CPUs.

This release still contains all the build scripts required to build the utilities
and demo programs for these platforms, but these are now deprecated and
will be removed from a future release. If you have one of these boards, you
will need to maintain them yourself in future releases.

The Propeller 1 basic and embedded target packages had not been updated
for recent releases, and would not compile with the spinnaker Spin/PASM
compiler. Also, the basic target package has been renamed to embedded to
better reflect its intended purpose, and also to prevent confusion with the
Dumbo Basic program.

If the target name was specified using the -T command-line option to
Catalina, it was not being passed to or used by the Optimizer, which
prevented the Optimizer being used for programs built with any but the
default target.

A bug displaying arrays of chars (or unsigned chars, or int_8) in the
BlackBox debugger has been fixed.

The flash_payload script now automatically adds the -02 flag to payload
since this makes FLASH programming on the Propeller 2 more reliable.
Dumbo Basic was failing to compile on the Propeller 1 after the last release
or two. Now fixed.

Many minor documentation updates, refreshes or corrections.

Some hidden dependencies on MinGW have been eliminated. This was
especially true of some of the Catalyst demo programs. If you install make
(see below) then you should now be able to build all the demo programs
without needing MinGW installed. However, note that you still need MinGW

Copyright 2011 Ross Higson Page 54 of 113

Catalina C Release History

installed to rebuild Catalina itself.

16. 19. Fixed a bug in the NMM threaded kernel, that may have prevented
threaded NATIVE programs executing correctly if they were loaded
dynamically (e.g when compiled as part of a multi-model program or when
loaded from an overlay file).

17. The build scripts and tutorial for the multi-cpu platforms (TribladeProp and

Morpheus) have been revised and updated. Also, a bug in the proxy SD
Card driver, used in some of the mult-cpu demo programs has been fixed.

Release 4.8

1. Updates to the reference manuals and the command summaries to include
the changes made to payload in release 4.7.

2. A bug introduced in release 4.7 when making NATIVE the default memory
model on the P2 has been fixed.

3. The definition of the PASM() function (used to include inline PASM in C code)
has been modified to indicate it can return an int rather than a void. This
prevents Catalina from overwriting return values (i.e. the value present in rO
when the PASM code finishes execution). The new definition is:

extern int PASM(const char *code) ;

This should not make any difference to existing code that does not use the
return value of the PASM function. New PASM example program called
test _inline_pasm_3.c and ftest inline_pasm 4.c have been added to the
examples in the demos\spinc folder to illustrate the use of the return value.

4. Updated the build_all scripts in the demos\spinc folder to only build demo
programs appropriate to the propeller type (i.e. 1 or 2).

5. The file flash_led.obj was missing from the demos\spinc folder.

Release 4.7
6. p2_asm now enables the -v33 option to p2asm by default. This enables the

latest PASM assembly code, and would nearly always be what you want to
do. To revert to the previous behaviour, edit the file p2_asm.bat.

7. Dumbo basic updated to version 1.0, which implements much more of the
original GWBASIC syntax. See the README.TXT file in the catalyst\dumbo
directory for more details.

8. Added the 8 port serial driver. This driver is only supported on the Propeller 2.
It supports up to 8 serial ports on the Propeller 2. See the Catalina Propeller 2
Reference Manual for more details.

9. Fixed a bug in the 2 port serial driver that meant the second port would not
receive characters correctly.

10.Fixed a bug in the serial2 and serial4 demo programs which meant they may
not have worked if they were compiled with threading enabled.

11. The build_all scripts in all the serial demo directories (i.e. serial2, serial4 &
serial8) will now only build the demos for the correct propeller. The serial2

Copyright 2011 Ross Higson Page 55 of 113

Catalina C Release History

and serial8 libraries are only supported on the Propeller 2, and serial4 is only
supported on the Propeller 1.

12.Modified the catalina_cog.h include file to fix a name collision with
propeller2.h. On the Propeller 2, library functions that are defined in
propeller2.h are now not also defined in catalina_cog.h

13.Added smartpins.h to define the smartpins modes for the Propeller 2.

14.Added an implementation of _muldiv64(), to match the SPIN MULDIV64
function.

15. NATIVE mode is now the default memory layout on the Propeller 2. To
reinstate the previous default (LMM), specify either -C TINY or -x0 on the
catalina command line.

16. The payload loader has two new options:

-0 can be used to override the default propeller version detection. This option
requires the propeller version to be explicitly specified i.e. as -01 or -02
(propeller 1 or propeller 2).

-j can be used to completely disable Ifsr checking (propeller 1 only).

This allows payload to correctly use the 100ms serial window when loading
programs to a Propeller 2. In particular, it allows programs to be loaded to the
FLASH RAM on the P2 EVAL board and executed without requiring the
microswitches on the PCB to be altered or the Propeller to be reset.

17.Code::Blocks is no longer supported under Linux, and precompiled binaries
are no longer provided. However, the source code modifications and example
workspaces for Code::Blocks version 17.12 are still provided for those who
want to compile Code::Blocks for themselves from source. Code::Blocks
remains supported under Windows, but this may not remain true for future
releases. Code::Blocks users under both Windows and Linux are encouraged
to migrate to the Catalina Geany IDE, which will remain supported on both
Linux and Windows.

18.Under Linux, the srecord utility used is now version 1.64. Under Windows
srecord version 1.47 is still used. This utility is used if the -F option to catalina
is used. Tests on various common output formats have shown no differences
(e.g. Motorola, Intel formats) but exhaustive testing has not been conducted
on all formats.

Release 4.6

1. The Catalina Parallelizer is now an integral component of Catalina. To invoke
the parallelizer, use the -Z option in any Catalina command. Note that this
option is positional - it will enable parallelizing all C source files in the
command after it appears. You can also use -z (i.e. with a lower case z) to
stop parallelizing source files. This means the Parallelizer can now easily be
used in Code::Blocks or Geany IDEs.

2. Added the demos\parallelize subdirectory, with documents and examples that
demonstrate the Parallelizer.

3. Added the option of named exclusive code segments to the Parallelizer - all
segments with the same name will all use the same lock, which means only

Copyright 2011 Ross Higson Page 56 of 113

Catalina C Release History

one worker can be in ANY of the exclusive zones that specify that name. The
name is optional, and _region will be used if no other name is specified.

4. Added more error checking to the Parallelizer, and reformatted the error
messages to use the same format as the compiler. Also, the line numbers will
now generally refer to the input C source file, not the output C source.

Release 4.5

1. Fixed a bug in the lock processing logic that meant locks may not have
worked correctly in multithreaded programs. Affected the Propeller 2 only.

2. Fixed a bug in the "dining philosophers" demo programs that prevented the
programs from exhibiting the expected deadlock behavior.

3. Modified various versions of the "dining philosophers" demo programs to
allow most options to be configured on the command line.

4. Fixed a typo in the _thread_stop() library function that prevented it from
compiling correctly.

5. Added a workaround to a bug in the dynamic memory management library
functions (i.e. malloc(), free() etc) that meant programs would not execute
correctly in some circumstances. Affected the Propeller 2 only.

Release 4.4

1. The NATIVE code generator for the P2 was not disabling interrupts during
CORDIC multiply and divide operations, which might cause a program to fail if
an interrupt occurred between CORDIC instructions. This only affected P2
NATIVE programs.

2. Fixed a bug in the multithreading kernel, which may have led to threaded
programs locking up. This only affected P2 NATIVE programs.

3. Catalina releases 4.2 and 4.3 were missing the Code::Blocks demo
workspaces and projects. Both Code::Blocks and the demos themselves were
included, but the workspaces and project files (usually in the codeblocks
subdirectory of the Catalina installation) were missing.

4. Catalina releases 4.2 and 4.3 included an older version of the Code::Blocks
"New Project" wizard, which did not include an option for the FLIP platform.
This has been corrected.

5. The Catalina symbol NO_INTERRUPTS has been added, which can be
defined on the command-line to tell the compiler that the program does not
use interrupts — this allows some optimizations to be performed which can
improve program performance. This option applies only to P2 NATIVE
programs. For example:

catalina -p2 program.c -lc -C NATIVE -C NO_INTERRUPTS

Note that you cannot use this symbol in P2 NATIVE programs that use
threads or interrupts.

6. The Catalina symbol FAST_SAVE_RESTORE has been added, which can be
defined on the command-line to tell the compiler to use fast block moves
when saving and restoring registers. This can improve program performance,
but comes at a cost of significantly increased stack usage (since all registers

Copyright 2011 Ross Higson Page 57 of 113

Catalina C Release History

are saved, not just the used registers). This option applies only to P2 NATIVE
programs. For example:

catalina -p2 program.c -lc -C NATIVE -C FAST_ SAVE RESTORE

Release 4.3

1. Implemented the _thread_ticks() function for Native mode on the P2. The
version in previous P2 releases was not fully implemented, which meant all
multi-threaded programs on the P2 used the default tick count for determining
when to context switch. Affected the P2 only.

2. Fixed a bug in the compact version of _sbrk(), which meant that attempting to
allocate very large blocks of memory (using malloc) might cause the program
to crash. Affected both the P1 and the P2.

3. Fixed a bug which meant that the optimizer could not be used with the VGA
HMI option included in Catalina release 4.2. Affected the P2 only.

4. Added the demo\sieve directory, with various versions of the Sieve of
Eratosthenes, to demonstrate converting a sequential algorithm to a parallel
algorithm.

Release 4.2

1. Added the Catalina Geany IDE. For details see the document "Getting Started
with the Catalina Geany IDE". This new IDE was released as an addition to
the Catalina 4.1 relase, but will now remain part of all future releases.

2. 6.Added a new HMI plugin for the P2, which supports a VGA monitor with
configurable resolution and colour depths, and also a USB keyboard and
mouse. It expects to use the P2-ES A/V and Host Serial accessory boards.

The VGA driver supports 640x480, 800x600 and 1024x768 resolution, and 1
bit (i.e. monochrome), 4 bit, 8 bit or 24 bit colour.

Updated test programs for the new HMI plugin (test_terminal.c, test vga.c)
are included in the demo folder, and a precompiled version of Catalyst that
uses the new HMI plugin is included in the file P2_EVAL _VGA.ZIP in the main
catalina folder. Unzip these files to an SD card and insert it into the P2_EVAL
board with the A/V (VGA) accessory board on the header with base pin 32,
and the Host Serial (USB) accessory board on the header with base pin 40. A
keyboard can be plugged into either USB port, but none of the programs use
a mouse. Note that the only program that makes use of color is the vi text
editor.

3. Increased the size of the P2ASM symbol table to 10000 symbols — otherwise
compiling Lua with the new VGA plugin could run out of symbol space.

4. 8.Fixed an error in the Catalina Geany IDE shortcut, which assumed Catalina
was installed in the default location. The shortcut and menu item would fail to
work if it was not.

5. The build_all.bat script for building Catalyst under Windows was defining the
symbol VT100, which would have made some programs — such as vi — not
work correctly with the VGA or TV HMI options (it worked correctly with serial
HMO options, and now should be manually specified if the PC or TTY HMI
options are used).

Copyright 2011 Ross Higson Page 58 of 113

Catalina C Release History

6. The Catalyst version of vi (xvi) now uses colours (if compiled with a HMI
option that supports it).

Release 4.1

1. Added Multi-Memory Model (MMM) support. See the Catalina Reference
Manual for details.

2. Fixed a bug in the Makefiles for compiling the XMM LARGE libraries. Some
library functions were being compiled as XMM SMALL, not XMM LARGE.

3. Added a new option (-B) to the spinc utility, for producing blobs from a
Catalina C binary file. This option accepts a parameter to specify the object,
but for Catalina Propeller 1 programs this is generally the second object, so it
is normally specified as -B2. The existing command-line options -c, -f, -s, -l
and -n are also supported for blobs, and the -c option would normally be
specified to generate a callable function that can be used to execute the blob
as a C program. The -s option can be used to specify the runtime space
(stack and heap) required. If not specified, then 80 bytes (20 longs) is used,
which is sufficient for small programs.

The output is usually redirected to a header file, which is suitable for inclusion
in another program. For example:

spinc hello world.binary -B2 > hello _blob.inc
spinc hello_world.binary -B2 -c -s 1024 > hello_blob.inc

4. Fixed a bug in catalina that meant the -M memory size option (previously
used mainly when compiling EEPROM programs, but now also useful when
generating blobs) was not being specified correctly. This could result in the
compilation failing.

5. Modified the Catalina -M, -P and -R options to accept hex values as well as
decimals. A hex value must be preceded by $ or 0x - e.g. $ABCD or OxFFFF.
Note that these options also accepted modifiers - i.e. m or k (or M or K) when
using decimal values, but these are not supported for hexadecimal values.
Examples of acceptable parameter values are:

-M 16k (or -M16k)
-M 16384 (or -M16384)
-M 0x2000 (or -M0x2000)
-M $2000 (or -M$2000)
-P 1m (or -Plm)

-P 1048576 (or -P1048576)
-P 0x1000 (or -P0x1000)
-P $1000 (or -P$1000)
-R 8K (or -R8K)

-R 8192 (or -R8192)
-R 0X3000 (or -R0X3000)
-R $3000 (or -R$3000)

This can be useful when generating blobs that must execute at a specific
nominated Hub RAM location. Generating a blob is done just by specifying the
address of the read-only (code and initialized data segments) to a specific
value (i.e. using the -R option). The read-write segments will follow
immediately, and so the -P option does not usually need to be used.For

Copyright 2011 Ross Higson Page 59 of 113

Catalina C Release History

example, to generate a version of hello_world that executes at Hub RAM
location 6000 (hex):

catalina -R 0x6000 -lci hello world.c

Note that it is the users responsibility to ensure that there is sufficient space
for the program code and data, and that this does not overlap with the
reserved areas in the upper Hub RAM. The amount of reserved space varies
depending on the memory model, plugins and loader options used, so it is
recommended that the program itself determine (and check!) this location at
run-tine. Examples of how to do this are provided (see the directory
demos\multimodel).

6. Added _cogstart_C (and _cogstart_C_cog) to the P1 libraries, which are
compatible with the same functions on the P2 (previously the P1 had only
_coginit_C, but the P2 had both _coginit_C and _cogstart_C).

The main difference between _coginit_C and _cogstart_C is that the latter
accepts a parameter, which is passed to the function being started.

For backward compatibility, _coginint_C (and also _coginit_C_cog) can still
be used if no parameter is required, and _cogstart C (and also
_cogstart_C_cog) can be used where a parameter is required.

7. Added new functions for starting secondary programs from within a primary
program (see the section on Multi-Model support in the Catalina Reference
Manual):

On the Propeller 1 and Propeller 2:

_cogstart_CMM() start a blob as a CMM program on any
available cog

_cogstart_CMM_cog() start a blob as a CMM program on a
specific cog

_cogstart_LMM() start a blob as an LMM program on any
available cog

_cogstart_LMM_cog() start a blob as an LMM program on a
specific cog

On the Propeller 2 only:
_cogstart_NMM() start a blob as an NMM program on any

available cog

_cogstart_NMM_cog() start a blob as an NMM program on a
specific cog

However, note that these functions do not generally need to be called directly
- when generating a blob that represents a dynamically loadable program, the
spinc utility can also generate a function to start this program, which knows
all the necessary program details.

8. Modified the LMM and CMM dynamic kernels to initialize R2, assuming this
value is passed in. This allows _cogstart_C (and _cogstart_C_cog) to be
implemented on the P1 the same way it is implemented on the P2, and also
allows _cogstart CMM and _cogstart_ LMM to accept the address of the
shared variable.

Copyright 2011 Ross Higson Page 60 of 113

Catalina C Release History

9. Allow the -M option to be passed to the assembler when compiling CMM or
LMM programs (previously, it was only supported for EMM, SMM, XMM etc).
The reason this was not previously allowed is that it is not possible for CMM
or LMM programs to be larger than 32k. However, when compiling such
programs for dynamic loading, it can occur that the program code is to be
located in upper Hub RAM, in an area that pushes other things normally
included after the program code (such as the kernel) over the 32k limit. So
now this option is permitted. But it should only be used for LMM or CMM
programs when they are being compiled for dynamic loading via the
Multi-Memory Model support (see below). Also, there is no reason to ever use
a value other than 64k for such purposes.

10.Added a new symbol for the Parallax FLiP Module. The FLiP Module has no
special configuration options, but in case a user chooses to modify the
Custom platform, when compiling programs for the FLiP Module the symbol
FLIP can now be specified on the Catalina command line. For example:

catalina hello _world.c -1lci -C FLIP

Note that the symbol used is FLIP, not FLiP! By convention, all Catalina
symbols are all upper-case.

11. Fixed a minor bug in the dynamic CMM kernel, which was not registering itself
properly on startup.

12.Fixed a problem with spinc on Linux that may have led to a segmentation
fault when used on some binaries.

13.Removed a limitation in the Compact code generator that prevented program
sizes larger than 256k or executing at memory locations above Ox3FFFF.

14.The -v33 flag to p2asm was not being specified in the file Makefile.inc in the
source\lib directory. This may have prevented some multi-threading functions
from compiling correctly for the P2 RevB silicon. Note that this flag will have to
be removed again from both this file, and also from the files p2_asm (Linux)
and p2_asm.bat (Windows) in the bin directory to rebuild Catalina for the P2
RevVA silicon. Out of the box, Catalina now only supports the Propeller 2 RevB
(or later) silicon.

15.Some of the multi-threading demo programs were not calling the function
_thread_set_lock() before using other thread functions. This worked ok on
the Propeller 2 RevA silicon, but will not work on the RevB silicon. Various
demo programs have been updated.

16. Modified the various serial libraries to store their lock in the registry instead of
in a local variable. This is necessary to support the new Multi-Memory Model,
otherwise different kernels executing under different memory models would
have used different locks, making the lock pointless. There should be no
visible difference in the program behavior.

17.Reduced the number of threads in some of the demo programs when
compiled for the Propeller 1 - some combinations of HMI drivers on some
platforms occupy more memory than others, which meant the demos (which
intentionally push the limits) may have failed to work correctly on some
platforms with some HMI options.

Copyright 2011 Ross Higson Page 61 of 113

Catalina C Release History

18.Fixed a bug in the compact Catalina Optimizer that may have led to some
symbols being removed from the source even though they were used — this
would have led to 'undefined' symbols being reported when the source was
compiled.

19.Added a Code::Blocks workspace to demonstrate building a multi-model
program (Windows only) using Code::Blocks.

20.Fixed a potential problem with the Catalina Optimizer, which may have led to
relative jumps being used when the target of the jump ended up out of range
due to other optimizations.

Release 4.0

1. Updated Code::Blocks to include the XEPROM option. Now you can select
XEPROM in the Catalina Project Wizard (by selecting the menu entry for
File->New->Project and then selecting "Catalina Project") and you can also
use 2 new tools for loading XEPROM projects (by selecting the Tools menu

entry)

2. Added a new named platform to Catalina_platforms.inc. This is the
P2_CUSTOM platform, which by default is identical to the P2_EVAL platform,
but which is intended to be customized for new Propeller 2 boards.

3. Because the support for the Propeller 2 is (at least at present!) much simpler
than that for the Propeller 1 (e.g. it does not require XMM support to run large
C programs, and complex loaders to load them), the Catalina Reference
Manual now has two versions - one specifically for the original Propeller 1
(which removes most of the details that are relevant only to the Propeller 2),
and another for the Propeller 2 (that removes most of the details that are only
relevant to the Propeller 1).

4. Moved the inline PASM demos to the spinc folder, and updated the
README.TXT in that folder. Also added the program test inline_pasm.c as a
project in the Code::Blocks "Spinc Demos" workspace.

5. Added tty_txcheck() functions to the tty and tty256 libraries, to match the
s4_txcheck() function recently added to the s4 library. These functions all
return the number of spaces left in the transmit buffer. The important point is
that if they ever return 0, it means a call to the corresponding tx function may
block.

6. Fixed a bug that affected Propeller 1 XMM programs that used the cache.
Typically, it meant that a program would work with a smaller cache size (e.g
1K, 2K or 4K) but not with a larger cache size (e.g. 2K, 4K or 8K) even though
there was enough Hub RAM to accommodate the larger cache.

7. The batch files p2 asm.bat and p2_asm have been modified to include the
-v33 flag to the p2asm assembler. This enables the differences in the
instructions set in the latest (and hopefully last) version of the Propeller 2 chip
used in the rev B version of the P2_EVAL board. Note that Catalina itself does
not use the different instruction sets, but some plugins or user programs may
do so. If it is ever necessary to revert to the previous instruction set (e.g. to
run a program on a revA version of the P2_EVAL board), these files must be
edited to remove this flag.

Copyright 2011 Ross Higson Page 62 of 113

Catalina C Release History

8.

9.

Fixed a bug where the plugin type of the kernel cog was being overwritten
during registry initialization, so the cog would appear to be unused.

Added the 2 port serial driver as a plugin, and a library (libserial2) to use it.
The 2 port serial driver is only supported on the Propeller 2. The functions in
the 2 port serial library are similar to the existing libtty, libtty256 and libserial4
functions. Catalina will load the 2 port serial plugin automatically if you
compile your program with the -Iserial2 option. Note that you should not use
the 2 port serial driver with the TTY HMI option - they will conflict. This means
that when compiling with -Iserial2 you should also either specify -C NO_HMI,
or use another supported HMI option. For instance:

catalina -p2 test serial2.c -lci -lserial2 -C NO_HMI

10.Fixed a problem with the Code::Blocks Download to Hub Ram and Interact

at 23400 baud tool, which was not setting the directory correctly, and so
would sometimes not find the file to download. After installing, you may need
to run the Reset_CodeBlocks script (found in the Catalina bin directory).

Release 3.17.2

. Updated Catalina_SD _Plugin.Spin2, to fix a potential problem when both the

clock and the SD card are used intensively - in such cases, the clock may not
have had a chance to be updated, leading to the time being out of date. This
only affected the Propeller 2.

Updated the test p2.c program in the demos\p2 directory, to fix a potential
lockup when testing the locks.

Release 3.17.1

. Updated payload.c, payload.exe (Windows binary) & payload (Linux binary) to

accept any version of the Propeller 2. The previous version only accepted
"Prop_Ver A"

. Update cogserial.pasm to the latest version. This caused a name conflict with

BlackCat_DebugCog.Spin2, so that file has been updated as well.

Recompiled the Catalyst binaries in P2_EVAL.ZIP to use the latest version of
cogserial.pasm.

Release 3.17

. Added a new floating point maths library (libmc) which uses the P2 built-in

CORDIC solver to allow all the floating point functions to be fitted into a single
cog. It is also much faster than the other floating point options. The CORDIC
library is is selected by specifying -Imc on the command line (i.e. instead of
-Im, -lma or -Imb). This option is only available on the Propeller 2.

Added a new propeller2.h header file, and all the functions specified therein to
the standard libraries (libc, libci, libcx, libcix). See the file propeller2.h in the
include directory for more details. This header file (and associated library
functions) will only compile correctly and run on the Propeller 2. A new demo
subdirectory (demos\p2) has been created with programs that test these
functions. The P2 clock demo program test p2 clock.c has also been moved
to this subdirectory.

Copyright 2011 Ross Higson Page 63 of 113

Catalina C Release History

3. On the Propeller 2, Catalina now uses the same locations as Spin to store the
clock mode and frequency (i.e. $14 for clock frequency & $18 for clock mode).
However, note that these are set up AFTER the Propeller program has been
loaded, so the option that some loaders (like loadp2) have to change these
values during the load process should NOT be used with Catalina programs.

4. Added function s4_txcheck() to libserial4, which returns the number of bytes
available in the tx buffer for the port specified. This can be used to tell whether
a call to s4_tx() would block (i.e. if s4_txcheck() returns 0). The test program
in demos\serial4 has been updated to test this function, but it requires both a
TTY and a TV output. Note that the 4 port serial driver is only available on the
Propeller 1.

5. Fixed a bug in the 4 port serial driver - unused ports were not being initialized,
and so could interfere with the used ports or cause memory corruptions. Also,
updated the driver to incorporate some CTS/RTS handling bug fixes by the
original author. Note that the 4 port serial driver is only available on the
Propeller 1.

6. Added support for executing XMM code from EEPROM on the Propeller 1,
which is enabled via the XEPROM command-line symbol. The resulting
programs can then be loaded using the EEPROM option to payload, once the
utilities have been built for your platform. The XEPROM option is IN
ADDITION to any other XMM option you have on your platform, and works on
any Propeller with an EEPROM larger than 32Kb.

XEPROM is only supported for the SMALL memory model (i.e. code in
EEPROM, data in Hub RAM) and also requires the use of the cache.

For example, if you have a QuickStart board, after you have used the
build_utilities batch file to build the EEPROM loader, you can compile, load
and execute the othello.c program as XMM executed from EEPROM by using
the following commands:

catalina othello.c -lc -C TTY -C QUICKSTART -C SMALL -C XEPROM

-C CACHED
payload EEPROM othello.binary -i

For more information, see the XEPROM_README.TXT file in the "target"
subdirectory.

7. On the Propeller 2, once initialization is complete and the C code is executing,
only the upper half of the LUT is now used (to hold common library code).
This means that the lower half of the LUT (i.e. Cog address $200 - $2FF) is
available for C applications to use for any purpose if required.

Release 3.16

1. Added Lua scripting capabilities to the payload and blackbox programs. This
is primarily done to assist validation (see next point).

2. Added a new validation subdirectory, with scripts and programs that can do
automated validation of a Propeller platform. This feature makes heavy of the
new Lua scripting feature. See the README. Validation file in that folder for
more details.

Copyright 2011 Ross Higson Page 64 of 113

Catalina C Release History

3. Added two new environment variables - PAYLOAD_PORT and
BLACKBOX_PORT - that can be used to specify the port to use for the
payload program loader and the blackbox debugger. This is especially useful
when validating.

4. Added the P2_EVAL platform to the build_catalyst script (this script is
primarily intended to be used from Code::Blocks), and also added the ability
to specify additional options when building catalyst. Also, building Catalyst
now first deletes any existing binaries from the various Catalyst subdirectories
- this prevents the possibility of loading old P2 binaries after subsequently
recompiling Catalyst for a P1.

5. Removed support for the Homespun spin compiler. The Spinnaker Spin
compiler has been the default for the P1 for many releases, and is now the
only Spin compiler supported for the P1 (p2asm is used for the P2).

6. The size of the programs that the Pascal Interpreter can load and run has
been reduced to 50,000 bytes to enable it to run on more P1 XMM platforms.
It is 100,000 bytes on the P2.

7. The library variants (libc, libci, libcx, libcix) have changed a little in this
release. Now, streams are fully implemented in libc, libcx and libcix, but still
only implemented for stdin, stdout and stderr in libci. The reason for this is
that some functions (such as vsprintf()) did not work in libc because they
relied on streams internally. This limitation saved a few hundred longs, but
may have led to unexpected results. Now, only libci has this limitation, in order
to help reduce program sizes.

Note that the previous library characteristics can be reinstated by editing the
Makefile (Makefile.mgw in Windows) in the source\lib subdirectory, and editing
the lines that look like this:

libc: ALWAYSRUN
$ (MAKE) -C stdio clean
$ (MAKE) -C catalina clean
$ (MAKE) -C catalina_io clean
$ (MAKE) -B -C catalina CCFLAGS="$ (CCFLAGS) -D__CATALINA SIMPLE IO=0 ..."
$ (MAKE) -B -C catalina_io CCFLAGS="$ (CCFLAGS) -D__CATALINA_ SIMPLE IO=0 ..."
$ (MAKE) -B -C stdio CCFLAGS="$ (CCFLAGS) -D__CATALINA SIMPLE IO=0 ..."
$ (MAKE) -C libec all

Modify the lines to say -D__ CATALINA_SIMPLE_IO=1 instead of 0 and then
rebuild the libraries using the build_all script in that directory.

8. Fixed a bug in the floor() and ceil() functions when using libmb. The functions
worked ok when using libm or libma. This problem affected both the Propeller
1 and the Propeller 2.

9. Fixed a problem in various floating point functions (e.g. sin(), cos(), log(),
log10(), exp() etc) when using libma or libmb. The functions worked ok when
using libm. This problem affected the Propeller 2 only.

10.Added go as a synonym for continue in the BlackBox debugger.

11. Allowed a pointer variable to be used as an address in the read hub
command in the BlackBox debugger - e.g. read hub my_pointer. Previously
the value of such a pointer had to first be printed using a print command, and
the result manually entered in the read hub command.

Copyright 2011 Ross Higson Page 65 of 113

Catalina C Release History

12.Fixed some problems when printing or updating variables in the BlackBox
debugger:

o Dereferencing pointers when printing variables did not always work,
especially when the pointer was within a structure. Now, BlackBox will not
attempt to print nested pointers to structures as structures - it will only print
the pointer value.

o Updating 1-byte and 2-byte variables did not always work (4-byte worked).

o Character arrays were only being printed if the type of the array element
was type char (i.e. not type unsigned char or type uint8_t etc).

o Only the first field of a local structure or union (i.e. one in the current
frame) was being printed correctly.

o Fixed a problem with the BlackBox debugger P2 NATIVE support -
breakpoints were being deleted after their first use.

13.Improved the reliability of reading and writing to SD Cards. Now, Catalina will
retry failed reads and writes up to 9 times. This can help prevent SD card
corruptions, especially on SD cards that falsely indicate a write is complete
but then will not respond correctly for some time afterwards to a subsequent
read requests.

14.There is a new demos\dosfs subdirectory that contains a test program for the
DOSFS file system. This test program has its own version of the DOSFS file
system, to allow both the test program and the DOSFS file system to be
debugged using the BlackBox debugger. A version of this test program is also
included in the validation suite.

15.Fixed a bug in sbrk() when programs were compiled in TINY mode on the P2.
The wrong version of sbrk() was being included in the library.

16.The Reset_CodeBlocks script, which copies the codeblocks default.conf
configuration file to the users directory, was erroneously copying a Windows
version of the file even on Linux. The Linux version of the script now correctly
copies a Linux version of the file.

17.Fixed a bug in the Catalina Optimizer under Linux, which had not been
updated for the new default location (/opt/catalina), so it would fail unless the
LCCDIR environment variable had been explicitly set.

18.Added a -t option to BlackBox, to allow a timeout to be specified when
attempting to open a comms port. The default timeout was 500ms, but Linux
sometimes seems to need a timeout of up to 1000ms to open a port
successfully.

Release 3.15.4

1. Fixed a problem with COMPACT mode that made programs compile
incorrectly in all cases.

2. Fixed a problem with the Catalina Optimizer in COMPACT mode that meant
optimization level 1 did not work correctly (the other levels worked).

3. Fixed a bug in reporting the program code size, which was including one-off
initialization code in the code segment size. This code is correctly included in

Copyright 2011 Ross Higson Page 66 of 113

Catalina C Release History

the overall file size, but the actual compiled code segment size was being
misreported.

Release 3.15.3

1. This is the fourth Propeller 2 release. It is partly an internal "clean up" and bug
fix release for the previous release (3.15.2), but it also extends the P2
support.

2. Add P2 support for the BlackBox debugger. It now supports TINY (LMMM),
COMPACT, and NATIVE modes on the P2. The BlackBox debugger will
detect the P2 automatically, so it requires no new command-line options. The
debugger requires a serial port connection to the P2, which (by default) is
implemented on pins 50 & 52. This allows a PropPlug to be used on the P2
EVAL board, plugged on to the top-right I/0O pin header.

3. Fixed an issue with BlackBox on both the P1 and P2 that meant in COMPACT
mode, the contents of register rO could not be displayed by name (i.e. using a
read r0 command - it could be displayed by saying read cog 0).

4. Add P2 support for the BlackCat debugger. The BlackCat debugger was
originally developed by Bob Anderson, and the functionality is very similar to
BlackBox, except that it has a graphical user interface. Note that (unlike
BlackBox) BlackCat is provided in binary form only, and that BlackCat is a
Windows-only application.

5. There is a new flash_payload utility, which programs the P2_EVAL Flash with
an auto-executing version of any Catalina program binary. This is based on
the Flash_Loader_1.2.spin2 program developed by ozpropdev.

The parameters accepted by the flash_payload utility are identical to those for
the payload utility, except that the first parameter MUST be the filename to be
loaded. For example:

flash payload startrek -p4 -b230400 -z -i

Note that to program the FLASH on the P2_EVAL, you must first remove any
SD Card, and also make sure that the FLASH microswitch is turned OFF, or
payload will report that it cannot find the P2.

Once programmed, you must turn the FLASH microswitch ON to boot your
program automatically from FLASH (the P2 may also require a re-boot). Turn
it off again to boot from SD Card, or to load programs serially.

Note that FLASH programming sometimes fails. If it does not seem to
program correctly, try repeating the procedure.

6. Fixed some issues with the Catalina Optimizer P2 support that led to some
erroneous results or less than optimal optimization.

7. Added P2 clock definitions to catalina_cog.h, and updated the _clockinit(),
_clockmode() and _clockfreq() functions to work correctly for the P2, and a
new test program (test_p2 clock.c) in the demos folder that demonstrates it.

8. Fixed a bug in the HMI plugin that caused some floating point operations to
fail in programs compiled in CMM (COMPACT) mode.

Copyright 2011 Ross Higson Page 67 of 113

Catalina C Release History

9. Fixed a bug that prevented the Propeller rebooting on program exit in LMM &
CMM modes.

10.Fixed a compiler bug that could lead to incorrect results in some
circumstances - e.g. when converting floating point values to integers and
vice-versa. This caused problems with programs like the "paranocia" IEEE
floating point test. Catalina now passes this test, with the exception of some
lack of precision in the pow() and exp() functions, and some incorrect
overflow handling related to "inf" values. These defects should not affect most
user programs.

Release 3.15.2

1. This is the third Propeller 2 release. It is partly an internal "clean up" and bug
fix release for the previous release (3.15.1), but it also extends the P2
support.

2. Added the ability to have C functions as interrupts. New demo programs have
been added in the "demos\interrupts" subdirectory. Interrupts can be used in
all the supported P2 memory models - i.,.e. COMPACT, TINY and NATIVE.
There is a new header file (catalina_interrupts.h) that defines all the interrupt
related functions, and a new C library (libinterrupts) must be specified on the
command line - see the demosl\interrupts subdirectory for examples.

3. Fixed a few issues with the Catalina Optimizer, which could lead to errors
(e.g. undefined symbols) during compilation, and/or sub-optimal optimization
in some cases.

4. Fixed an issue with P1 support, that meant that COMPACT programs on the
P1 could not be compiled with the Catalina Optimizer. The Homespun
assembler support is still broken in this scenario, but Spinnaker (which is the
default assembler for the P1) now works correctly.

5. Fixed an issue with spinpp, which could have caused programs to fail
because C macro substitution was being performed in hex constants like $C1
- so if (for example) you had such a constant in your program and then
defined the symbol C1, the code generated would contain $1 for this constant
instead of $C1.

6. The semantics of the _lockset() function on the P1 have been modified. The
difference is that _lockset() now returns 1 (i.e. TRUE) on success, whereas it
used to return 0 (FALSE) which was in line with the SPIN semantics, but
misleading for C programs. On the P2, _lockset() has always returned 1 on
success. The ACQUIRE and RELEASE macros in catalina_cog.h have been
updated accordingly, so programs which used these rather than calling
_lockset() and _lockclr() directly will not be affected.

Release 3.15.1

1. Code::Blocks is now fully supported for both the Propeller 1 and 2, and
under both Linux and Windows. The version of Code::Blocks is now 17.12,
but this should not make any difference to existing Code::blocks projects or
workspaces. Note that on Linux you may need to build Code::Blocks from
source - the required source code changes are minimal, and ae provided in
this release.

Copyright 2011 Ross Higson Page 68 of 113

Catalina C Release History

2.
3.

4.

Linux is now fully supported for both the Propeller 1 and 2.

The Catalina Optimizer now supports all the Propeller 2 memory models - i.e.
TINY, COMPACT and NATIVE.

Payload now tries to load both ".bin" and ".binary" files if no extension is
specified.

Various minor improvements in Catalyst:

o better key handling in the vi text editor

> the cat command has been vastly speeded up

o improve the dir built-in command

Since the Propeller 1 and 2 binaries are incompatible, Catalina no longer
includes any precompiled binary files for any platform, although the
documentation may still say otherwise.

Some sanity testing has been done on the Propeller 1 support, and this
release should now correctly compile all Propeller 1 programs (the original
3.15 release had some problems in this area). However, not all Propeller 1
platforms and variants have been tested yet, so it is still recommended that
the previous Catalina release (3.13.2) be used for the Propeller 1.

Note that you can have multiple versions of Catalina installed - you just need
to install each to a different location, and set your LCCDIR environment
variable according to which one you want to use.

Release 3.15

. This is the initial Propeller 2 (aka Prop2, P2 or p2) release.

The support for the original Propeller (aka Propeller 1, Prop1, P1 or p1) is
essentially unchanged, and should still work the same as in the previous
release - but this has not been extensively tested. This release is intended for
those who wish to preview Catalina's P2 support. If you only have a P1 chip,
you would be best advised to use the previous release of Catalina (3.13.2).

To compile C programs for the p2, you just specify the option -p2 to Catalina
(note the lower case 'p' - upper case P means something else). The other
Catalina command line options remain essentially unchanged, although not all
of them are currently supported on the P2. A summary of the command line
options relevant to the P2 is contained in the document "Catalina P2
Command Summary"

For example, to compile hello_world.c for the P2_EVAL board, you might use
a command such as:
catalina -p2 hello _world.c -lc -C P2_EVAL

As usual with Catalina, an option like -C P2_EVAL is used to specify the
board support package to use for various things (such as pin definitions and
clock speeds) - in this case for the P2_EVAL board. See the file
Catalina_platforms.inc in the target p2 directory for details on the supported
platforms.

The -p2 option does the following ...

Copyright 2011 Ross Higson Page 69 of 113

Catalina C Release History

automatically appends _p2 to the target directory to use. So in this
case the command would use target_pZ2 instead of target (which is the
default target for the P1).

automatically appends _p2 to any libraries specified. So in this case
the command would use the library lib_p2/libc instead of lib/libc (which
is the standard C library for the P1).

predefines the Catalina symbol P2, and the C symbol
__CATALINA_P2, which can be used in various source files to indicate
the program is being compiled for the P2.

selects p2asm as the assembler to use.

The catbind program also accepts the -p2 option (this option is passed
automatically when catbind is invoked via the catalina command).

All of the supported build_all batch files will automatically add the -p2 and
also the -C NATIVE command line options if a symbol starting with the letters
P2 (e.g. P2_EVAL or P2D2) is specified as the first parameter. For example,
in the "demos" subdirectory, you can use a command like:

build all P2 EVAL

All the copy_all batch files will detect if a ".bin" file has been produced (which
is the default on the P2) instead of a ".binary" file (which is the default on the
P1) and copy the appropriate binaries.

2. There are three memory models currently supported on the P2:

TINY - this model is identical to the TINY LMM model on the P1. This is
the default model, although on the P2 "tiny" is no longer really an
appropriate name since the Hub RAM on the P2 is 512Kb. This memory
model can be specified by using the option -x0 or -C TINY on the command
line. Note that on the P2 you would usually want to use the NATIVE
memory model described below.

COMPACT - this model is identical to the COMPACT model on the P1. This
can be specified by using the option -x8, or -C COMPACT on the command
line. Using this option also specifies that the library is prefixed with
"compact_", so if you specify all of -p2, -lc and -C COMPACT the library
that is actually used will be compact_lib_p2/libc

NATIVE - this model is new for the P2. This is specified by using the option
-x11, or -C NATIVE on the command line. This option is automatically
selected in many of the build_all batch files. Using this option also
specifies that the library is prefixed with "native_", so if you specify all of
-p2, -lc and -C NATIVE, the library that is actually used will be
native _lib_p2/libc

3. The default assembler used for the P2 is a slightly modified version of p2asm
- so the output of the compilation is now a ".bin" file, instead of a ".binary".
There is no support for ".eeprom" output on the P2 yet.

The only changes to p2asm required for Catalina are two definitions in the file
symsubs.h:

#define MAX SYMBOLS 8000

Copyright 2011 Ross Higson Page 70 of 113

Catalina C Release History

#define MAX_ SYMBOL LEN 65

4. The Catalina optimizer is supported for all the memory models on the P2.

5. The payload program loader now automatically detects if a Propeller 2 is
present, and uses the Propeller 2's built-in serial loader if so. There is
therefore no need for an option to specify the p2 (which is just as well,
because payload uses the -p option to select the port to use). If you have both
P1 and P2 chips connected, you will need to specify the port to use.

Note that the p2 detection seems to require the payload -z option for best
results, so a command to download a program to a p2 and then invoke the
terminal emulator at 230400 baud would be something like:

payload -b 230400 -i -z startrek.bin

It is also now possible to use the interactive mode of payload even if no files
are loaded - in this case the port must be explicitly specified (and some of the
other options are ineffective). For example:

payload -i -p4 -b 230400

The payload loader will automatically try both ".bin" and ".binary" extensions if
none is specifed on the command line.

6. P2 platform-specific definitions are all specified in the one file, (called
Catalina_platforms.inc) in the target _p2 directory. This is significantly different
from the approach used on the p1, which had so many platforms and plugins
supported that it seemed best to use separate files for each one. This may
change in future, but for the moment just add any new platforms to
Catalina_platforms.inc - see the examples in that file.

The P2 target files are also significantly simpler overall those than for the P1 -
because the P1 used a mixture of SPIN and PASM to specify and load
various plugins, whereas for the P2 everything is done in PASM. The P1 also
required all kinds of tricks to get programs of any size to load and run, which
are (as yet!) not required on the P2. This means there is as yet no need for a
P2 equivalent of the P1's "basic" and "minimal" targets, although this also may
change in future releases.

7. There is no multi-threading support on the P2 yet, so the demos in the
demos\multithread subdirectory will not yet run on the P2.

8. There is no debugger support on the P2 yet, so the demos in the
demos\debug subdirectory will not yet run on the P2.

9. There are no plugins other than a simple serial driver, so the demos in the
following subdirectories will not yet run on the P2:

demos\debug
demos\graphics
demos\vgraphics
demos\spi
demos\serial4
demos\sound
demos\tty
demos\tty256

Copyright 2011 Ross Higson Page 71 of 113

Catalina C Release History

10. The demos\spinc directory has not yet been updated for the P2 yet.
11. There is no multi-CPU or proxy driver support on the P2 yet.
12.There is no XMM support on the P2 yet.

13.There are no EEPROM or FLASH loaders on the P2 yet.

14.There is no specific SDCARD loader support on the P2, since this is no longer
required. Any .bin program can be loaded from the SD Card. To access the
SD card, compile with one of the 'extended' version of the standard C library
(e.g. using the option -lcx instead of -lc).

15.Fixed a problem in Dumbo Basic that caused startrek.bas to fail.

16.Note that by default, the "super star trek" (sst) program uses CR LF as line
terminators. To make this program display correctly in the payload interactive
mode, the -q1 option to payload needs to be used. For instance:

payload -b460800 -i -z -gql sst.bin

17.Minor change to xvi to take into account the faster clock speed of the P2.
Also, for the moment the VT100 option is automatically selected when
building xvi for the P2, since there are no other HMI options available than a
simple serial VT100 style terminal that will make this program work correctly
(e.g. the one used by payload if the -i option is used).

18.Added row and column options to the payload interactive terminal. For
instance, to set the terminal size to 80 columns and 50 rows, you can now use
a command like:

payload -i -g80,50 program.bin

You can also specify the values in the environment variables
PAYLOAD_ROWS and PAYLOAD_COLS if you don't want to specify them on
every command. If values are specified on the command line, they override
the environment variables. For example:

set PAYLOAD ROWS=50
set PAYLOAD COLS=80
payload -i program.bin

19.Added an option set the payload baud rate using a PAYLOAD_BAUD
environment variable. For instance, to set the baud rate to 230400 baud for all
payload command, you use a command like:

set PAYLOAD BAUD
payload program.bin

If a baud rate is also specified on the command line, it overrides the
environment variable.
20.Two new utilities have been added:

o bindump - dumps binary files in various useful text formats, which can
then be used in other Spin or C programs.

o spinpp - a C-like preprocessor specifically for Spin files.

Copyright 2011 Ross Higson Page 72 of 113

Catalina C Release History

Release 3.14:
This release was never issued.

Release 3.13.2:

1. Updated Code::Blocks to release 13.12. Updated the Catalina Code::Blocks
documentation and quick start guide to match.

2. Improved Code::Blocks compiler support for Catalina - now more compiler
options are automatically checked for consistency (e.g. you can only select
one HMI option, or only select a caching option for a SMALL or LARGE
program).

3. Improved Catalina Project Wizard. Now more options can be selected using
the wizard. Also, fixed a problem that did not allow selecting the LARGE
memory model using the Wizard. One improvement is that it is now possible
to specify the output format (.binary or .eeprom). This means Code::Blocks
can now correctly tell whether a target needs rebuilding or not.

4. Made it possible to create a single default target using the Wizard. This
simplifies things, and is now the recommended way to create projects. The
previous method (creating a separate debug and release target) is still
supported. The release target (if created) is also now optimized by default.

5. Improved the build scripts to depend only on the LCCDIR environment
variable, which allows Catalina to be rebuilt with a single command with no
editing of scripts etc required.

6. Added more Code::Blocks example workspaces and projects (using existing
C programs from the demos folder) - these are in the workspaces

sound_demos : sound_spacewar, sound_demo
more_demos : globbing, sumeria, chimaera, test_spi, test_tty

7. Fixed some problems with some of the Code::Blocks projects, such as the
pre- and post- build command in the spinc_demo projects.

Release 3.13:

1. Fixed a problem with the graphics library that caused it to not compile if
spinnaker (openspin) was used. It compiled correctly if Homespun was
used.

2. Modified the CMM kernel to include relative jumps, and various other minor
performance improvements. These can both improve the speed and reduce
the size of CMM programs significantly.

3. Add a new Optimizer level (level 5) which optimizes loads. This can improve
the speed and reduce the size of both CMM and LMM programs
significantly.

4. Improved the performance of the PSHM primitive - this can improve the
speed of both CMM and LMM programs that make intensive use of procedure
calls significantly.

Copyright 2011 Ross Higson Page 73 of 113

Catalina C Release History

5.

The ALTERNATE LMM kernel is now deprecated, since the improvements in
the standard LMM kernel have made it redundant. It will be removed from
future releases.

The combined result of the the CMM and LMM changes can reduce program
size and improve program speed as follows:

CMM: up to 20% size reduction, and up to 15% speed improvement
LMM: up to 5% size reduction, and up to 20% speed improvement.

Not all programs will achieve these reductions, but all non-trivial programs will
achieve SOME improvement.

In addition, the following issues were fixed in a 3.12 Errata release, and are also
fixed in this release:

1.

Modified the sumeria.c and chimaera.c demo programs to seed the random
number generator on each execution.

. Fixed a bug in the CMM kernel in the PSHB primitive. However, this primitive

is not currently used by Catalina, so this bug would not have affected any
existing Catalina programs.

Included a new demos for the SD card file system - a "globbing" demo that
allows pattern matching of file names - see demos\globbing for more details.

Fixed some script issues in the build_utilities and Set_Linux_Permissions
that only affected Linux or OSX platforms.

Fixed some compilation issues in the source\catalina directory that were
preventing Catalina compiling with the clang compiler under OSX.

Added the ability to specify the port by name to the blackbox program (via
the -p parameter). This is required only under OSX, where ports must always
be specified by name.

Fixed a problem with the CMM thread libraries that prevented programs from
compiling when the spinnaker Spin compiler was used (programs compiled ok
using the Homespun compiler). Only affected COMPACT mode programs.

Fixed a problem with the CMM optimizer that may have resulted in programs
not executing correctly if the Catalina Optimizer was used (programs would
execute correctly without the optimizer).

Release 3.12:

. At the request of the maintainers of the “openspin” open source Spin compiler,

Catalina's version has been renamed (from openspin to spinnaker).
Catalina's version will always be compatible with Catalina's other
components, and is currently 100% compatible with openspin (the necessary
Catalina extensions to the preprocessor are enabled only when the -a
command-line option is specified) but this may not always remain so in future
as openspin continues to develop, so the renaming has been done now to
avoid confusing users who may also use openspin.

Copyright 2011 Ross Higson Page 74 of 113

Catalina C Release History

2. The Catalina cache operation has been speeded up significantly (in most
cases the program execution speed has more than doubled) by re-querying
the XMM RAM only when the Kernel knows the page currently loaded in Hub
RAM changes - otherwise use the Hub RAM copy. The previous behavior was
intended to allow for the possibility of more than one cog executing code from
XMM RAM, but this makes the executing speed far to slow to be useful.

3. Catalina now differentiates between base platforms and XMM add-on boards.
In previous versions of Catalina, only one platform symbol could be specified
on the command line, and this specified both the base platform and the XMM
API required to use the XMM RAM on that platform. With the advent of many
new "add-on" XMM boards (such as the Propeller Memory Card) that can be
added to multiple base platforms, Catalina now allows both a base platform
and an XMM add-on board to be specified. The XMM add-on board API will
take precedence over any native XMM API. For instance, if you have a C3,
but want to use the PMC as XMM RAM instead of the built-in C3 XMM RAM,
you can now do so. For example:

catalina hello_world.c -lci -C LARGE -C C3 <-- use C3 XMM
RAM

catalina hello_world.c -lci -C LARGE -C C3 -C PMC <-- use PMC
XMM RAM

The Hydra Xtreme (HX512) is also now defined as an add-on board, but for
historical reasons this does not need to be specified separately when the
base platform is either the Hydra or the Hybrid (although there is no problem
with doing so).

To support this new flexibility, there are now several types of board support
files in the Catalina target directory, depending on the type of board:

For a base platform (XXX) that has no XMM RAM, there are three files:

XXX DEF.inc <-- specifies base pin and clock
definitions
XXX CFG.inc <-- specifies #defines for configuring
plugins
XXX HMI.inc <-- specifies HMI options supported

For an XMM RAM add-on board (YYY), there are three different files:

YYY XMM.inc <-- specifies XMM API functions
YYY XMM DEF.inc <-- specifies XMM pin and memory
definitions
YYY XMM CFG.inc <-- specifies #defines for configuring
plugins

For a base platform (ZZZ) that also has built-in XMM RAM, there will be six
files:

Copyright 2011 Ross Higson Page 75 of 113

Catalina C Release History

ZZZ_DEF.inc <-- specifies base pin and clock
definitions
2Z2Z_CFG.inc <-- specifies #defines for configuring
plugins
ZZZ_HMI.inc <-- specifies HMI options supported
ZZZ_XMM.inc <-- specifies XMM API functions
Z22Z_XMM DEF.inc <-- specifies XMM pin and memory
definitions
ZZZ_XMM CFG.inc <-- specifies #defines for configuring
plugins

This mechanism, although slightly more complex than previously, allows XMM
add-on boards to be "mixed and matched" with various base platforms -
although in general it will still be necessary to adjust the pin definitions when
moving an add-on board from platform to platform.

Also, some XMM add-on boards include SD card sockets which may be used
in place of existing SD Card sockets on the base platform (in some cases this
is NECESSARY, since the pins used on the base platform are used for other
purposes on the XMM add-on board). In such cases, the pin definitions on the
base platform may need to be edited as well, although this can easily be done
in a manner that allows for both the base platform SD socket and the possible
XMM add-on board SD sockets. For example, here is the code in the
QuickStart_DEF.inc file, which knows the pins used for the SD Card sockets
for various common add-on boards:

#ifdef PMC
SD_DO_PIN =1 ' Propeller Memory Card
(override)
SD_CLK_PIN = 7 ' Propeller Memory Card
(override)
SD_DI_PIN =0 ' Propeller Memory Card
(override)
SD_Cs_PIN = 4 ' Propeller Memory Card
(override)
#felseifdef RP2
SD_DO_PIN = 12 ' RamPage2 (override)
SD_CLK_PIN = 13 ' RamPage2 (override)
SD DI_PIN = 14 ' RamPage2 (override)
SD_CS_PIN = 15 ' RamPage2 (override)
#else
SD_DO_PIN =0 ' Human Interface Board
SD_CLK PIN =1 ' Human Interface Board
SD_ DI PIN = 2 ' Human Interface Board
SD_ Cs_PIN = 3 ' Human Interface Board
#fendif

More could be added if needed.

4. Support has been added for the RamBlade3. This is enabled via the
RAMBLADE3 symbol. See the file RamBlade3 README.TXT in the Catalina
target directory for more details.

5. Support has been added for the Propeller Memory Card. This is enabled via
the PMC symbol. See the file PMC _README.TXT in the Catalina target
directory for more details.

6. Explicit support has been added for the QuickStart. This is enabled via the
QUICKSTART symbol. See the file QuickStart README.TXT in the Catalina

Copyright 2011 Ross Higson Page 76 of 113

Catalina C Release History

target directory for more details. Note that the QuickStart was already
supported in previous versions, but via the CUSTOM symbol. Now, it has
been allocated a symbol of its own.

7. The pin definitions for the SUPERQUAD and RAMPAGE have been modified
to suit the Propeller Platform (PP) since it is more likely these boards will be
used with that platform than the previous default (C3).

8. Fixed a problem with the SD Plugin introduced with Catalina 3.11, which was
not correctly clocking the SD card after raising the Chip Select. This could
lead to the SD card plugin not working with some XMM memory add-on
boards.

9. Fixed a problem with the Catalina File System call _close_unmanaged(),
which was not correctly clearing out the file handle. This meant that after a
small number of file handles had been used (8 in total), no more files could be
opened since it looked like all the available file handles were still in use.

10.Fixed a problem with the special register names (e.g. DIRA, OUTA, etc) which
meant that if constant values were assigned to them, they could be
interpreted as cog addresses rather than constants in some circumstances.
For instance, OUTA = 0 might assign the value contained in cog address 0 to
OUTA rather than the constant value 0. This did not affect inline PASM, or the
library functions (e.g. _dira(), _outa() etc).

11. Fixed a problem under Windows with catdbgfilegen not being compiled as a
"static" binary, which meant it would throw an error about a missing DLL
when a program was compiled with the -g flag unless MinGW was included
in the PATH environment variable.

12.Fixed a problem with the "tiny" library, which was including a copy of the stdio
function puts. This conflicted with the version of puts in the standard C library
if puts was used in a program.

13.Added a new tutorial document called "Selecting Catalina Options" and two
demo programs, written by Mike Arnautov (http://www.mipmip.org):

sumeria.c
chimaera.c

The document describes how to compile these programs using various
different Catalina memory models and load options.

14.The Propeller Memory Card (PMC) is also compatible with the DEMO board,
so Demo_DEF.inc has been upgraded to know about the SD Card on the
PMC. To use the PMC with the Demo board, just add both symbols to the
command line. For example:

catalina program.c -lcx -C DEMO -C PMC

15.Fixed a bug in the TRIBLADEPROP XMM API, which resulted in
XMM_IncAddr being undefined when programs were compiled for CPU_2.

Release 3.11:

1. By default, Catalina now uses the openspin spin/pasm compiler to assemble
the PASM code generated by the compiler. Full sources for this compiler are
included, and it is MIT licensed. The openspin compiler has been modified to

Copyright 2011 Ross Higson Page 77 of 113

http://www.mipmip.org/

Catalina C Release History

support some Homespun features needed by Catalina. The openspin
compiler has been tested with all Catalina sources, but Homespun is still
provided in case any problems are discovered - if there is any need to use
homespun, simply use the -a command line option to specify which assembler
to use. For example:

catalina hello_world.c -1lc <-- assemble with openspin

catalina hello world.c -lc -as <-- assemble with openspin
catalina hello world.c -lc -ah <-- assemble with homespun

The assembler in use can be detected (if required) in both C and in Spin.
This allows code to be written that can cope with differences in the two
compilers (Catalina uses this mechanism itself in the target file
Catalina_Common.spin to workaround a Homespun bug).

In C:

The symbol __CATALINA_HOMESPUN__ or _ CATALINA_OPENSPIN__
will be defined according to the assembler used.

In Spin:

The symbol HOMESPUN__ or OPENSPIN__ will be defined according to the
assembler used.

2. There is a new SD card plugin, which supports SDHC cards (i.e. SD cards
over 2Gb in size). This new plugin is used by default. To revert to using the
previous plugin, simply define the Catalina symbol OLD_SD using the -C
command line option. For example:

catalina test_catalina fs.c -lcx <-- use new plugin
catalina test_catalina fs.c -lcx -C OLD_SD <-- use old plugin

On some platforms, the new SD card plugin is much faster than the old one.

3. Fixed a bug in the test registry.c demo program, which was using old names
for plugins and would not compile.

4. Added the ability to include pasm instructions 'inline' with C code. This uses a
new PASM function, defined in propeller.h as:

extern void PASM(const char *code);
This is not a real function. Instead, the compiler recognizes this as a request
to insert one or more PASM instructions in the assembly output of the
compilation. For instance:
void main () {
PASM ("mov RO, #1");
PASM ("mov outa, R1");
}
See the example program test inline_pasm.c in the demo folder for more
details.

5. Updated the minimal target to use an Extras.spin file, the same as all the
other targets. No functional change.

6. Now that openspin support is available, support for the bstc Spin/PASM
compiler has been removed from both the catalina and catbind commands.

Copyright 2011 Ross Higson Page 78 of 113

Catalina C Release History

7. the catbind utility now uses -ah and -as command line flags to specify the
SPIN/PASM compiler to be used. This makes it compatible with the main
catalina command.

8. Payload now has additional options for managing CR/LF translations. These
are specified using additional values to the -q command line option:

The existing -q values ...
1 =ignore CR
2 =ignore LF
... can now be combined with ...
4 = translate CR to LF
8 = translate LF to CR
So (for example) ...
-q6 means ignore LF, but translate CR to LF
-q9 means ignore CR, but translate LF to CR

Note that combining 3 (i.e. ignore both CR and LF) with either 4 or 8 will have
no effect. For an example program that can be used to understand the effects
of the various -q options, see the file test_payload.c in the demos directory.

A common situation where -q is required is when C programs that use
windows-style line termination are being run in a terminal emulator (such as
payload provides via the -i command line option) which expects Unix-style line
termination. In this case, use -q1.

9. The library function _coginit_Spin used a wait function but did not define it, so
it would fail to compile unless the user provided this function themselves. This
has now been fixed so that it uses waitcnt directly.

10.Fixed a bug in the FAT file system code (DOSFS) that may have led to corrupt
directory entries.

11. Fixed a bug in libserial4 that meant the wrong offsets were being used when
multiple serial ports were in use. This may have led to the serial port code
apparently working, but corrupting memory used for other purposes.

12.Fixed a bug with the system function sigimp and siglongjmp with the Catalina
optimizer - since they were both implemented by the same code, if one was
optimized away because it was not used, both were being removed even
though one was still required.

13.Added a workaround for a Homespun bug that removed what it thought were
redundant identical instances of Catalina_Common.spin, which were not in
fact identical because one included additional layer 2 or 3 functions. Now,
when Homespun is used as the assembler, all instances of this object are
forced to be the same, even though this incurs a few hundred bytes of
overhead.

14.Added support for the RamPage 2 board, via the command line symbol RP2.
See the file RP2_README.txt for more details.

Copyright 2011 Ross Higson Page 79 of 113

Catalina C Release History

15.Added support for using TTY on the Triblade Prop CPU #2 and CPU #3 (it
was already supported on CPU #1).

16. The ramtest utility now also supports the TTY option.

17.The XMM_LOADER symbol was not being defined by default in
DracBlade.CFG which meant Catalyst was not being compiled with the XMM
Loader functionality enabled (unless this symbol was defined on the
command line), meaning XMM programs could not be loaded using Catalyst
(they could still be loaded serially).

18.The default HMI colors (used for VGA and TV displays) were being set to TV
colors when no HMI option was specified on the command line, even if the
default HMI option was VGA (e.g. as it is on the DRACBLADE). Now they are
set in the various HMI screen drivers instead of in the Catalina_Common.spin
file.

19.Catalyst is now a C program. The Catalyst utilities are also C programs. In
some cases, the utilities now have additional options. The file
Catalina_FATEngine.spin file has now been removed, since it was only used
by the Spin version of Catalyst, and it was becoming too difficult to maintain
two completely different file systems. Spin file systems (like FATEngine or
FSRW) can of course be used by Spin programs loaded by Catalyst, but
Catalina and Catalyst both now only use DOSFS.

20.Catalyst now uses Linux style line termination by default. To restore the
Windows style line termination, edit catalyst.h in the catalyst\core subdirectory
and recompile Catalyst.

21.Added DFS_UnlinkDir to delete directories - the directory to be deleted must
already be empty, since any clusters occupied by any files in the directory are
not reclaimed (potentially leading to lost clusters).

22.The t_geometry() function in the LoRes TV driver was returning the values
for rows and columns swapped around.

23.Fixed a minor bug in the _sbrk() function that wasted some available
dynamic memory space (only affected TINY and COMPACT modes). Also,
fixed a bug in the test _sbrk.c test program - the program sometimes failed to
terminate due to an uninitialized pointer variable.

24 Fixed a bug in Catalyst that meant SMM files were not loaded correctly on
platforms where the Cache and Flash RAM was used.

25.Both catalina and catbind are now quieter than they used to be - the default
now is for both to output minimal information messages. The option -v
(verbose) means to output some information (approximately what used to
be output by default) and -v -v (very verbose) means output much more
information (approximately what used to be output for verbose mode).

Release 3.10:

1. Fixed a bug in the CMM Code Optimizer that could lead to optimized
programs that behaved differently to non-optimized programs.

2. Added a new EEPROM data loader that can be used as the first file of a
payload command. The EEPROM loader can be used to program files of up

Copyright 2011 Ross Higson Page 80 of 113

Catalina C Release History

to 32Kb into EEPROM (similar to the payload -e command) on any
Propeller,but it can also be used to load programs larger than 32Kb into
EEPROM on Propellers that have 64Kb EEPROM. This is very useful when
the EEPROM loader option is needed to load an LMM program into Hub RAM
because the program needs more code space than can be accommodated
with the default loader. It can also be used to load an XMM program from
EEPROM. To build the EEPROM loader, use the build_utilities batch file,
and follow the prompts. Then specify EEPROM in a 'payload command'. E.g:
build utilities

catalina othello.c -lci -C EEPROM -C HYDRA
payload EEPROM othello

or
build utilities
catlaina othello.c -lci -C LARGE -C EEPROM -C C3
payload EEPROM othello

3. Updated the build_utilities batch file. This batch file can be called from
Code::Blocks or from the command line. It now builds utilities that are more
intuitively named:

EEPROM - load a program into EEPROM of 32k, or 64k or larger. If it is larger
than 32kb, the program must have been compiled with the -C EEPROM
compiler switch, which includes the EEPROM loader in the compiled program.

SRAM - [oad a program into SRAM. The program must have been compiled
with -C SMALL or -C LARGE.

FLASH - load a program into FLASH. The program must have been compiled
with -C FLASH, plus a cache size (e.g. -C CACHED_1K).

MOUSE - load a program into SRAM via the mouse port - used for HYDRA
and HYBRID, where the normal serial port cannot be used when the HYDRA
XTREME XMM card is installed. The program must have been compiled with
-C SMALL or -C LARGE.

XMM - while deprecated, this is retained for backward compatibility. Loads a
program into the default XMM RAM configuration, which may be SRAM,
MOUSE or FLASH depending on the platform.

All these utilities are used the same way, as the first file to be loaded via the

payload serial loader. For example:

catalina program.c -C EEPROM

payload EEPROM program
or

catalina program,c -C LARGE -C FLASH -C CACHED_1K

payload FLASH program
Note that the build_all batch file in the utilities folder remains, but it does not
use the new names (SRAM, FLASH etc) - it simply builds the default XMM
loader as XMM. However, the use of this batch file is now deprecated since
the build_utilities can build all the utilities that this batch file used to build, and
is much easier to use. A message to this effect is now displayed if the old
'‘build_all' batch file is used (but it still works).

4. Added the SOUND_PIN to the standard platform definition file for each
platform (e.g. CUSTOM_DEF.inc). The sound plugin and support library are

Copyright 2011 Ross Higson Page 81 of 113

Catalina C Release History

now compiled for each memory mode as part of the standard set of libraries,
and can be enabled by simply including -lsound on the command line. For
example:

catalina sound _demo.c -lc -lsound -C HYDRA
Demo programs are included in the 'demos\sound' folder. For more
information on the sound library, see catalina_sound.h in the 'include’ folder.

5. The sound demos (including spacewar.c) now run on both the C3 and the
HYDRA, and may also work on other platforms. See the README.TXT file in
the demos\sound directory for more details. The version of spacewar.c in this
directory and the version in in the demos\vgraphics directory are identical, but
in the demos\sound directory the build_all batch file adds -Isound to the
command line, which enables the sound plugin.

6. Generalized the Gamepad plugin to suit any platform, and added the
Gamepad Pins (NES_CL_PIN, NES_CS_PIN, NES_D1_PIN, NES_D2_PIN)
to the standard definitions file for each platform. The Gamepad plugin is so
simple to use that it needs little in the way of support functions, so instead of
having a separate library, the Gamepad support functions are included in all
the standard libraries. To use this plugin, just add the option -C GAMEPAD to
the Catalina compile command. For more details, see the test gamepad.c
demo program, which can be compiled with a command like:

catalina test_gamepad.c -lci -C GAMEPAD -C HYDRA
7. Added support for the Propeller Platform USB, and also for the 'El Jugador'
expansion board. The symbol PP enables support for this board. For
example:

catalina test_gamepad.c -lci -C GAMEPAD -C PP
8. Fixed a bug in building the library from source, where the build_index batch
files specified /bin/sh instead of /bin/bash.

9. Macros to simplify the use of locks - ie. ACQUIRE(lock) and
RELEASE(lock) have been added to catalina_cog.h rather than being
redefined within each support library that used them.

10.Added a new SPI plugin, that can be used to communicate with EEPROMSs on
an 12C bus, or SD Cards on an SPI bus. The plugin is enabled by linking with
the support library - e.g. add -Ispi to the command line. For more information
see the catalina_spi.h file in the 'include' directory. The plugin is based on an
original Spin driver by Mike Green. A demo program for the SPI plugin is
available in the directory demos\spi. See the README.TXT file in that
directory for more details.

11. Added a new function to the standard library - _plugin_name(type), which
accepts a plugin type (e.g. extracted from the registry) and returns a pointer to
a string containing a readable name for the plugin type. This function is now
used by several of the demo programs (which previously all had to have their
own copy).

12.BlackCat, the graphical source-level Debugger for Catalina C programs
originally developed by Bob Anderson, has been updated to include support
for the new CMM memory mode, and a binary version is included with
Catalina (the source is not included - BlackCat is not open source). Note that
BlackCat runs only under Windows - however, Linux users can still use the

Copyright 2011 Ross Higson Page 82 of 113

Catalina C Release History

BlackBox debugger, which is a command-line debugger that provides very
similar debugging capabilities. There is a new document (Getting Started
with BlackCat) that gives a brief introduction into the BlackCat debugger, and
Code::Blocks has additional entries on the Tools menu to use the BlackCat
debugger as well as the BlackBox debugger.

Release 3.9:

1. Fixed a bug in the CMM Code generator that generated incorrect code for
division of a signed integer by small powers of 2 (e.g. 1,2,4,8,16).

2. Added libtty256, which is a variant of the existing libtty but which uses Ray
Rodrick's customized version of FullDuplexSerial, with the buffer size
increased to 256 bytes. Demo programs are provided in demos\tty256

3. In the Linux distributions, the vgraphics library was not being built due to a
bug in the makefile.

Release 3.8:

1. Added full support for CMM (Compact Memory Model). CMM now fully
supports multi-threaded and multi-cog programs, and all the program loaders
can now load and execute CMM programs.

The Compact memory model is enabled by adding the command line option
-C COMPACT. The CMM memory mode generates code that is under half the
size of the equivalent LMM program.

For example:

catalina test_suite.c -lci => code size 6812 bytes
catalina test_suite.c -lci -C COMPACT => code size 3196 bytes

The Catalina Optimizer also works with CMM mode, although the savings
are not currently as dramatic as they are for LMM mode:

catalina test_suite.c -lci -C COMPACT -03 => code size = 3136 bytes
Both the Payload loader and the Catalina BlackBox debugger work with CMM
mode:

catalina test_suite.c -lci -C COMPACT -g3
payload test_suite
blackbox test suite

The only known limitations of CMM mode is that programs that use FCACHE
cannot use the debugger. However, in this release the only programs that use
FCACHE are those that use the graphics library or the threaded kernel.

2. Added the vgraphics library (The "v" is for "Virtual", but it could also stand for
"Vector" or "VGA"). The vgraphics library is highly compatible with the existing
graphics library, but supports VGA displays instead of TV displays. To compile
programs to use the vgraphics library, just add -lvgraphics to the command
line. For example:

catalina graphics_demo.c -lvgraphics
The following command line symbols can be defined for programs that use
vgraphics, to configure the graphics resolution, color depth and other options:

VGA_640 - resolution is 640 x 480. This is the default.
VGA 800 - resolution is 800 x 600.

Copyright 2011 Ross Higson Page 83 of 113

Catalina C Release History

VGA_1024 - resolution is 1024 x 768.

VGA_ 1152 - resolution is 1152 x 864.

VGA_2 _COLOR - color depth is 1 bit (2 colors).

VGA_4 COLOR - color depth is 2 bits (4 colors).

DOUBLE_BUFFER - enable double buffering (smoother graphics).
Example programs are provided in the demos\vgraphics folder.

3. Fixed a bug in the debugger when debugging CMM mode programs —
breakpoints set using function names were sometimes set at the wrong
address.

4. Added the ability to display Hub RAM above 32kb - this is the ROM space on
the Propeller v1.

5. Removed the files emm_progbeg.s and smm_progbeg.s - emm and smm are
really load options, not separate memory modes. The memory modes are
Imm, cmm and xmm. Similarly for emm_progend.s and smm_progend.s

6. Added keyboard support to the graphics library. Now both the graphics and
vgraphics libraries have full keyboard and mouse support, and there is no
need to use the HMI keyboard and mouse drivers. In fact, when using the
graphics or vgraphics libraries, it is generally recommended that the NO_HMI
option be used - this prevents the HMI keyboard and mouse drivers from
loading, which may conflict with the drivers provided by the graphics and
vgraphics plugins. However, it is possible to leave the PC or TTY HMI options
enabled, since they use only the serial port. To disable individual graphics or
vgraphics keyboard or mouse drivers, you use the same options used with the
HMI plugins - i.e. NO_KEYBOARD or NO_MOUSE.

7. Blackbox now correctly removes the extension if a .binary or .eeprom file is
specified when debugging.

8. Some minor changes to Code::Blocks to add support for the vector graphics
plugin. The Project Wizard now allows the NO_HMI option to be selected,
which is necessary for graphics programs. The NO_KEYBOARD and
NO_MOUSE options (which are common to both the Graphics and HMI
plugins) have now been moved to a new "HMI and Graphics Options"
category in the build options.

Release 3.7:

NOTE: Catalina 3.7 was a BETA release that introduced preliminary support for the
Compact Memory model — there was no non-beta release of 3.7. Full support for
CMM support was released as Catalina 3.8.

1. Added support for CMM (Compact Memory Model). The CMM model is
enabled by using the command line option -C COMPACT. The CMM memory
mode generates code that is typically around half the size of the equivalent
LMM program.

For example:
catalina test_suite.c -lci => code size = 6812 bytes
catalina test_suite.c -1lci -C COMPACT => code size = 3408 bytes

Copyright 2011 Ross Higson Page 84 of 113

Catalina C Release History

The Catalina Optimizer also works with CMM mode, although the savings are
not currently as dramatic as they are for LMM mode:

catalina test_suite.c -lci -C COMPACT -03 => code size = 3348 bytes
Both the Payload loader and the Catalina BlackBox debugger work with CMM
mode:

catalina test_suite.c -lci -C COMPACT -g3
payload test_suite
blackbox test_ suite

2. Known limitations of CMM mode in this BETA release:
a) Programs that use FCACHE cannot use the debugger.
b) The threads library is not yet supported by the CMM kernel.
c) CMM mode programs can only currently be loaded serially.
d) XMM RAM is not yet supported by the CMM kernel.

Release 3.6:

1. Added a new option (-q) to control the interpretation of line termination
characters sent by the Propeller program to the Payload interactive terminal

emulator:
-q1 : ignore CR
-q2 : ignore LF

-q3 : ignore both CR and LF

The option -q1 is useful when running programs that use DOS line termination
(i.,e. CR LF) with the Payload terminal emulator, since the CR effectively
causes these lines to be erased as soon as they have been displayed.

2. Fixed the Ram_Test utility (it wouldn't compile in Catalina 3.5). Also, there is
now only one source file for the RAM Test program (although the
build_ram_test batch file still builds PC, TV and VGA versions).

3. A new image format has been implemented, which typically saves around 300
bytes of HUB Ram for all memory modes (LMM or XMM). Also, the binary
format for Flash programs are much smaller - around the same size as the
non-flash versions.

4. In conjunction with the new binary formats, Payload has been modified to load
programs faster. In some cases, payload can even load TINY programs faster
than the Parallax loader. All XMM programs load much faster, especially those
that use Flash RAM. In most cases, loading an XMM version of a program is
now as fast - or faster - than loading the equivalent LMM version.

5. Catalina now compiles files "in place" - i.e. in the users current working
directory, and not in Catalina's target directory. This now makes it possible to
have multiple users using Catalina at once (note that they must be compiling
in different directories) and also makes Catalina more compatible with
Windows 7 and Vista, which do not like programs that write to the "Program
Files" directories. The target directories that are used when compiling C
programs can now be made "read only", and normal users no longer need to
have Administrative rights to use Catalina.

Copyright 2011 Ross Higson Page 85 of 113

Catalina C Release History

6. Catalina now installs the bin directory and all target directories as read-only
for normal users and read-write for administrative users. This means that
users who need to modify target files, or build the utilities and have the results
copied to the bin directory, will need to have administrator rights. But note that
users who just want to use Catalina to compile C programs do not need
administrator rights.

7. Users without administrative rights can now compile the catalyst and the
utilities by first copying the respective directories to their home folder. The
build_utilities and build_catalyst batch files provided now check for the
existence of these folders in the user's home directory and compile the
catalyst and utility programs in those folders if found. Note that when
compiling the utilities folder, the last thing the batch file does is attempt to
copy the resulting binaries to the Catalina bin folder - this copy will fail if the
user does not have administrative rights. However, the binary files can instead
be copied to the same folder in which the user is compiling their C programs,
since Payload checks this location first for any loader files it needs (e.g.
XMM.binary).

8. A new batch file, called Reset_Codeblocks is provided. Executing this batch
file will overwrite the current Code::Blocks configuration file with a new copy.
This is especially useful when using Code::Blocks as a user other than the
one who installed Catalina, as the Tools menu will initially be empty in that
case. To rectify this, simply execute this batch file. It can be re-executed at
any time to reset the Code::Blocks configuration back to the original state.

9. Fixes a bug in Payload - it now always uses the first port for interactive mode,
not the subsequent port (when two different ports are used). This affected the
Hydra and Hybrid platforms when using the Mouse Port Loader.

10.Fixed a bug in Payload where the new interactive mode was not being started
when the verbose or diagnose command-line option was also specified.

11. There is now only one XMM kernel debugger overlay for all XMM platforms.
Previously, a different overlay was required for each platform, which
complicated the development of new XMM platforms. Now, debugger support
is automatic for any new platforms that provide the standard set of XMM API
functions.

12.Smaller and faster division functions have been included. This should not
make any functional difference to any existing programs.

13.Fixed a bug in the use of Catalina environment variables. In particular, the
CATALINA_LIBRARY environment variable should not now specify the whole
path, since the last component of the library path (/ib or large_lib) must be
determined by Catalina based on the memory model specified for each
compilation.

14.Fixed a configuration problem where Catalyst would not build for non-XMM
platforms. Catalyst works on any platform, but should have disabled XMM
support when compiled for platforms that do not have XMM RAM. This is now
managed by defining the XMM_LOADER symbol in the platform_CFG.inc file
for each platform.

15.Fixed a problem with the definition of clockmode() in <catalina_icc.h>.

Copyright 2011 Ross Higson Page 86 of 113

Catalina C Release History

16. Added support for direct access to the special cog registers, in addition to the
existing access (.e. via function calls like _ina() etc). The new include file
<propeller.h> defines the variables PAR, CNT, INA, DIRA etc as external
volatile variables, and they can then be used like any C variable. For

instance:
x = _ina() is now equivalent to x = INA
x = get dira() is now equivalent to x = DIRA
_dira(m,d) is now equivalent to DIRA = ((DIRA & m) | d)
_dira(0,d) is now equivalent to DIRA |=d
_dira(m,0) is now equivalent to DIRA &= ~m

The <propeller.h> file also contains other useful definitions to assist Spin
programmers who want to try C.

17.The DISABLE_REBOOT symbol has been renamed NO_REBOOT to be
more consistent with other such symbols (e.g. NO_FLOAT, NO_HMI,
NO_ARGS) and several new symbols have been added - one to disable
plugin support altogether (NO_PLUGINS) and another for programs where
the main C function never exits (NO_EXIT). All these symbols do is save
some space in the final binary by removing unused program code (note that it
is the programmer's responsibility to ensure that the code removed is not
actually required!). For instance:

catalina hello _world.c -1lci
=> code size of 6612 bytes

catalina hello world.c -lci -C NO_ARGS -C NO_REBOOT -C NO_EXIT
=> code size of 6556 bytes

18.Fixed a race condition in some of the HMI plugins that meant the keyboard
may not have been cleared correctly by k_clear() - occasionally a key would
have been returned even if it had been sent BEFORE the keyboard was
cleared.

19.A new serial plugin and HMI option have been added, based on the Full
Duplex Serial driver. To use this driver as the HMI option, define the symbol
TTY (i.e. by adding the option -C TTY to the command line). For example:

catalina hello world.c -C TTY
This plugin can also be used as a stand-alone serial port driver (e.g. in
addition to an existing HMI option). Access functions are provided in the
library libtty. This works in exactly the same way as the "4 port serial" plugin -
all you need to do is link your program with libtty (i.e. by adding the option
-Itty to the command line). For example:

catalina test_tty.c -1ltty
Note that the default pin configuration for the TTY plugin may conflict with the
default pin configurations used by the PC and PROPTERMINAL HMI options.
If you use this HMI option, you can change the pins by editing the file
Extras.inc - or if you do not need a HMI, simply define the symbol NO_HMI on
the command line. For example:

catalina test_tty.c -C NO_HMI -ltty
The main advantage of using TTY HMI option over the PC HMI option is that it
saves one cog. The main disadvantage is that it cannot be proxied (which
only matters in a multi-CPU system).

Copyright 2011 Ross Higson Page 87 of 113

Catalina C Release History

20.Fixed a bug in libserial4 that could lead to corrupt output when the
multi-threading kernel was in use. Added a more complex demo program to
verify the bug is now fixed.

21.The inter-prop loaders used on multi-prop systems (e.g. TRIBLADEPROP and
MORPHEUS) no longer displays status messages when loading a CPU with a
screen attached (e.g. CPU #1 on TRIBLADEPROP, or CPU #2 on
MORPHEUS). While this was useful as a visual check that the loader is in
fact working, it limits the size of programs that can be loaded to those that fit
below the buffers required for the display. So it is now not enabled by default.
To restore the previous behavior, explicitly define the symbol DISPLAY_LOAD
(using the option -D DISPLAY_LOAD) in the homespun command that
compiles the relevant loader (i.e. Generic_SIO Loader 2.spin and
Generic_SIO_Loader_3.spin).

22.Fixed a bug in the proxy drivers - if the mouse or keyboard was disabled (via
NO_MOUSE or NO_KEYBOARD) when using the proxy drivers it was
possible that the mouse and/or keyboard buffers were still allocated - but at
the same Hub RAM location as the screen buffers. This could lead to corrupt
characters being displayed on the screen.

23.Fixed a problem when specifying the PROPTERMINAL HMI option in
Code::Blocks (Code::Blocks was defining the symbol PROPTERM, not
PROPTERMINAL, so the correct driver was not being included).

24. Added the ability to specify NO_SCREEN via a Code::Blocks HMI options.

25.The default FG and BG colors used in all the supported TV and VGA drivers
are now specified in Catalina_Common.spin. This makes them much easier to
configure, and they can be configured differently for each driver (e.g. TV,
HIRES TV, LORES TV, VGA, HIRES_VGA, LORES_VGA etc). The default
in all cases is set to White text on a Dark Blue background. Note that the way
colors are specified differs between different driver types - refer to the low
level drivers for more details (e.g. TV.spin, VGA.spin etc).

Release 3.5:
26.Fixed some typos in the Catalina Reference manual - thanks to Ray Rodrick.

27.Added new library functions to access more of the Propeller special registers
(frqa,frgb,ctra,ctrb,phsa,phsb,vscl,vcfg) and also fixed some of the existing
functions (outa,outb,dira,dirb) to prevent toggling outputs while updating
their value - thanks to Ted Stefanik.

28.A function to create a directory has been added (i.e. _create_directory(),
documented in catalina_fs.h). The path to the new subdirectory must already
exist - e.g. if you want to create \dir7\dir2\dir3 then the directory \dir7\dir2 must
already exist. There is currently no way to delete a subdirectory.

29.A section on file system support, describing the various means of accessing
SD Card based file systems (i.e. via the standard C "stdio" functions, or via
managed or unmanaged Catalina file system functions) has been added to
the Catalina Reference Manual.

30.The default platform (if none is specified on the command line) is now the
CUSTOM platform, which comes preconfigured for a Propeller with a 5Mhz

Copyright 2011 Ross Higson Page 88 of 113

Catalina C Release History

clock and not much else. The default HMI option for this platform is the PC
HMI, so this platform is suitable for nearly ANY propeller with a 5SMhz crystal,
including the Parallax QuickStart board or various Gadget Gangster boards.
The CUSTOM platform is now preconfigured in ALL the target packages
provided (i.e. target, basic and simple) and no longer requires any further
editing for Propellers that use a 5Mhz clock, no XMM RAM, and only serial
input and output capabilities.

31.Payload now has an interactive mode, enabled via a new -i switch. When
enabled, the Payload program turns into an interactive terminal emulator
immediately after the program has been loaded. Programs compiled with the
PC HMI option will therefore be able to be more easily used, and no output
will be lost while the user starts or enables their terminal emulator after
downloading a new program.

32.Code::Blocks Tools menu has been updated to add a new tool called
Download to Hub RAM and Interact, which enables the new "interactive"
mode of the Payload program, acting as a terminal emulator.

33.The Code::Blocks Catalina project wizard has been enhanced to also allow
the HMI option to be selected. The defaults have now changed - the
CUSTOM platform is now the default, and the PC HMI option is now the
default.

34.The Catalina QuickStart guide now uses the PC HMI as the default HMI
option when building the first demo, and the new "interactive" mode of
Payload. This means the demo should work on nearly any Propeller platform.

35.Fixed a bug in the standard C function ungetc that occurred when using the
normal non-extended libraries (-lc or -lIci). This bug also affected scanf and
may have affected other stdio library functions. It did not affect programs that
used the extended libraries (-lcx or -Icix)

36.Catalina now generates less Homespun messages on each compile. Most of
the messages were not useful, so it now only prints a message to indicate
which Spin modules it is including in the final executable (this is quite useful in
verifying that the command-line options have been correctly specified). To
generate all the previous information messages, use the -v switch.

37.Several minor changes have been made to the Catalina virtual machine which
reduces the code size and improves the performance of all kernels slightly.
For programs that do not require floating point, the speed improvements in the
ALTERNATE kernel are quite significant. Note that to use the ALTERNATE
kernel for programs that don't need floating point support, the NO_FLOAT
symbol should also be defined (to prevent Catalina including the floating point
plugins that make up for the ALTERNATE kernel missing the "in-kernel"
floating point capabilities). For example:

catalina hello world.c -lci -C ALTERNATE -C NO_FLOAT
38.Addition of the new "service-oriented" registry. A full set of registry
manipulation functions provided for use from Spin programs has been added.
Catalina provides Spin functions to access the three different registry layers,
but by default only the "layer 1" functions are included in full. If you need
access to the full "layer 2" registry functions (i.e. the "cog-based" registry)
from Spin, define the symbol FULL_LAYER_2 on the command line. If you

Copyright 2011 Ross Higson Page 89 of 113

Catalina C Release History

need access to the full "layer 3" registry functions from Spin (i.e. the new
"service-based" registry), define the symbol FULL_LAYER_3 on the
command line. Access from C to all layers is always included.

39.More tidying up and simplification in various target files. The addition of the
new "service-oriented" registry (in particular the way memory is allocated
during startup) has significantly simplified the way plugins are set up and
loaded from Spin.

40.Added new service-oriented registry functions to catalina_plugin.h. Also, for
more consistency between C programs and Spin programs, the names of the
C plugin types has been prefixed with LMM_ (e.g. HMI -> LMM_HMI). Any C
programs that use these names will need to be updated.

41.Renamed the simple target to minimal, since this is more descriptive of its
intent.

42.Fixed a bug when using the external floating point plugins from multiple
kernels executing C programs concurrently.

43.The new "service-oriented" registry incorporates automatic management of
access to plugins from multiple programs. This is enabled automatically if the
multithreaded kernel is used. You can enable it manually by defining the
symbol PROTECT_PLUGINS on the command line. This would be required
(for example) if you were using the default single-threaded kernel, but planned
to dynamically load additional kernel cogs.

44.19. Added a new command line option (-C) to define 'Catalina’ symbols (i.e.
symbols that affect the Spin target files). Previously this was done using -D,
but -D is now reserved for defining C language symbols. The same change
has been made to catbind (but note that Homespun still uses -D). When you
define a Catalina symbol XXX, the compiler also defines the C symbol
__CATALINA_XXX - this can be very handy for accessing the target
configuration options from within C programs. So there are two ways to define
symbols:

-C is for 'Catalina’ symbols (i.e. symbols that affect the Spin target)
-D is for 'normal' symbols (i.e. that affect only the C program).

For example

catalina hello world.c -lci -1ltiny -C PC -D printf=tiny printf
This would define the symbol PC in the Spin target files, and the symbols
__CATALINA_PC and printf in the C program.

45.Fixed a problem in the floating point plugins (Float32_A_Plugin.spin and
Float32 B Plugin.spin). There was an error in the _FCmp function - it worked
ok internally, but was not returning the result correctly when called from
outside the cog. This would not have caused a problem unless a program was
manually invoking this request, since prior to Catalina 3.5, all kernels used a
built-in version of _FCmp that worked correctly.

46.Added library libtiny, based on Ted Stefanik's amazing library. To use this
library add -Itiny to your command line (in addition to the standard C library
included by -lc, or -Ici etc). For example:

catalina hello _world.c -1lc -ltiny

Copyright 2011 Ross Higson Page 90 of 113

Catalina C Release History

The tiny library provides smaller versions of the stdio functions printf, scanf,
sprintf and sscanf, which are generally compatible with their stdio
equivalents, but much smaller. For even smaller programs, there is also a
REALLY small version of printf, (called trivial_printf) which can be enabled
by using a command similar to the following:
catalina hello _world.c -lci -ltiny -C
printf=trivial printf
See the header file tinyio.h for more details.

Note that the libtiny library fixes a problem in libc and libci that does not
support sscanf.

47.Added the 4 Port Serial plugin, and a new library to access it. To use this new
plugin, simply add -Iserial4 to the command line. For example:

catalina test_serial4.c -lci -C NO_HMI -lseriald
See the file catalina_serial4.h for a definition of the functions provided to
access the serial ports. To configure the serial ports, edit the Extras.spin file.
A section on serial support has been added to the Catalina Reference
manual.

48.1t is no longer necessary to define the THREADED symbol on the command
line to enable the use of the multithreading kernel. Instead, simply include the
threads library - the multithreaded kernel will be selected automatically. For
example:

catalina test multiple threads.c -lci -lthreads
49.Made the PC keyboard buffer larger (and configurable!). Thanks to Ray
Rodrick for this enhancement.

50. Several command line symbols have been eliminated, since Catalina can infer
what is required by the inclusion of various libraries. Such "inferences" are
implemented in the various target files, and can be modified if required.

The following "inferences" already existed in previous versions:

-ima => agutomatically includes the "Float A" plugin

-imb => automatically includes the "Float A" & "Float B" plugins
-Imci => automatically includes the "SD Card" plugin

-Imcix => automatically includes the "SD Card" plugins

The following new "inferences" have been added:

-lthreads => automatically selects the threaded kernel
-Itiny => automatically renames printf, scanf, sprintf & sscanf
-Iserial4 => automatically includes the "4 port serial" plugin

-lgraphics => automatically includes the "CGI" plugin

This has eliminated the need for the old THREADED and GRAPHICS
symbols.

51.Added mouse driver to the C version of the Parallax graphics demo. Also, the
batch file now only builds one version at a time, as it became too
cumbersome for the batch file to figure out all the possible combinations when

Copyright 2011 Ross Higson Page 91 of 113

Catalina C Release History

building various versions, so it now only builds one and you have to explicitly
tell it the options you want.

52.Added a DISABLE_REBOOT symbol, which prevents a C program from
rebooting automatically should it ever exit the main function. Instead, it just
enters an infinite loop. Use it by defining the symbol on the command line.
For example:

catalina hello world.c -lc -C DISABLE REBOOT
53.The CUSTOM platform in each of the target directories (target, basic, minimal)
is now configured appropriately for a Parallax QuickStart board.

54.Updated the basic target package to include the new 4 port serial driver.
Since the basic target package is intended for deeply embedded applications,
it does not include any HMI plugins (including the normal serial PC HMI
plugin) - but serial communications is quite a common requirement for
embedded applications, and the 4 port serial driver is very appropriate.

55.The PC and PROPTERMINAL HMI options now use the value of SIO_BAUD
defined in the platform definition file (e.g. HYDRA_DEF.inc) instead of being
hardcoded at 115200 baud. All this does is make it simpler to change the
baud rate if required, since it only needs to be changed in one place.

56. The default size for any XMM program is now 16Mb.

Release 3.4:

1. Fixed a bug in setjmp()/longjmp() implementation - these routines were not
saving/restoring the registers, which meant register variables were being
lost.

2. Fixed a bug in the code generator which meant that multiply, divide and mod
operations were not being "spilled" properly in case another such operation
was performed before the result was saved. This occurred most commonly
in parameter lists that contained arithmetic expressions for more than one
such parameter.

3. The Catalina "One-touch" installer for Windows now does not install the
Catalina source code by default - it is now an option. This was done to
improve the install speed on slower Windows machines.

4. Fixed error message detection for Homespun errors - some messages were
not being correctly identified as errors.

5. Fixed an error in building the utilities for the SuperQuad — the script used tried
to build them using the LARGE memory mode, but this gave an error
message about the mode being not supported. Now it builds them with the
SMALL memory model (this makes no difference to boards that support both
SMALL and LARGE).

6. Modified the DracBlade HMI.inc file to allow TV HMI options, since some
DracBlades now support TV output. However, the default is still HIRES _VGA,
so for TV support you must specifically define the TV symbol (or HIRES_TV
or LORES_TV).

Copyright 2011 Ross Higson Page 92 of 113

Catalina C Release History

7. The default size for all XMM programs is now 16M (16777216), so it is no
longer necessary to specify the -M option in most circumstances (except
when also using the -e option, or all .eeprom files will end up 16M in size).

8. Rewrote the LMM Support, XMM Support and EMM Support sections to try
and clarify the different targets and loader options.

9. Fixed the demo build_all scripts to make the program names align with the
code::blocks names for the same programs.

10.Modified the Windows "One touch" installer so that it will prompt before
overwriting any modified versions of "Custom" configuration files — these
are any files with a name like "Custom_**" in the basic, simple or target
folders - this ensures any custom modifications are not accidentally lost just
because an upgrade to a new version of Catalina is installed. However, note

that completely uninstalling Catalina will delete these files.

Release 3.3:

1. Support for FlashPoint XMM boards (SuperQuad and RamPage).
Although they are both XMM boards that must be connected to a suitable
propeller platform, each has been assigned its own platform symbol
(SUPERQUAD and RAMPAGE). Or the necessary configuration details
can be incorporated into the files for another platform (e,g. CUSTOM).
Since they are quite similar, the options for both boards are defined in the
configuration files:

FlashPoint_DEF.inc
FlashPoint CFG.inc
FlashPoint_HMlI.inc
FlashPoint_ XMM.inc.

See FlashPoint README.txt for more details on how these files can be
used.

2. Removed all platform-specific options from the plugins, and added a new
CFG file for each platform (e.g. Hydra_CFG.inc) which contains all plugin
configuration options for the platform. This makes it much easier to
support new platforms without having to edit each plugin file.

3. Included the RTC (CLOCK) functionality in the SD plugin — now, if the SD
plugin is loaded, the CLOCK plugin will not also be loaded — instead, the
CLOCK code embedded in the SD plugin will be used. If the SD plugin is
not loaded, the CLOCK plugin will still be loaded as usual. This saves a
cog in many cases on large complex programs. This is all automatic - no
user intervention is required.

4. Formalized the XMM API to include both Cache and Flash support. This
was required since the quad-bit SPI used by the FlashPoint modules could
not be accommodated in the existing Flash API (which could only cope
with the single bit SPI chips used by the C3 and Morpheus platforms).
Now all platforms use a common XMM API which is divided into three
parts:

the cached API, intended to be used only via the cache
the direct API, intended for inclusion directly in the kernel

Copyright 2011 Ross Higson Page 93 of 113

Catalina C Release History

the flash API, intended to be used when Flash support is required.

Release 3.2:

1. Fixed an error in the definition of FLT_MAX, which led to a compiler warning
about floating point values overflowing.

2. Simplified the multi-cog demos by providing a precompiled version of the
dynamic kernel which is automatically loaded when the new _coginit_C()
library function is used to start a C function in a new cog.

Similarly, simplified the spinc demos by adding a new _coginit_Spin()
function to the library that can be used to start a Spin program in a new cog.

Now there are the following functions for starting a new cog:
in catalina_cog.h:
_coginit : start an arbitrary binary program in a cog
_coginit_C : start a C void function in a dynamic kernel cog
_coginit_Spin : start a Spin program in a spin interpreter cog
in thread_utilities.h:
_thread_cog : start a C main function in a multi-threaded kernel cog
3. Tidied up all the demo programs to us an ANSI compliant main program.

4. Increase the maximum size of the command line in the catalina and catbind
utilities. This is necessary because of the length of some of the Code::Blocks
build commands.

5. Add detection of Homespun "ltem has already been added" error (when a
symbol has been multiply defined) to CodeBlocks.

6. Tidied up the spinc demos and added the -f flag to spinc utility. Also, created
scripts spinc_to_file for use within Code::Blocks pre/post build commands
(since redirection is not supported within Code::Blocks).

7. Fix some errors in the Catalina Code::Blocks compiler plugin - the libcix and
some of the proxy driver options generated invalid Catalina options. Also,
removed the RESERVE_COG option and added a "suppress warnings"
option.

8. Added the build_catalyst script to allow building Catalyst from within
Code::Blocks. If MinGW and MSYS are installed, this will build both Catalyst
and all the demos. If not, the script will build the core of Catalyst, but the
demos will have to be built from within Code::Blocks.

9. Added work spaces and project for building all the Catalina and Catalyst
demo programs from within Code::Blocks.

10.Fixed a race condition in the initialization of the RTC (CLOCK) plugin.

Payload now detects the ports to use automatically even on the HYDRA and
HYBRID platforms when the special mouse port cable must be used.

Copyright 2011 Ross Higson Page 94 of 113

Catalina C Release History

Release 3.1:

1. Fixed a bug in the SMALL memory model on the C3 (same bug as was fixed
in 3.0.3 - the fix was lost in release 3.0.4!).

2. Simplified the "standard" target package. Turned all the plugin selection
include files into SPIN objects to make the logic of the plugin load process
easier to understand. Removed the include files containing the kernel and
loader selection logic, as they hid some of the differences between targets,
which also made the logic harder to understand.

3. Removed the duplication of HMI plugins - now there is only one HMI plugin for
each screen type, and not a separate for omitting the mouse and/or keyboard
drivers.

4. The POD assembly language debugger is now enabled by compiling using
the target "pod" rather than "debug" - this is to avoid confusion between the
blackcat/blackbox and pod debug support files. For example, to use pod to
debug hello_world.c, you would now use a command like:

catalina hello world.c -lci -t pod -D NO_ARGS -D NO_FLOAT
Note that POD still requires the use of PropTerm, with the terminal set to 40
characters by 30 rows. The program to be debugged should be uploaded
using PropTerminal, and should not itself use the serial port.

5. Added a "basic" target package. The basic package supports only one
platform, and no HMI drivers. It is intended for very deeply embedded
applications where HMI drivers are not required, or a user prefers to add their
own HMI drivers.

6. Removed the RESERVE_COG support. This also complicated the logic in
many target files, and the main purpose of this functionality (to prevent a cog
being initialized during the load process so that SDRAM could be used as
XMM RAM) was implemented in the Caching XMM driver instead.

7. Added some notes about MinGW and Windows 7 in the README.Win7 file.
For various reasons, Windows 7 does not socialize well with MinGW.

8. Add ".exe" to the references to catalina and catbind in the various Catalyst
demo program makefiles. This seems to be required to allow MinGW to
execute the programs correctly under Windows 7. This is a known issue, and
is probably a Windows security "feature".

9. The MORPHEUS demo program to test the file system was incorrectly being
built for CPU #2 instead of CPU #1 in the tutorial.

10.Fixed a bug on Linux where the libcix library was not being built correctly.

11. Renamed the custom target directory to simple (and moved custom _demos to
demos\simple) to avoid any confusion between the custom target package
and the CUSTOM target (which is a target within the standard target
package). The two have nothing to do with each other!

12.Moved the RAM test programs to the utilities directory. They can be built using
the command build_ram_test in that directory.

Copyright 2011 Ross Higson Page 95 of 113

Catalina C Release History

Release 3.0.4:

1. Added improved spinc utility, which allows the execution of Spin programs as
well as just PASM programs. For details on the many new spinc options,
execute the command

spinc -h

Release 3.0.3:

1. Completely New Code::Blocks integration specifically for Code::Blocks 10.05.
A new Compiler plugin that supports Catalina has been included, plus a new
Catalina Project Wizard, and wrapper functions to allow Catalina utilities to be
invoked from the Code::Blocks tools menu.

2. Added the "build_utilities" batch file, which interactively guides users through
the options required when building the "utilities" folder.

3. Make catbind use the same algorithm as LCC to determine a directory to use
for temporary files. Like LCC, the default directory can be overridden by
setting the CATALINA_TEMPDIR environment variable. This should make it
possible to use Catalina when logged in as a user without Administrative
rights under Windows 7. However, it is still necessary to disable the
VirtualCopy feature of Windows 7 - see the file README.Win7

4. Fix a problem in catalina_env.bat under Windows 7.

5. Minor changes to some build_all scripts and makefiles. Catalina now assumes
MinGW and MSYS are installed, and will use the versions of programs (e.g.
make, bison, flex) that come with MinGW. Make sure you set your path
variable appropriately when building Catalina - for example, if MinGW and
MSYS are installed in "C:\MinGW" you would need to do the following:
set PATH=C:\MinGW\bin;C:\MinGW\mingw32\bin;C:\MinGW\msys\1.0\bin;$PATH%

6. Fixed a problem with payload failing to load XMM.binary from the bin
directory.

7. Change in terminology - payload now says "download" instead of "upload"

8. Fixed a bug that occurred when using the -Imb option which left the symbol
Float_B undefined.

9. Fixed a bug with the SMALL memory model on FLASH platforms (such as the
C3) that led to programs not having their data segments incorrectly initialized.

10.Blackbox now automatically finds the debug port if none is specified.

Release 3.0.2:

1. Fix a bug in the plugin search algorithm used in the XMM kernel which meant
the search stopped when the plugin type was 8 instead of when it reached
cog number 8! This meant that plugin type 8 (allocated to the DUM plugin)
could never found in XMM programs.

2. Fixed some typos in the definition of the waitpne and waitpeq macros in the
header file catalina_icc.h

Copyright 2011 Ross Higson Page 96 of 113

Catalina C Release History

Release 3.0.1:

1. Fix a bug in the HUB Flash loader (used on the C3 and Morpheus) which
meant the read/write sectors were not being correctly copied from Flash to
SPI RAM. This caused mysterious failures such as the SD card file system
not working correctly.

2. The default behavior when programming SPI FLASH (e.g. on the C3 and the
Morpheus platforms) is now to erase each 4k block just before programming
(instead of initially doing a full chip erase). The previous behavior can be
reinstated by defining the symbol CHIP_ERASE when compiling (e.g. when
compiling the utilities or Catalyst folders). One result of this is that when using
Payload to load a program on the C3, it is no longer necessary to extend the
payload timeout by adding an option like -t 1000 to the command. Another
benefit is that loading programs into SPI FLASH is faster when using both
Payload and the Catalyst loader.

3. Added ERASE_CHECK and WRITE_CHECK options to the caching SPI
driver. These options can help improve reliability when programming the SPI
FLASH (e.g. on the C3 or Morpheus). Note that ERASE_CHECK is only
applied to the whole flash chip erase, not the block erase. Only the
WRITE_CHECK is enabled by default, since it does not take much time (the
erase check, on the other hand, can take around 15 seconds!). To enable the
erase check, define the symbol ERASE_CHECK when compiling (e.g. when
compiling the utilities or Catalyst folders). Doing so may require even longer
timeouts when using Payload (e.g. -t 4000).

4. The library functions _register_plugin and _unregister_plugin now mask
the cog id to 3 bits, to eliminate the chance of overwriting memory beyond the
end of the registry. However, note that this does mean specifying something
like cog 9 will actually register or unregister cog 1!

5. Add a ZERO_RAM option to the RAM test program. Compiling the RAM test
with the symbol ZERO_RAM defined will cause the RAM test to zero all
read/write XMM RAM before performing the test (and it will also disable the
initial display of the XMM RAM). The ability to zero all XMM RAM (which can
be done simply by starting the RAM test but not proceeding to perform any
tests) is useful in diagnosing some program bugs or load problems.

6. Added an option to the RAM tester to display FLASH only on startup (define
the symbol PRINT_FLASH_ONLY), and another to print continuously until a
key is pressed (define the symbol PRINT_CONTINUOUS). This is handy for
dumping the entire contents of Flash (save it by using a PC terminal emulator
and saving the terminal buffer contents) when debugging loader problems.

7. Added C3 as a platform (and also various new options) to the messages
displayed by various build_all batch files.

8. Added a new script to the bin directory (Set_Linux_Permissions) to set the
permissions of all Catalina files in a Linux installation.

Release 3.0:

1. Added functionality to payload to also look in the Catalina binary directory for
files to load into the propeller. Also, upgraded the build scripts in the utilities
directory to copy the binary files generated to the binary directory. The effect

Copyright 2011 Ross Higson Page 97 of 113

Catalina C Release History

of this is that it is no longer necessary to specify the full path name to the
XMM.binary loader (or the other payload utilities such as the mouse port
loaders) or copy them to your current working directory each time you need
them. For example, to upload an XMM program, you can now simply say
(from any directory):

payload XMM program
Just make sure you have previously built the utilities for the correct platform!

2. Added -m (max retries) option to payload. This sets the number of times
operations are retried. The default value is 5.

3. Fixed a bug with setjmp/longjmp. In LMM and XMM small mode these
functions worked on some platforms but not others. In XMM LARGE mode
these functions failed on all platforms.

4. Added a CACHED XMM driver for use with SPI RAM and SPI FLASH. The
caching XMM driver can be used on any platform by defining one of the
following symbols on the command line:

CACHED_1K use a 1k cache
CACHED_2K use a 2k cache
CACHED_4K use a 4k cache
CACHED_8K use a 8k cache
CACHED use a default size (8K) cache

For example:

catalina hello world.c -1lc -D CACHED

Note that the caching XMM driver requires sufficient free hub memory
according to the size of the cache, and also an extra cog. Also, the caching
XMM driver is only generally faster on platforms that use SPI RAM or SPI
FLASH - on other platforms the caching driver may only be slightly faster, or
may even be substantially slower! The caching XMM driver is primarily
intended for platforms such as the C3 or Morpheus CPU 2, which only have
serial SPI RAM or SPI FLASH available for use as XMM RAM.

Note that when a program which uses the caching driver is loaded by
Catalyst, and Catalyst itself has been compiled to use the cache, then the
cache size used for Catalyst MUST BE THE SAME as that used by the
program being run. However, Unless dynamic RAM is in use (which requires
constant refresh to retain it's contents) then it is perfectly ok for Catalyst to to
be compiled to WITHOUT the caching XMM driver but still be used to load
programs which do - it is only when both Catalyst and the program to be
loaded use the cache that IT MUST BE THE SAME SIZE! But if Catalyst has
been compiled to use the cache, then so must all the XMM programs that are
to be loaded.

To summarize, here are the possibilities (assuming static RAM):

Catalyst Uses Cache XMM Applications

Yes MUST use same size cache

No May use a cache of any size, or no cache

Copyright 2011 Ross Higson Page 98 of 113

Catalina C Release History

When dynamic RAM is in use then both Catalyst and all XMM applications
MUST use a cache, and this cache MUST be the same size.

Failure to abide by these rules may result in programs that appear to load
successfully, but fail to run correctly.

5. Added two new layouts intended for use on platforms with SPI FLASH (e.g.
on the C3 and the Morpheus platform) - layout 3 and layout 4. Note that both
of these layouts require the use of the CACHED XMM driver.

Layout 3 - similar to layout 5, but the read-only segments (code and
cnst) are in SPI FLASH, and the read/write segments (init & data) are
in SPI RAM.

Layout 4 - similar to layout 2, but the read-only code segment is in SPI
Flash, and all the data segments (cnst, init & data) are in Hub RAM
(SPI RAM is not used in this mode).

These layouts can be modified slightly by using the -P and -R command line
options:

-R sets the base address of the Read-Only segments. It should be set
to the base address of the SPI Flash.

-P sets the base of the Read/Write segments. It should be set to the
base address of the SPI RAM.

6. Added a new Flash_Boot utility, to boot programs already loaded into SPI
Flash. Note that when compiling the utilities, you should now specify ALL the
plugins you want - only plugins specified will be loaded by the Flash_Boot
utility. For example, if you want the Flash_Boot program to load an SD Card
driver, a CLOCK driver and use the HIRES_vGA HMI but not load a mouse,
you would compile the utilities using a command like:

build _all C3 CACHED SD CLOCK HIRES_ VGA NO_MOUSE
To run a program loaded into SPI Flash on Propeller reset, you can program
the Flash_Boot binary into EEPROM. You can also recompile the
Flash_Boot program with different drivers - this might (for example) enable
you to run the program in SPI Flash with either a TV driver or a VGA driver.

Note that the program in Flash will NOT be aware of whether or not the
caching driver is in use, or of the size of the cache. This means that the same
program can be executed with different cache options.

7. Removed the Catalina_XMM_SD_Loader (& the Generic_SD_Loader).
These were deprecated in previous releases, and have now been completely
replaced by the Catalyst_SMM_SD_Loader (& Catalyst).

8. Tidied up the XMM routines in the Kernel - they were not working exactly as
the documentation indicated - now they do.

9. Added a Flash test to the RAM_Test program. This is currently only enabled
for the CACHED XMM driver. It simply displays the EEPROM, erases it and
displays it again, then writes to it and displays it again. Also tidied up the
programs user interface.

10.All HMI plugins now default to ANSI complaint interpretation of the control
characters BS, HT, VT, CR, LF & FF (BEL is still ignored) on output. If you

Copyright 2011 Ross Higson Page 99 of 113

Catalina C Release History

have a program that depends on the prior (i.e. non-ANSI) behavior, you can
define the symbol NON_ANSI_HMI. This can be done on the command line at
run time. You may also need to define the symbol CR_ON_LF (see below).

The default behavior of all HMI plugins is now to translate a CR on input to an
LF. Previously, this was done in the C library, but this meant it could not be
disabled easily. Now it can be disabled in the HMI plugins themselves at
compile time by defining the symbol NO_CR_TO_LF on the command line.

Finally, some Windows terminal emulators need LF in the output translated to
CRLF - this can now enabled at compile time by defining the symbol
CR_ON_LF on the command line.

For example, to use the othello program with a Windows terminal emulator
that expects to see CRLF as the line terminator (and which cannot be
configured to do this automatically) you can use a command like:

catalina -1lci othello.c -D PC -D CR_ON_LF
11. Disable Catalyst banner output if executing the 'autoexec' command.

12.Register all driver cogs. Previously the main HMI cog was registered, but the
underlying driver cogs for keyboard, mouse and screen, or the proxy client
driver, were not individually registered. Now they are.

13.Added some macros to make accessing the registry easier. See the include
file catalina_plugin.h for details, or the demo program test_plugin_names.c for
an example of their use.

14.Fixed a bug in the initialization of the SD card driver. Now it retries if the first
initialization did not succeed. Affected some platforms but not others -
possibly depending on the type of SC card used.

15.Fixed a bug in Catalyst that meant some commands were not being passed
their arguments correctly.

16.Under DOS, Catalyst will now not build unless "make" is in the path.
Previously, Catalyst itself would build but many of the demo programs would
not (but with little indication of failure).

17.The Generic SIO Loaders now cannot display progress on the screen of the
CPU doing the loading (due to lack of space). Now the progress can only
displayed on the screen of the CPU being loaded - this is enabled by default
when loading programs to Morpheus CPU 2 and TriBladeProp CPU 1. This
can be disabled by removing the -D DISPLAY_LOAD command line option in
the build_all script in the utilities folder. Disabling it enables slightly larger
programs to be loaded, and may also speed up the load time - but there is no
visible indication that the load is progressing.

18.Fixed a bug where the keyboard was not initialized prior to program start.
This could result in one or more spurious characters being received on
startup. This was particularly evident when using the proxy drivers on a
multi-CPU Propeller system (such as the TriBladeProp).

19.Fixed several problems in the tutorial and programs designed to demonstrate
the proxy drivers on both the TriBladeProp and the Morpheus platform. The
proxy driver tutorial programs now work as the stated in the Getting Started
with Catalina document.

Copyright 2011 Ross Higson Page 100 of 113

Catalina C Release History

20.Now accept defining the symbols TINY, SMALL and LARGE on the
command line to specify the memory model. In conjunction with the existing
symbols SDCARD, EEPROM and FLASH, these symbols now allow all the
supported layouts to be specified as an alternative to using the —x option
(which is retained as a shortcut, and also for compatibility purposes).

Release 2.9:

1. Upgraded to Homespun version 0.30 - this means there is no longer an 'input'
subdirectory in the target directory, since files no longer need to be
preprocessed to include the symbol definitions. Also, the new include file
capability means a lot of common code has been factored out and is now
specified in various ".inc' files. Because preprocessing is no longer required,
some of the command line options (e.g. the catbind '-p' option) are no longer
required. The end result is a significantly faster, cleaner and simpler
compilation process.

2. Added a section for to Catalina_Common.spin for the ASC platform - thanks
to Martin Hodge. To use it, specify -D ASC on the command line.

3. Added statistics (segment and file sizes) generation. This prints the size of
each C segment (code, cnst, init, data) as well as the final file size (which will
usually be larger than the sum of all segments as it will also include non-C
code such as plugins). The statistics generation can be disabled by the -k
command line option.

4. Added a new library variant - libcix - which can be used by specifying -Icix on
the command line. This is an integer-only version of the extended library
(libcx) - i.e. it includes fill file system support, but excludes any floating point
support. This can reduce the size of programs that use the extended library by
around 8kb.

5. Added NO_FLOAT as a synonym for the existing command line symbol
NO_FP. When defined on the command line, NO_FLOAT and NO_FP both do
the same - i.e. they prevent the loading of any floating point plugins. For
example, when the XMM Kkernel is used, it normally loads the floating point
plugin Float32_A since the XMM kernel includes no built-in floating point
support (due to lack of space). However, if your program does not use any
floating point, this is unnecessary and wastes a cog. To prevent this, you
would use a command such as:

catalina hello_world.c -x5 -lci -D NO_FLOAT
6. Refactored code from the various targets into common include files. Now
there is only one copy of many of the complex sections of code, which
simplifies maintenance. For example, all the XMM access code now exists
only in the file XMM.inc, and is included by other files as needed. The
following include files contain code shared between multiple target files or
utilities:

Constants.inc code to set constants for the Proxy and HMI plugins

FP.inc code to include the appropriate Floating Point plugins.
HMl.inc code to include the appropriate HMI plugin.
Kernel.inc code to include the appropriate kernel.

Copyright 2011 Ross Higson Page 101 of 113

Catalina C Release History

Loader.inc code to include the appropriate loader.
Other.inc Code to include the appropriate other plugins.
XMM.inc PASM code for XMM access (all platforms)

7. Added auto-execute processing to Catalyst. To auto-execute a command on
boot, a file with the name specified by AUTOFILE (default is
"AUTOEXEC.TXT") must be created in the root directory. If the file exists, it is
read on startup, and the command it contains (up to the first zero terminator,
or end of line character, or EOF) is executed. This command can be any valid
Catalyst command, including the invocation of an external LMM, SMM or
XMM program, and can include parameters to be passed to the program.

8. Added execution from SPI SRAM and FLASH on the Morpheus (CPU #1) and
also on the C3. Added support for the —x3 layout and the —R option to allow
read/write segments to be loaded into SPI RAM and read only segments into
SPI Flash.

Release 2.8:

1. Added the libthreads Multithreading library. See the Catalina Reference
Manual, or the descriptions of the threading functions in the header file
catalina_threads.h for details.

2. Added the libgraphics Graphics library. See the Catalina Reference Manual
or the descriptions of the threading functions in the header file
catalina_graphics.h for details.

3. Added a NO_ARGS command line option. NO_ARGS prevents the inclusion
of the CogStore object, and instead includes a simpler CogStopper object
that will terminate cog 7 if CogStore is running in it. This is done to save
space (and cogs) for programs that do not accept any arguments - even if the
CogStore is loaded by the Catalyst program loader.

4. Better granularity of malloc/realloc/calloc/free. For example, now the code for
realloc() and calloc() are not included unless specifically used by the program
(previously they were always included if malloc() was included).

5. Better documentation about installing Code::Blocks if Catalina is not installed
in the default location.

6. Added a new SMM memory/load model. This is actually a new two-phase
loader similar to the EMM memory/load model, but intended for use on
platforms that have an SD card. It allows C programs to include up to 31kb of
application code, by first loading the drivers, then the application code, and
lastly the kernel. The first 32kb of the file is the program that loads the drivers
(only 31kb can be used), the second 32kb is the application program (again,
only 31kb can be used) and the last 4kb - starting at the64kb boundary - must
be the kernel. Thus all SMM programs are exactly 66kb (67,584 bytes) in size.
It is used by defining the symbol SDCARD on the command line.

7. Catalyst now recognizes .Imm, .smm and .xmm as suffixes for Catalina
program files (in addition to the normal .bin). The most important one is the
".smm" suffix, since Catalina must know that these functions do not get loaded
into XMM RAM, even though they are larger than 32kb.

Copyright 2011 Ross Higson Page 102 of 113

Catalina C Release History

8. Minor change to the library - all I/O now uses the functions low-level function
catalina_getc() and catalina_putc() for character 1/0 to stdin, stdout and
stderr. This means that these routines can easily be replaced with customized
routines if required. Previously, these routines were only used in the standard
C library (libc) and the integer library (libci) but were not used in the extended
library (libcx).

9. Added catalina fs.h which describes low level "managed" and "unmanaged"
file access routines. The "managed" routines are the traditional Unix low level
routines, such as _open() and _close(). The "unmanaged" routines are similar,
but have the advantage that they do not use malloc() or free() internally -
instead, the caller passes these functions a block of memory for them to use.
This makes the "unmanaged" routines smaller and also more suitable for use
in an embedded environment. See catalina_fs.h for more details.

10.Fixed a bug in the code generator, when passing a constant to a function, and
the constant was < 0 or > 512.

11. The _locate_registry() function was dependent on _registry() but this was not
specified in the function - this means the symbol C_ registry would be
reported as undefined (unless the _registry() function was being imported by
some other function).

12.Added the RESERVE_COG option to all loaders and targets. This option

allows a cog to be loaded at the start of the load process (e.g. before any
XMM RAM is accessed) and this cog will not be disturbed during the
remainder of the load process. This is intended to allow things such as a
dynamic RAM refresh cog to be loaded and left running throughout the
process of loading and starting a C program. The example program provided
(Catalina_Reserved_Cog.spin) simply toggles an 1/O pin as proof that it is
started and left running. The reserved cog is currently set to be a single cog
(cog 6). If more than one reserved cog is required, this can be set in
Catalina_Common_Input.spin by reducing the value of LASTCOG. Note
that it is the responsibility of the user (or the target) to ensure that only cogs 1
to 5 are loaded (e.g. by plugins) during the load process if the
RESERVE_COG option is specified. Also note that (depending on what the
reserved cog actually does) the RESERVE_COG may need to be specified on
ALL loaders and also on the various Catalina utility programs - e.g. for the
HYBRID:

cd catalyst

build all HYBRID RESERVE COG

cd ..\utilities

build all HYBRID RESERVE COG

cd ..\ram_test

build all HYBRID RESERVE COG

cd ..\demos

build all HYBRID RESERVE_COG
. etec ...

See the file Catalina_Reserved_Cog.spin for more details.

13.Fixed a few problems with the batch files, and also a problem with the serial
loader on multi-prop platforms (TRIBLADEPROP, MORPHEUS) — support for
serial load between cogs was accidentally disabled in the last release.

Copyright 2011 Ross Higson Page 103 of 113

Catalina C Release History

Release 2.7:

1. Some changes to the code generator, mainly to fix a problem caused
when LCC'’s built-in “simplifier” removes common sub-expressions without
checking whether they are re-used later (!).

2. An update to the propeller_icc.h include file to fix an error in the msleep
macro, and also to make it unnecessary to edit the file to switch between
the Catalina compiler and the ICC compiler (this is now detected
automatically).

3. Fixed a bug with the PropTerminal HMI failing to detect the PC mouse -
this driver should always assume the mouse is present.

4. Fixed a bug with the LCC preprocessor (cpp). If a parameter passed to a
#define macro was in fact the name of another macro, then the
preprocessor could enter an infinite loop, eventually crashing when it ran
out of memory.

5. Default is now to use XTAL2 on Hybrid.

6. Fixed a problem with the LCC -l command line option (affected Linux
only).

Release 2.6:

1. Calls to floating point functions were left in the t_printf function in the libci
variant of the standard library - this led to programs that would not link
because some of the routines referenced t_printf were not present in the
libci variant of the library.

2. Fixed some errors in the targets if various HMI combinations were used - e.g.
if the LORES_TV, NO_MOUSE and NO_KEYBOARD options were specified
the targets incorrectly threw an error indicating that the HMI options were not
supported. Similarly for HIRES_VGA, NO_MOUSE and NO_KEYBOARD.

3. Fixed some errors in _lockset() and _lockclr() which meant they were not
correctly returning the previous state of the lock. Also, _locknew() now
returns -1 on failure (for consistency with other cog functions)

4. Added the CUSTOM platform. Specifying CUSTOM will always return an error
until it is configured by editing Catalina_Common_Input.spin. By default, the
CUSTOM target is presumed to support all HMI options and an SD card, but
only one CPU and no XMM. All the build scripts and utility programs also
understand the CUSTOM target.

5. Fixed an error in the ALTERNATE LMM kernel. This kernel was missing the
Entry_Addr method required by the EMM targets (i.e. if the -D ALTERNATE
and -x1 command line options are specified).

6. Added the -O command line option to catalina and catbind to invoke the new
Catalina Code Optimizer (However, note that the Catalina Code Optimizer is
not included with the free version of Catalina).

7. Fixed an error with variadic functions declared using the pre-ANSI method (as
specified in the varargs.h include file) instead of the ANSI method (as
specified in the stdargs.h include file).

Copyright 2011 Ross Higson Page 104 of 113

Catalina C Release History

8. Some of the test programs did not pause before exiting. This was ok prior to
release 2.5 since Catalina programs went into an infinite loop on exit from the
main loop, but since release 2.5 the Propeller resets on exit from the main
loop - this meant the output of some of the test programs was lost before it
could be read.

9. Implemented functions to access the registry from within C programs. The
following functions are now defined in catalina_plugin.h:

e _register() : return address of registry
e _register_plugin(cog, type) : register a cog as a plugin

_unregister_plugin(cog) : unregister a cog as a plugin

_locate_plugin(type) : find the cog of a plugin type (-1 if not found)
e _request_staus(cog) : return the status of the last plugin request

10.Fixed an error in the _clockinit() function, which was not saving the new
clock mode in byte 4 of hub RAM.

11.The cog functions _dira(), _dirb(), _outa(), _outb() now each return the
original value of the respective register, this allows them to be used to retrieve
the current value without changing it (by specifying zero for the mask and new
value parameters).

12.Added a new dynamic LMM kernel, which can be loaded into another cog to
execute C functions concurrently with the main kernel. Examples of using the
new kernel are provided in the demos\multicog directory.

13.Added the spinc utility program, and demos on how to use it (in directory
demos\spinc).

14.Significant updates to the Catalina Reference Manual, including details on all
the HMI, cog and plugin support library functions.

15.Added the ability to "read" from &function or &variable in blackbox (which
reads from the address of the function or variable specified). Also, a count has
been added, to simplify reading multiple consecutive locations.

16.Fixed an undefined symbol (ccheck) that occurred in various targets when
using proxy drivers for the screen but not the keyboard.

17.Example xmm_payload scripts included to simplify loading XMM programs
when using the payload loader.

18.Updated Catalina Reference Manual note about code sizes, showing that a
hello_world type program which initially compiles to 23kb can be modified
slightly so that it requires under 1kb of Hub RAM.

Release 2.5:

1. Catalyst has been added. It is a more sophisticated version of the original
Generic XMM SD Loader (which still exists). See the Catalyst documentation
for details.

Copyright 2011 Ross Higson Page 105 of 113

Catalina C Release History

2. The Generic XMM SD Loader now implements a simple Catalyst-compatible
command interpreter, with a couple of simple built-in commands - e.g. DIR.
Also, the default extension is assumed to be ".BIN" if none is entered.

3. Both Catalyst and the Generic XMM SD Loader can now pass arguments to
both Catalina C programs, and SPIN programs that use the
Catalyst_ Arguments.spin module provided.

4. When a C program ether calls exit() or returns from the main() function, it now
reboots the Propeller. Any exit value specified is currently lost.

5. Fixed a bug in the setting up of the initial frame in main() which would have
occurred if -g3 was specified.

6. Fixed a bug in the SIO loader that may have affected programs loaded with a
different clock speed to the default clock speed for the platform.

7. Fixed a bug in the file system support, that meant opening an existing file for
write did not truncate the file first - so if the new version of the file was smaller
than the old one, junk was be left at the end of the file. This was evident when
using xvi and deleting a line of text in a file.

8. Fixed some bugs in BlackBox that led to parse failures when loading a dbg
file.

9. Increased the size of the BlackBox parse stack - required to parse very large
dbg files (e.g. the one produced when debugging xvi!).

10.Fixed a bug in BlackBox when reading strings from XMM RAM.

11.Fixed a bug in BlackBox when printing the call stack when one .c file
‘#includes' another .c file

12.Tidied up the selection of CPU and HMI options - now Catalina correctly
detects all invalid combinations (e.g. specifying TV on the DRACBLADE, or
CPU_3 on MORPHEUS, or VGA on the TRIBLADEPROP CPU_3).

13.Added RAMBLADE support. Currently, the Catalina_Common_Input.SPIN file
assumes a 6.25MHz crystal on the RAMBLADE, for a frequency of 100MHz.
This appears to be the maximum frequency at which the RAMBLADE can
reliably use both the SD card and the XMM RAM. If your RAMBLADE can be
overclocked to a higher frequency, you can change the clock definitions in this
file.

14.Inclusion of the C99 standard include files stdint.h and stdtype.h, and the
supporting library functions. These include files define types such as int8 t
and uint32_t that will be familiar to many C programmers.

15.Payload now supports '-e' to load a program into EEPROM. Note that -e can
only be used to load SPIN or LMM programs into the first 32kb of the attached
EEPROM - it does not currently support loading EMM programs into larger
EEPROMs - this must still be done using external tools, such as the Hydra
Asset Manager.

16.Payload now prints an error message if loading a program, programming the
EEPROM, or verifying the EEPROM fails.

17.Tidied up all the command scripts (typically called 'build_all') to work more
consistently - e.g they all now warn if the setting of CATALINA_DEFINE would

Copyright 2011 Ross Higson Page 106 of 113

Catalina C Release History

conflict with the parameters specified on the command line, and will also warn
if they need to know the location of the Catalina installation but cannot find it.

18.The Super Start Trek demo has now moved to the Catalyst folder, along with
the JZIP, Dumbo Basic, XVI and Pascal P5 compiler (which has replaced the
previous P4 compiler). These programs are no longer regarded as
‘curiosities’'.

19.The Catalina binder program has been renamed from 'bind' to 'catbind'. The
old name ('bind") conflicted with another program on Linux, and on Windows
using the word 'bind' in a Makefile also causes make to fail mysteriously.

20.Fixed a problem with the 'modf' function, which led (amongst other things) to
slightly inaccurate floating point values (when printed with printf).

21.Fixed a few minor problems in BlackBox - now ‘'array' and 'func' are valid
variable names.

22.Fixed all relative references in batch files and scripts. These made the scripts
fail if they were copied to another folder. Now all the scripts that need to refer
to absolute path names check the value of the LCCDIR environment variable.
If that variable is not set then they use the fixed default paths ("C:\Program
Files\Catalina" or "/usr/local/lib/catalina").

23.The Generic SD Card Loader now uses FATEngine instead of FSRW. There
should be no difference from a user perspective. This was done because
Catalyst required the more sophisticated file processing available with
FATEngine.

24.Some minor speed improvements to all LMM and XMM targets, plus inclusion
of Pullmoll's improved signed integer division code.

25.Move debug vectors out of special register space and into normal cog RAM.

Release 2.4:

1. Fixed a problem with include paths under Windows that contained a colon
(the path would be split at the colon unless a ';' was not included).

2. Fixed Code::Blocks configuration for Linux - a separate set of Code::Blocks
configuration data is now provided for Linux, along with a separate example
workspace.

3. Fixed a bug in the binder that would cause it to fail to open the output file if the
filename was quoted (e.g. because it contained a space).

4. Added debug options (-g and -g3) for generating debugging data. The
compiler will generate a '.debug' file for each file compiled, and then use the
new catdbgfilegen program to produce a consolidated .dbg file. Also, a listing
file is now always produced when the debug option is specified. The
difference between -g and -g3 is that -g3 disables some compiler
optimizations to assist debugging - for example, it forces all functions to have
a stack frame even if they don't normally need one - this allows program
function calls to be traced more easily, but can also make the program slightly
larger and slower to execute..

5. Support for the BlackCat and BlackBox debuggers has been added - this is
enabled by using the -g or —.g3 command line options (described above). Note

Copyright 2011 Ross Higson Page 107 of 113

Catalina C Release History

that when using Code::Blocks, the -g (or —g3) option also has to be specified
on the list of linker options - it is not sufficient to merely set the compiler
option. This is done automatically on Debug targets if you use the Catalina
template provided.

6. Fixed a bug in the Generic SD and SIO Loaders - now initializes Hub RAM
before starting programs, and also checks for clock speed changes.

7. Support has been added for the DracBlade.
8. Fixed a bug in the HiRes_VGA_No_Mouse driver.

9. The default debug demo is now a version of 'hello_world" (since Othello
cannot be built on platforms that use VGA - it requires too much memory).

10.A symbol is now defined to indicate that the SMALL memory mode is in use.
The symbol SMALL can be used in the SPIN initialization code, and the C
symbol _ CATALINA_SMALL can be used within C programs (this
complements the corresponding symbols LARGE and _ CATALINA_LARGE
that are defined when the LARGE memory model is in use - if neither of thise
symbols is defined then the TINY memory model is in use).

11. Fixed up the 'build_all' script in the demo directory to either accept command
line parameters specifying the build options, or use the current value in the
CATALINA_DEFINE variable (or both, if only one parameter is specified and it
is identical with CATALINA_DEFINE).

12.Fixed some of the build scripts to accept multiple parameters, such as the ram
test program - this allows building for TRIBLADEPROP CPU_1, or to include
-g on compile of various demo programs. Also modified the script in the demo
directory to allow the use of either command line parameters or the
CATALINA_DEFINE environment variable - now the script only complains if
both are set but are not identical.

13.Fixed a bug in the XMM support for the TRIBLADEPROP CPU_1 which could
lead to corrupted writes to XMM RAM.

14.Implemented clockmode(), clockfreq(), and clockinit() functions for managing
the propeller clock - they are described in "catalina_cog.h".

15.Added Catalina Payload. This program can be used to load programs from
the PC directly into a Prop - including SPIN/PASM, LMM or XMM programs.
On platforms that use the HX512, it supports using another serial port (e.g.
the mouse port) to load XMM programs, since the normal serial port on pins
30/31 cannot be used once the XMM card is initialized.

16.Fixed various problems preventing Catalina being used by multiple users, or
by non-root or non-Administrator users. The reason for this was that Catalina
was not cleaning up the 'target' directory after each compile, which meant the
next compile (by another user) would fail. Now, Catalina correctly cleans up
after itself. If for some reason it does not (e.g. the compiler crashes) there is a
'catalina_clean' script provided which can be used to clean out all the
intermediate and generated files from the target directory - this script must be
run as root or Administrator. Also, to enable multiple users, the 'target'
directory must be writable by all users. Problems with this usually result in
error messages such as 'cannot open output file' - if you get these, run the

Copyright 2011 Ross Higson Page 108 of 113

Catalina C Release History

clean script. Note that it is still NOT possible for two compilations to run
concurrently - if two different users try it, one will get an error message.
However, no error message will be issued if the same user performs two
parallel compilations - but the results will probably be incorrect. This means
Catalina is not currently suitable for use with 'make' type programs that
perform parallel compilations.

17.Fixed a problem with Catalina being unable to create temporary files under
Windows 7 or Vista when used by a user other than an Administrator.

18.Catalina now sends error messages to ‘stderr’ rather than ‘stdout’ — this can
assist in using tool that automatically process Catalina and LCC output, since
stdout and stderr can be captured separately.

19.Fixed a problem with the Linux makefile for making library libci.

20.The linux sources and binaries now include srecord version 1.55, while the
Windows sources and binaries include srecord version 1.47. This is because
srecord version 1.47 is the only version that has a pre-built version for
Windows, but this version does not compile with some recent Linux distros.
There should be no differences in most cases.

Release 2.3:

21.Fixed a problem with the names of initializers for variables with file scope -
previously Catalina used temporary file names to try and make sure names
did not collide between files - but on Windows the names of temporary files
get reused often enough to cause problems when compiling programs with
more than about 20 files. This could lead to Catalina using the same name in
multiple files, causing the link to fail with the same symbol defined multiple
times. Now Catalina also adds the compile time to the names of the variables.

22.Fixed a bug in the _coginit() function when using the LARGE memory model.

23.Fixed a problem with temporary file names - the names generated were too
long for file systems that can only accept DOS 8.3 filenames.

24 .Fixed a bug in the Proxy SD driver that meant programs that tried to access
the SD card before the proxy had started could fail - now the proxy drivers
wait until the proxy server indicates it has completed initialization before
proceeding.

25.Included a new library option - libci. This library is used by specifying '-Ici' on
the command line instead of '-Ic'. This library omits code for input and output
of floating point numbers - this can save up to 8Kb even on a simple program
like 'hello_world.c'. Note that this only affects the printf and scanf functions -
floating point can still be used within the program.

26.Modified the programs 'Icc', 'bind' and 'catalina’ to allow for spaces in file and
path names under Windows. Now the only time short path names must be
used is when using gnu make to build Icc (this is due to a known limitation of
GNU make, which can't cope with spaces in filenames used in 'make' rules).

27.Include file processing was not working as described in the documentation for
multiple include multiple paths - now fixed.

Copyright 2011 Ross Higson Page 109 of 113

Catalina C Release History

28.Updates to the floating point plugins to include recent fixes by Cam
Thompson to the exp() and pow() functions.

29.Catalina now has Code::Blocks support, which provides a graphical user
environment for editing and compiling Catalina C programs. See the file
README.Codeblocks in the codeblocks subdirectory for more details.

Release 2.2:

1. Added Morpheus support. XMM is supported on CPU #2. The Mem+ board is
also supported, but Morpheus and the Mem+ have to be configured to provide
a contiguous block of XMM RAM for Catalina to use.

2. Added support for a HiRes VGA display on Morpheus CPU #2. This is
identical to the HiRes VGA display on other platforms except that on
Morpheus it supports 256 colours (only 64 on other platforms). Also, note that
this driver uses 3 cogs on Morpheus, whereas it requires only 2 cogs on other
platforms - this may affect some programs that need to use other plugins as
well.

3. Added error messages if you try to specify incompatible HMI options. For
example, on Morpheus, you cannot use the TV HMI plugins, and Catalina will
now generate an error messages if you try to compile programs that try to do
so. Note that this is not guaranteed to detect all incompatible options.

4. Implemented the fseek options SEEK_CUR and SEEK_END.

5. Fixed a bug that caused Catalina to crash if a command line option that
required a value was not followed by one (e.g. -D at the end of the line).

6. The XMM support code in all files that need it is now identical — the particular
XMM functions required are now specified using #defines instead of
commenting out parts of the code.

7. Added an XMM memory tester - see the 'ram_test' subdirectory. Useful for
testing ports to new XMM hardware - this is a normal SPIN/PASM program
which tests out XMM RAM - if this program runs ok, chances are good that
Catalina XMM support will work fine.

8. Catalina can now initialize and run all 8 cogs on startup. Previous versions
could only initialize and run 7 cogs on startup - the 8th cog could only be used
by starting it manually from within the C program.

9. Individual CPUs are now called "CPU_1", "CPU_2", "CPU_3" (etc) on all
multi-CPU systems. Previously on the TriBladeProp they were called
‘BLADE_1", "BLADE_2" etc, but this makes less sense on other platforms so
Catalina now uses a consistent terminology across all multi-CPU systems.
The CPU should now be specified on all compiles in multi-CPU systems - this
will help reduce confusion, and also allow Catalina to detect and report
incompatible options.

10. Added proxy drivers for all HMI devices (keyboard, mouse and screen) as well
as the SD Card in multi-CPU systems. This allows programs running on one
CPU to use the HMI devices or SD card attached to another CPU. A proxy
server program must be run on the CPU with the physical devices connected,
and proxy drivers must be used on the client CPU. The use of these proxy
drivers is documented in the Catalina Reference Manual.

Copyright 2011 Ross Higson Page 110 of 113

Catalina C Release History

11. Some of the TriBladeProp documentation (e.g. the README.TriBladeProp file
in the target directory) was out of date and has been rewritten.

12.Fixed a problem in the keyboard support that could cause a program to read
incorrect data from the keyboard, or crash.

Release 2.1:
1. Fixed a bug with C structures not being initialized or copied correctly.

2. Tidied up the build scripts to work correctly under Windows using only MinGW
and MSYS, and updated various build instructions and notes.

3. Minor documentation corrections.

4. Added a note about Catalina symbols vs C symbols.

Release 2.0:

5. The Catalina Binder is now called bind, to make way for using catalina as the
name of a new compiler front-end. This new front-end simplifies the entry of
the many compiler and binder options, and also supports using environment
variables instead of having to specify everything on the command line for
each compile.

6. New standard XMM API to simplify adding XMM support for new platforms.
The new API also defines several new primitives required to support the
"Large" addressing mode. The Large addressing mode uses XMM RAM for all
code, data and heap and only uses the Hub RAM for stack space (and local
variables). The combined code, data and heap space can now be up to 16Mb
(provided the platforms XMM hardware supports it).

7. A new PropTerminal HMI plugin and target is provided. This allows the use of
the PropTerminal terminal emulator on a PC to provide full screen, keyboard
and mouse support for Propeller platforms with no built-in HMI devices. A new
demo program (test_propterm.c) demonstrates the use of the plugin. Note
that due to the sharing of hardware pins, on the Hybrid and the Hydra the
PropTerminal HMI plugin cannot be used at the same time as the HX512
SRAM card - this means it can essentially only be used by LMM programs.

8. All Catalina binaries now live in a 'bin' directory - this tidies up the directory
structure.

9. Catalina utilities (such as the Generic SD Loader) and various other files now
live in the 'utilities' directory.

10.Fixed some minor issues with Icc options not working correctly, including
setting the LCCDIR.

11. Specifying the program memory sizes now accepts abbreviations using 'k' or
'm' (for kilobytes and megabytes) - e.g. 128k or 2m.

12.The default targets (Imm_default.spin, emm_default.spin, xmm_default.spin)
now accept configuration via symbols defined on the command line (or in
environment variables). These symbols allow most of the dedicated targets of
the previous releases to be replaced with just the default targets plus some
command line options. For example:

catalina test.c -D HIRES TV -D NO_MOUSE

Copyright 2011 Ross Higson Page 111 of 113

Catalina C Release History

instead of:

lcc test.c -thires_tv_no_mouse
Also, new options not previously supported have been added - e.g:

catalina test.c -D NTSC -D EEPROM
Dedicated targets can still be created, but the only special dedicated target
now provided is the 'debug' target. The debug target now also accepts the
same symbol definitions as the other targets, allowing many more target
configurations to be debugged - e.g:

catalina test.c -tdebug -D HIRES TV -D NTSC -D NO_FP
13.All the targets now default to HiRes TV output, since a TV output seems to be
the most commmonly implemented display option for propeller platforms. For
a VGA display (if the platform supports it), one of the VGA symbols can be
defined (i.e. VGA, HIRES_VGA or LORES_VGA) - e.g:
catalina test.c -D HIRES VGA
14.Fully integrated support for all target platforms. Now instead of having a
different target directory for each platform, all the targets currently supported
now use the same target directory, with symbols used to select the specific
target. Supported targets that can be selected using this method are:

HYDRA (XMM supported using HX512)

HYBRID (XMM supported using HX512)

TRIBLADEPROP (XMM supported on both Blade #1 and Blade #2)
DEMO (note that this is untested - but it should work!)

It is still possible to create new separate target directories for other hardware
configurations. However, many new targets will be able to be supported
merely by editing the existing target files and adding new conditionally
compiled code and/or appropriate pin definitions.

15.Fixed a problem with the debug target not working on the TriBladeProp.

16.Support for using bstc or the Parallax Propeller Tool as a SPIN compiler for
Catalina programs has been removed. Homespun is now the only supported
SPIN compiler.

17.The 'build" scripts or batch files in each source directory are now uniformly
called 'build_all.bat' (windows) or 'build_all' (linux).

18.Fixed a problem with converting int to float and float to int generating incorrect
code in some circumstances.

19.Fixed a problem with multiply and divide generating incorrect code in some
circumstances.

20.Fixed a problem with the RTC plugin not working on the TriBladeProp.

21.Changes to the image format - now the memory segment layout and segment
addresses are at the beginning of the image, not the end - this makes loading
a little simpler.

22.A new demo program is provided for illustrating the "Large" addressing mode
- this is "Super Star Trek", in the sst subdirectory of the normal demo
directory.

Copyright 2011 Ross Higson Page 112 of 113

Catalina C Release History

23.The length of C symbols supported before mangling is applied is now 65
characters - this means Catalina now conforms to ANSI requirements.

24.The LoRes VGA, Lores TV, and Hires TV HMI plugins now all have a visible
cursor (previously only the HiRest VGA plugin had visible cursor support). To
make room for this in the HMI plugin cog, the t_bin and t_hex routines have
been replaced with C library equivalents (this makes them slightly larger and
slower, but most users should notice no difference). The PC and PropTerminal
HMI plugins still lack a visible cursor, since cursor support has to be
implemented on the local screen to work efficiently.

25.Fixed t_color HMI call which was not working correctly.

26.t_geometry now returns cols*256 + rows, to make it consistent with the other
HMI Support functions.

Copyright 2011 Ross Higson Page 113 of 113

