

The P2 Retromachine Basic

Version 0.49 – beta 1

Introduction

The P2 Retromachine Basic is a Basic interpreter for a Propeller 2 platform with an external RAM. Currently

tested/developed version work on P2-EC32 board.

The P2-EC32 board with the Retromachine Basic installed is an independent computer that can be programmed and used

without any external PC. A retro style Basic interpreter allows to write a powerful program in a very short code, in a very

short time.

This interpreter was inspired mostly by 8-bit Atari Basic and Atari Softsynth. However the look and feel of the interpreter

can be selected from 5 predefined modes: 8-bit Atari, PC with amber/green/white monitor and Atari ST mono. Selecting

the mode changes default colors, font, and sound of the keyboard click. These parameters however can be set individually

at any time using interpreter’s commands.

Version 0.49 is a first beta. Most important commands, functions and language elements are now implemented and the

interpreter can be used for writing useful programs or games. However there are still a lot of bugs to detect and remove,

and a lot of new features can be added in next versions.

Preparing the hardware

The interpreter needs a P2-EC32 board with a breakout board and accessories: a digital video board, an AV board, and a

serial host board.

Get the interpreter from the repository https://github.com/pik33/P2-Retromachine-Basic or from the Parallax forum topic:

https://forums.parallax.com/discussion/175426/a-retromachine-basic-interpreter-0-32-prepared-to-play#latest

Connect the DV board (with a HDMI socket) to the pin 0 bank, the AV board (with VGA and audio outputs) to the pin 8

bank, and the serial host board (with full size USB Type A sockets) to the pin 16 bank. If you have another configuration

of acessories/outputs, you have to recompile the interpreter from the source, changing pin definitions in their drivers. Use

the latest FlexProp to compile.

Connect the monitor to the P2 system using the HDMI cable. The system generates 1024x600 picture @ 50 Hz refresh rate.

Connect the audio output to the amplifier, computer speakers or headphones (warning: may be too loud if headphones have

no volume control in them). Connect the hub to the upper USB port on the accessory board. Connect a keyboard, a mouse

and a gamepad or a joystick to the hub. Up to 4 joysticks/gamepads can be connected.

The interpreter itself, in its current version, needs one pin bank (8 pins) for HDMI, 2 pins for USB and 2 pins for audio

output. 28 pins are still avalilable for control purposes. Future versions, however, can use more pins for audio input, MIDI

input/output and a real time clock.

Flash the compiled interpreter binary to the P2-EC32 flash memory using Flexprop.

Prepare the SD card. It has to be fat32 formatted: if not in FAT32 format, format it as FAT32. Unzip and copy ‘bas’, ‘bin’

and ‘media’ directories from the interpreter’s zip archive.

‘bas’ directory is a working directory for loading and saving Basic programs. The archive contains several examples of

simple programs that use several features of the interpreter

‘bin’ directory is a default place for binary files that you can compile using Flexprop, Propeller Tool or another available

compilers. Instead of flashing or directly uploading them using a serial connection to the PC, you can place compiled

binaries on the SD card and run them from inside the interpreter using “BRUN” commands

https://github.com/pik33/P2-Retromachine-Basic
https://forums.parallax.com/discussion/175426/a-retromachine-basic-interpreter-0-32-prepared-to-play#latest

‘media’ directory contains several audio samples and audio envelope definitions for the audio subsystem. They are based

on Atari Softsynth and copied from PC Softsynth, a program that interprets Atari Softsynth tunes on a PC.

Using the interpreter

The interpreter starts in an interactive mode. After power on or reset it displays a header with the version number, available

free space of RAM and the “Ready” prompt.

You can enter commands using a keyboard. They are executed immediately after you press Enter.

The Retromachine Basic has a full screen editing capability. You can move the cursor using arrows, ‘Home’, ‘End’, ‘PgUp’

and ‘PgDn’. The arrows move the cursor in the direction of the arrow. ‘PgUp’ moves the cursor to the first line and doesn't

change its horizontal position. ‘PgDn’ moves the cursor to the last line. ‘Home’ moves the cursor to the editing start, that is

set as 2 characters from the right; ‘End’ moves the cursor to the first space after the line.

‘Insert’ toggles the editing mode between inserting (narrow cursor) and overwriting (big cursor)

After pressing Enter, the interpreter tries to interpret the line, on which there is a cursor. In the overwriting mode it also

adds an empty line under the current line.

That allows to list a fragment of code and edit it directly on this listing without a need of rewriting a full line. The immediate

lines can be also edited this way and entered again.

To switch to the programming mode, write a line starting from an unsigned integer number. The line will then be added to

a program, and no "ready" prompt will be displayed. You can then write another line of a program. All lines have to be

started with a number and they are ordered using these line numbers.

You can use more commands in one program line, separated by a colon (:). The line can not exceed 125 characters and has

to fit in the one line of the screen.

After the entering the new line it is interpreted, precompiled and, if there were no errors detected, placed in the memory. If

there were errors, the line will not be saved.

Writing a line without a number exits the programming mode. The line written will be executed and a "Ready" prompt will

be displayed. To leave the programming mode without executing anything, after entering the last line of the code press

Enter again.

The program can be listed using 'list' and saved on an SD card with 'save "filename"'. File name can be typed without ""

string delimiters. The standard working directory is /sd/bas. If no argument is given to 'save', it will save the program as a

last loaded file name, or 'noname.bas' if no file was loaded.

To list a fragment of a program, list startnum, endnum can be used.

To run the program, use 'run' command in the immediate mode.

If the program doesn't end itself, ctr-c stops it. If it executes a long wait instruction, the keyboard state is sampled in one

second interval, so you have to keep pressing the ctrl-c for about one second to make the program stop.

To delete the program from memory and start a new one, use 'new'.

Any compiled P2 binary file saved on an SD card can be executed from within the interpreter using 'brun'. That allows to

have a collection of P2 binary programs on the SD card and call them when needed. The default directory for binary files

is /sd/bin

Comments

To make a comment use rem or '

10 rem this is a comment

30 ' this is also a comment

40 print x : rem the comment can be also here : print y

Memory access and memory map

To directly access the memory, use ‘poke’, ‘dpoke’, ‘lpoke’, ‘peek’, ‘dpeek’ and ‘lpeek’ commands/functions. (see

command list below). These commands use unified memory map:

• $0000_0000 - $0007_FFFF – HUB RAM

• $0008_0000 - $020F_FFFF – PSRAM

poke/dpoke/lpoke address, value places the value at the address. ‘poke’ is 8 bit, dpoke is 16 bit and lpoke is 32bit.

peek/lpeek/dpeek retrieves a value from the address, adr(var) returns a variable address in the memory. Aliases can be used

instead of adr: addr and varptr.

If var is an array, adr(var) returns the pointer to its header while adr(var(index)) returns the pointer to the element of the

array.

The code:

10 dim b(10) as ubyte

20 poke addr(b(1)),123

30 ?b(1)

will print 123

The lower part of the HUB RAM is occupied by the compiled interpreter itself. Then there is a heap, a stack and driver’s

buffer on top of the HUB RAM. Standard Basic variables are also placed in the HUB RAM.

The precompiled program and its source are placed starting from the $0008_0000 in the PSRAM.

The 600 kB frame buffer is placed near the top of the PSRAM, so it ends at $200_0000.Below the frame buffer, the memory

is allocated for arrays declared by ‘dim’ command.

The memory between the top of the program and the bottom of the array space is free for use. The current version of the

interpreter has no memory manager for this space: you may handle it on your own. Use ‘memlo’ and ‘memtop’ to determine

the free addresses range and ‘fre’ to determine the free memory amount. Every redefining of an array or a program line

causes memory leaking (old variables and lines are still kept there). To free the wasted memory, save the program and load

it again. This will clean the unused memory.

To direct access to the memory, a peek/poke family can be used.

Variables

There are several types of variables available in the P2 Retromachine Basic.

A standard variable is created by using it. Assigning a value to the variable determines its type. Suffixes like #,!,$ are

optional and are simply a part of a variable name. Use them for compatibility with other Basic interpreters and compilers,

and to make reading the program easier. A string variable name should end with '$' and a floating point variable name

should end with '!'

A variable can be

- a string,

- a single precision float,

- a 32 bit unsigned integer,

- a 32 bit signed integer

These variables are kept in the HUB RAM

A variable type can be changed at any time, so this code

10 a=200

20 a=str$(a)

30 print a+"q"

will execute without errors and print '200q'

To define an array or a typed variable, use 'dim' instruction.

dim varname(size1,size2,size3)

An array can have up to 3 dimensions.

If no type is given, an untyped array is created. Every element of the array can be of a different type and its type can be

changed at any time by assigning to it. Such arrays are kept in the PSRAM and need 12 bytes per element.

To save the memory space, a typed array can be declared:

dim varname(dimensions...) as typename

The type can be:

• 1 byte per element: byte, ubyte

• 2 bytes per element: short, ushort

• 4 bytes per element: long (=integer), ulong, single, string(or rather a pointer to it)

• 8 bytes per element: reserved for the future types: 64-bit integers and double precision floats

Using 'dim' without sizes:

dim a as integer

declares a typed variable that is placed in the PSRAM – in the reality, this is a one-element array, that has an array header

(16 bytes) before the variable itself.

There is no checking while assigning to typed arrays/variables. Assigning a string to an integer array element will assign a

pointer to the string, assigning the float will end with its binary representation:

10 dim a(10)as integer

20 a(2)=1.0

30 ?a(2)

will output 1065353216, that is $3F800000

Operators:

Supported operators are:

- assign: =

- comparison: =, <,>,>=,<=, <>

- arithmetic: +,-,*,/,div, mod, ^

- logic: and, or, shl, shr

Priority: (highest) mul/div/mod -> add/sub/logic -> comparison (lowest)

There are 2 divide operators: '/' is a float divide and the result is always float. 'div' is an integer divide.

Program control:

The current version implements 'goto', ‘gosub’, 'if-then-else' and 'for-next' to control the program execution

'goto' jumps to the line with the given number.

20 goto 100

An expression can be used instead a number:

20 goto x+1

In this case however the pointer to the target line can not be computed by the precompiler, and the target line has to be

found by the runtime every time the ‘goto’ is executed. This is much slower. Better solution is to use

20 on expr goto 100,110,120,130

This computes the expression and if 1, jumps to 100, if 2 jumps to 110, etc – the interpreter itself allows up to 64 line

numbers, but the real limit is the length of the program line. If the expression result is float, it will be rounded. If it is less

than 1 and more than the target lines in the list, no jump will be performed.

‘gosub’ jumps to the line and places the return address on the stack. This allows to use ‘return’ to return to the command

that is directly after gosub.

10 for i=1 to 10

20 gosub 100

30 next i

100 print i

110 return

This will print numbers from 0 to 100

‘on expr gosub’ and ‘gosub expr’ is also allowed

‘pop’ command pops the return address from the stack. This was implemented for the compatibility with Atari Basic

programs and allows do write something like this:

10 gosub 100

20 print "Returned"

30 end

100 gosub 200

110 print "this line will not be executed"

120 return

200 pop

210 return

The second procedure started from 200 pops the return address so the return in line 210 will jump to 20 and not to 110

'if-then-else' construction has a syntax like this

20 if a=0 then b=1 : else c=2

There has to be a colon before 'else'.

There can be more than one if, but only one else in the line. Every 'if' in the line that fails will jump to the 'else' section.

20 if a=0 then c=1 : if b=0 then c=2 : else c=3 : rem c will never be 1 after

executing this line

Multiple lines if-else-endif construction is not yet supported. Use 'goto' instead.

'for-next' syntax is:

10 for intvar=startvalue to endvalue step stepvalue

(commands)

90 next intvar

When 'for' is executed, it assigns a start value to the variable. When 'next' is encountered, the step value is added to the

variable. Then the variable is compared to the end value. If it is greater than the end value (or less then, if negative step),

the program will continue. If not, it will jump to the instruction, that is placed immediately after 'for'.

Start, end and step values can be expressions. They are evaluated only by 'for' line and then saved, so this program:

10 a=1 : b=2 : c=10

20 for i=a to c step b : c=c+5 : b=b*2 : print i,b,c : next i

will print

1 4 15

3 8 20

5 16 25

7 32 30

9 64 35

Step value can be negative. Also, if there is no 'step', 1 will be assumed.

After the loop, the control variable has the value that caused the loop to exit, so after

for i=1 to 10 step 50

i will be 51.

The loop can be done in one line:

10 for i=1 to 10 : print i: next i

One line 'for' loops are much faster, as the line resides in the HUB RAM cache while running

'For' loops can be nested:

10 for i=1 to 10 : for j=1 to 10 : print i,j : next j : next i

but not interleaved. This line will generate errors while executing

10 for i=1 to 10 : for j=1 to 10 : print i,j : next i : next j

The control variable can be changed inside a loop and a 0 step can be used, so this code:

10 for i=1 to 10 step 0

20 i=i+1

30 print i

40 next i

will print numbers from 2 to 11, simulating do..loop until i>10 that is not implemented yet.

Graphics

The Retromachine Basic uses a digital video output and generates 1024x600 graphic screen in 256 colors.

There are several commands that draws graphic primitives on the screen. ‘Color c’ sets the current color for drawing

operations. ‘plot x,y’ makes the pixel at x,y to have color that has been set by the ‘color’. It also sets the starting point for

‘draw x,y’, that draws the line from the starting point to the new point x,y.

‘circle x,y,r’ draws a circle with a center at x,y and a radius r. ‘fcircle x,y,r’ draws a filled circle

‘frame x1,y1,x2,y2’ draws a rectangle, while ‘box x1,y1,x2,y2’ draws a filled rectangle.

While ‘color’ changes a color for drawing, it doesn’t change color of the printed text. There is ‘ink’ command to do this,

while ‘paper’ changes the color of the background

‘cls’ clears the screen using the color set by ‘paper’.

‘font’ changes the font definition. 2 of them are available, 0 is ‘pc’, or ‘ms-dos’ type font, 1 is based on Atari ST mono font.

Both of them are defined in 8x16 matrix.

‘blit’ allows to copy a rectangle from one place in the memory to another. There are 2 ways to use it:

- simpler: blit x1,y1,x2,y2,x3,y3 will copy a rectangle defined by x1,y1,x2,y2 so its new upper left pixel will be at x3,y3

on the screen

- full: blit framebuf1, x1,y1,x2,y2,pitch1, framebuf2, x3,y3,pitch2

The full syntax allows to copy the rectangle between different framebuffers.

Sprites

There are 16 sprites, each up to 512x576 pixel size. They reside in the HUB RAM, so its size limits the amount and size of

sprites that can be simultaneously used.

You can make a sprite out of the rectangle fragment of the screen using ‘defsprite sprite#,x,y,w,h’, where sprite# is a number

from 0 to 15 and x,y,w,h are screen cooordinates to get a sprite from.

The sprite can be moved by 'sprite spritenum,x,y' where x,y is a upper left point of the sprite

The color #0 (black) is transparent.

To hide the sprite, move it out of the screen.

Mouse, joysticks and pads

If connected, a mouse can be accessed via ‘mousex’, ‘mousey’, ‘mousek’ and ‘mousew’. These functions return x and y

position of a mouse pointer, mouse key status and mouse wheel status.

Not all mice reports the wheel in a so called "boot mode" used in the USB HID driver.

Up to 4 USB joysticks or gamepads can be connected.

A stick(joynum) function returns the digital joystick state as a 4-bit number. If 0 returned, the joystick is not present. If

joystick present, its position is returned as shown below

 5 6 7

 9 10 11

 13 14 15

‘strig(joynum)’ returns the joystick/pad button(s) state. 0 if not pressed

‘padx’,’pady’,’padz’,padrx’,’padry’,’padrz’ and ‘padh’ can be used to read an analog joystick or gamepad state.

Up to 6 axes can be read. The result is a float in range from -1 to 1

‘padh’ returns the hat position. Normally it is integer in range from 0 to 8 if the hat moved. Different pads returns different

values when the hat is in the neutral position, but it is something that is not in the range 0..8

Audio system

The P2 Retromachine Basic has an 8-channel audio generator that plays sampled waveforms. Every audio channel can play

a sound that has its frequency, volume, waveform, envelope, length (=time of playing), wait after command, stereo position

('pan') and sustain point.

It has also 32 sets of these parameters that can be set and then assigned to any audio channel.

At the start, and after 'new' command these sets are initialized as:

- waveforms:

• 0 - sine,

• 1 - triangle,

• 2 - sawtooth,

• 3 - pulse, 12.5%,

• 4 - square,

• 5 - pulse, 25%,

• 30 - Atari Pokey waveform 12,

• 31 - Atari Pokey waveform 2,

• 32-noise.

Waves 6..29 are left undefined and can be defined by ‘defsnd’

Wave 32 is not a wave. Setting 32 switches the driver into the noise generating mode, so at every sample it gets a random

value. Changing the sample rate of the channel changes the noise color, from brown to white.

- envelopes:

• 0: instant attack, linear release,

• 1: instant attack, exponential release,

• 2: instant attack, long sustain, instant release,

• 3: smooth both ends,

• 4: slow linear attack, instant release,

• 5: slow attack as in 4, smooth release,

• 6: triangle wave,

• 7: "classic ADSR"

- all lengths are set to 1 (second), delays to 0, stereo position to center, volumes to 4.0, that's about 1/4 of maximum to

avoid clipping, and sustain point to 255 (=no sustain)

- every audio channels gets the waveform and envelope the same number as the channel

To play the sound, there is 'play' instruction that has 0 to 9 parameters. For parameters that aren't provided, defaults will be

used. If a parameter is provided, it becomes a new default.

The negative numbers will be ignored and defaults used instead except pan, that has range from -1.0 to 1.0. To ignore it,

use less than -1

The full syntax is: play channel, frequency, delay, volume, waveform, envelope, length, pan, sustain

Channel is the integer number from 0 to 7

Frequency is float, in Hz. There are note frequencies predefined in constants. The format is #notename(#)octave. #c4 is C

note in octave 4 (about 261 Hz), while #c#4 is C sharp in 4th octave. There is no flats, use sharps instead (Db has the same

frequency as C#)

Delay is integer, the time in ms, that the play instruction will wait as if waitms was added at the end

Volume is a float from 0 to 16.384

Waveform is an integer number from 0 to 32. 0..31 selects one of predefined waveforms (as described above, if not changed

by the user, see below). 32 is noise

Envelope is an integer number from 0 to 8. 0..7 selects one of predefined waveforms (as described above, if not changed

by the user, see below).

8 is no envelope, the sound will not stop until next play command.

Length is a float, and it is the time in seconds for the sound to play

Pan is a float in range -1 .0 to 1.0, -1 is left, 1 is right

Sustain is the sustain point needed to play an instrument using the keyboard. The sound will stay at the sustain volume until

released.

Setting the sustain point < 255 will cause the envelope to stop there. To end playing, there is the command 'release' channel.

The envelope will then continue to the end.

To silence the system use shutup.

Envelopes and waveforms can be redefined.

'defsnd' defines the waveform at given slot from 0 to 31. The syntax is:

defsnd slot, "filename" - loads the file from /media/s directory. This is PC-Softsynth type .s2 file that has 16 bytes of a

header and 1024 16-bit signed samples that define one wave period.

The interpreter doesn't check the header, it simply loads 1024 words from the offset #16, so the user can define anything

and save it in such a file

defsnd slot, harmonic,harmonic... (up to 16 of them) synthesizes the waveform from harmonics

defsnd slot, negative number,number also synthesizes the wave from harmonics, but these numbers are dampening

coefficients for even and odd harmonics

'defenv' defines the envelope.

defenv slot, filename loads the file from /media/h directory. This is PC-Softsynth type .h2 file, that has 16 bytes of header

and 256 unsigned 8-bit samples

defenv slot,a,d,s,r defines standard ADSR envelope. a,d and r can be anything that is not negative, s should be a float in

range 0.0..1.0

Setting ADSR envelope will also compute its sustain point that can be retrieved by getenvsustain(slot)

While the interpreter remembers all parameters from a previous play command, there is a set of commands to change them

individually and then simply use play channel, freq only

These are setenv, setlen, setpan, setvol, setwave and setsustain. They all have syntax setxxx(channel,parameter)

For MIDI files/input playing there is getnotevalue that translates midi note# to its frequency in Hz. It may be also useful to

fill an array with notes to play.

Data input

Data can be input from external files using ‘get’. However, there are more ways to enter the data to the program.

- ‘inkey$’ – reads the current state of the keyboard. If the key is pressed, returns its character code, else returns an

empty string

- ‘input “prompt”,var,var… ‘ - if a string specified as the first parameter, it prints it on the screen, then waits for

the user to enter data and press Enter. After the user press Enter, it tries to read and decode the line of the text

and assign read values to the listed variables.

- ‘read var,var…’ - tries to find a ‘data’ line, then reads the variables from it.

- ‘data value,value,…,value ‘ comment - data line for ‘read’. Data line has to be ‘one command only’: this:

20 data 12,34,56 : do_something

is not allowed. However, the simple comment at the end of the data line is allowed:

20 data 12,34,56 ' hcf

- ‘restore’ resets the internal pointer for data lines so the next ‘read’ command will start from the first value in the

first data line in the program

Pin control

There is a standard P2 command set for the pin control: pinwrite, pinread, pinfloat, pintoggle, pinhi, pinlo, pinstart, wrpin,

rdpin, rqpin, wxpin, wypin. Spin 2 constants are not yet implemented, numerical values have to be used instead.

Addpin syntax is also not yet implemented. Use pin+addpin_val shl 6

Running a code in the independent core (cog)

The Propeller 2 microcontroller has 8 cores called cogs. 6 of them are used internally by the interpreter and hardware drivers

it needs. 2 cogs are still free for use.

To run an assembly program in the independent cog, use any available method to load the program code into the memory.

Then call

cog=coginit(address,parameter)

The ‘address’ is the address of the program stored in the memory, the parameter will be passed to the PTRA register. The

returned value is the cog number. If the value is not in range from 0 to 7, there was an error and no cog was started.

If the program is no longer needed, you can stop and free the cog using

cogstop cog

You can also use the extended version of the command

cog=coginit(cog#,address,parameter)

This, however is not safe as you can reinitialize the cog, that is used in the interpreter. Also, cogstop doesn’t check what it

tries to stop, so you can stop a cog that is used in the interpreter. Use only the 2-parameter coginit and a value returned from

it to stop a cog.

Shortcuts/abbreviations

Abbreviations are shorter versions of the commands, that end with a dot. The dot also replaces the space after the command.

This Atari Basic inspired feature speeds up the writing and saves the limited space in the program line (while at the same

time can make the code to be very hard to read).

10 f.i=1 to 100 s.10:?i:n.i

The ‘?’ abbreviation replaces “print”. It has no dot after it.

File handling

The Retromachine Basic interpreter uses FAT32 file system on the microSD card inserted into the slot on the P2-EC32. It

starts in /sd/bas directory, that is default for saving and loading Basic files

To change the current directory, use 'cd'.

‘cd name’ will append the name to the current path. cd /name will use /name as a new path. cd.. or cd .. goes to the parent

directory.

‘mkdir name’ makes a new directory in the current directory

‘delete name’ deletes a file or a directory

‘copy name1 name2’ copies the file name1 to the new file name2

To open the file, use open #channelnum, #mode, "filename"

#mode can be #read, #write or #append (or 1,2,4)

Use channels 2..9 - 0 and 1 are system channels, they can be reopened, but the effect may be unpredictable.

Reopening channel #0 will stop the screen output.

Use ‘get #channel,address,amount,position’ to get amount bytes from position and place them at address - position starts at

0 (not 1!) and amount is always in bytes. The address can be either in PSRAM or in the hub (see memory map)

Use ‘put #channel,address,amount,position’ to save bytes from the address to the file

‘close #channel’ closes the file

Commands and functions list
Alphabetically sorted

abs(x) if x is negative, multiply by -1, else left intact
acos(x) returns the inverse cosine
adr(var) (or addr or varptr) returns the address of the variable (= a pointer) in the memory
asc(string) returns ASCII code of the first character in the string
asin(x) returns the inverse sine
atn(x) returns the inverse tangent
beep frequency, time (b.) generates the square vave at frequency in Hz for the time in ms
bin$(value,length) returns a string that is a binary representation of the argument, in 'length' digits Length is optimal
blit (see graphics) copies a rectangle
box x1,y1,x2,y2 draws a filled rectangle from x1,y1 to x2,y2
brun filename (br.) loads and executes a binary file compiled for a P2 by anything
cd newpath changed the directory
changefreq channel,freq (cf.) changes the frequency of the audio channe;

changepan channel, pan (cp.) changes the stereo position of the sound in a channel
changevol channel, vol (cv.) changes the audio volume
changewave channel, waveform# (cw.) changes the audio waveform, 32=noise
chr$(value) returns a one-character string that represents a given ASCII code
circle x,y,r (ci.) draws the empty circle with the center at x,y and radius r
click on/off or 1/0 switches the keyboard click on and off
close #channel close the file opened with this channel
cls clears the screen
coginit ((cog#),address, parameter) inits a cog (CPU core), returns a cog number that was initialized or an error code if not
cogstop cog# stops a cog
color colornum (c.) sets a color for graphic operations. There are 256 colors, 16 hues (high nibble) and 16 brightnesses (low nibble) similar

to the 8-bit Atari. 0 to 15 are greys
copy filename1, filename2 copies the file filename1 to the new file filename2. If filename2 exists, it will be overwritten
cos(x) returns a cosine of x. The unit can be switched by by deg and rad commands
cursor on/off or 1/0 switches the text cursor on and off. Because of a bug in this version, use 1/0 in programs.
data value, value… ‘comment a data line for a read command
defenv channel,params defines the sound envelope for the channel
defsnd channel, params defines the waveform for the channel
defsprite spritenum,x,y,w,h (ds.) makes a sprite from a screen rectangle
deg switches trigonometric functions to 360 degree system
delete filename deletes a file or a directory (the directory has to be empty)
dim declares an array or a typed variable
dir lists the working directory of an SD card
dpeek(x) returns a 16-bit unsigned value from the memory at address x
dpoke x,val writes a 16-bit unsigned val to the memory at address x
draw end_x, end_y (dr.) draws the line to point end_x, end_y. This will be the starting point for the new draw. The first starting point can be set

with 'plot'
else use with ‘if’ to fork the program flow
end end of the program. If there are procedures called by gosub, use end to not allow the program to go there
enter filename loads the program without clearing the memory. May be used to append the program from another file
fcircle x,y,r (fc.) draws the filled circle with the center at x,y and radius r
fill x,y,newcolor,oldcolor (fi.) flood fill. Starts at x,y and replaces all pixels with oldcolor to newcolor until other color boundary found.
font fontnum sets the font family for characters to print. 2 fonts are implemented, 0=Atari ST mono, 1=PC DOS
for (f.) starts a loop (see program control)
frame (fr.) draws an empty rectangle from x1,y1 to x2,y2
framebuf returns the start address of the framebuffer
fre returns amount of free memory available for the user
get #channel,addr,amount,pos get bytes from a file
getenvsustain(slot) gets the sustain point set by defenv, to use with setsustain
getnotevalue(midinote) returns the frequency of the MIDI note in Hz
getpixel(x,y)(ge.) returns the color of the pixel at screen position x,y. The function returns the bacgkround pixel color even if there is a sprite

drawn over this pixel.
gettime gets a counter (ct) register, 64bit internally but 32 bits exposed now
gosub line calls a subroutine. Put the return address on the stack and goto line
goto line (g.) jumps to the line
hex$(value) returns a string that is a hexadecimal representation of the argument, in 'length' digits Length is optimal, 8 used if not

provided
if with 'then' and 'else' controls the program flow
ink colornum (i.) sets the color of the characters to print
inkey$ returns one-character string of the last pressed key, or "" if no key pressed
input prompt, var,var… allows the user to input data using a keyboard
int converts anything, including strings if doable, to integer, truncating the non integer part. Int(2.999)=2
left$(string,num) returns first num characters of the string
len(string) returns the length of the string
list startline, endline (l.) outputs the code on the screen form startline to endline. If no endline specified, the program will be listed to the end.
load "filename" (lo.) clears the memory, then loads a Basic program from the file. May be used in format load filename - without ""
log (value, base) logarithm. If base not specified, then base=e
lpeek(x) returns a 32-bit unsigned value from the memory at address x
lpoke x,val writes a 32-bit unsigned val to the memory at address x
memlo returns the lowest address of the free memory
memtop returns the highest address of the free memory
mid$(string,pos,amount) returns amount character of tthe string starting from pos. The base position is 1
mkdir dirname makes a directory
mode modenum (m.) sets "look and feel" of the interpreter. 0 - Atari style, 1 - PC amber, 2 - PC green, 3 - PC white, 4 - Atari ST mono. Names

can be used instead of numbers: 'atari', pc_amber", 'pc_green', 'pc_white', 'st'
mouse on/off or 1/0 switches the mouse pointer on and off
mousex returns the x coordinate of a mouse pointer
mousey returns the y coordinate of a mouse pointer
mousek returns the mouse key state: 0 - not pressed, 1-left, 2-right, 4-middle
mousew returns the mousewheel position. It is unbounded 16-bit signed integer.
new clears the program memory and all variables
next (n.) closes a 'for' loop
open #channel,#mode,"filename" opens a file and attaches it to the channel
on expr goto, on expr gosub evaluates the expression, then select the line to go to.
padh returns the position of gamepad’s hat
padx returns the position of gamepad’s X axis
pady returns the position of gamepad’s Y axis
padz returns the position of gamepad’s Z axis
padrx returns the position of gamepad’s X rotation
padry returns the position of gamepad’s Y rotation
padrz returns the position of gamepad’s Z rotation
paper colornum(p.) sets the background of the characters to print
peek(x) returns an 8-bit unsigned value from the memory at address x
pinfloat pin sets the pin to float
pinhi pin sets the pin to logic 1 (normally about 3.3V)

pinlo pin sets the pin to logic 0 (normally about 0V)
pinread pin returns the pin logic state (0 or 1)
pinstart pin, mode, x,y starts the smart pin mode and sets x,y registers of the pin
pintoggle pin toggles the state of the pin (from 0 to 1 or from 1 to 0). Doesn't work if the pin floats.
pinwrite pin, value if value=0, sets the pin output to low, else sets the pin output to high. Use to blink a led.
play channel, (parameters) plays a sound. See audio system
plot x,y (pl.) sets a pixel color at x,y to the color determined by a previous "color" command and sets a new starting point for 'draw'
poke x,val writes an 8-bit unsigned val to the memory at address x
pop pops the return address from the gosub stack, enabling to return from the nested subs directly to the main code
position x,y (po.) sets a curcor position. The x resolution is half a character, so multiply number of characters by 2. This allows centering

strings that have odd number of characters.
print (?) outputs to the screen and moves the cursor to the new line if , or ; is not used. Use , after an argument to print the new

one after a tab (8 characters), use ; to print the next argument directly after the previous.
put #channel,addr,amount,pos put amount bytes to the file opened by open #channel, from addr, to file position pos
rad switches trigonometric functions to radians
rdpin pin returns the smartpin output register value, notifies the smart pin
read var,var,… reads variables from ‘data’ lines
rem (') a comment
release channel makes the envelope in the audio channel to continue to the end.
restore resets the data line pointer for the next read command
return returns from a subroutine
right$(string,num) returns last num characters of the string
rnd(value) returns a random value. If no arguments, it is a 32-bit unsigned integer. If integer or float parameter is given, it returns

integer or float that is less than,0 the parameter.
rqpin pin returns the smartpin output register value, does not notify the smart pin
round converts anything to the integer value with rounding – round(2.999)=3
run (filename) starts the program. You can use "run" inside the program to restart it. If filename specified, loads it and then runs
save filename (s.) saves the program to the file
setcolor color,r,g,b (sc.) sets the color in the palette to new RGB values
setdelay channel, delay(sd.) sets the delay in ms for the audio channel to wait after 'play' instruction. Default=0
setenv channel,env# (se.) sets the predefined envelope for the audio channel. Redefine it with defenv if needed
setlen channel, len (sl.) sets the time of the sound in seconds. Default 1.0
setpan channel, pan (sp.) sets the stereo position, -1.0 left, +1.0 right, 0.0 center. Default 0.0
setvol channel, vol (sv.) sets the volume of the channel, from 0.0 to 16.384. Higher values will cause clipping; default=4.0
setwave channel, wave# (sw.) sets the predefined waveform for the channel. Redefine it with defsnd.
setsustain channel,point (ss.) sets the sustain point for the envelope. The envelope will stop there until 'release' command is executed
shutup #channel (sh.) silences the channel. If channel not specified, silences all of them.
sin(x) returns a sine of x. The unit can be changed by deg and rad commands as in Atari Basic)
sprite spritenum,x,y (sp.) move the sprite number sprite# (from 0 to 15
sqr(x) returns the square root of x
stick(joynum) returns the position of a digital joystick
strig(joynum) returns the button state of a joystick or a gamepad
str$(value) converts a value to a string.
tan(x) returns a tangent of x. The unit can be changed by deg and rad commands as in Atari Basic)
val(string) convert a string to a number. If it can, it returns an integer, if not, returns a single. If failed, returns 0
waitms time waits "time" miliseconds. Doesn't have any upper limits as it creates an internal loop when time>5000 ms
waitclock (wc.) waits for the internal 5 ms/200Hz clock tick. The clock is vblank synchronized so there is 1 vblank for 4 ticks
waitvbl (wv.) waits for the screen vertical blank. Use to synchronize the program with the screen refresh
wrpin pin writes to the mode register of the smart pin
wxpin pin writes to the X register of the smar tpin
wypin pin writes to the Y register of the smart pin

Changelog:

0.49

First beta.

Cleaned, added a lot of functions, written a new manual in .odt format

0.28:

Enhanced screen editor

String related functions added: asc,chr$,len,mid$,left$,right$,str$,bin$,hex$,val

0.27:

Math function added: abs

Added poke,dpoke,lpoke,peek,dpeek,lpeek,adr,fre,inkey$

Added getnotevalue, changed order of 'play' parameters

'run' can now load and run the program if a filename provided

If a filename is provided without ".bas" and the file doesn't exist. the interpreter will try to add ".bas" itself

A loaded file name is kept by interpreter, then 'save' without parameters saves to that filename

If no file was loades yet, the default name is 'noname.bas'

'for-next' loop doesnt crash/work weird if a float parameters used: they are now rounded

Symbolic note names can be used in format #c4 or #c#4. They are internally converted to frequencies in Hz, as single

This means you can print #a4 and got 440.0

'dir' now lists the directory in 4-columns format

Several more bugs fixed.

0.25:

Math functions added : deg, rad, int

First version of an overengineered audio subsystem(tm) now works.

0.24:

Basic math functions added : cos, tan, atn, asin, acos, sqr (sin was already there)

8-bit Atari style command shortcuts added

'mode' command can be now used with a text names instead of numbers

0.23b:

Atari ST mode has a proper Atari ST keyboard click

Added "position" command that sets the cursor position before print

A mouse pointer has now a proper black outline.

String arays now work

Fixed a bug that disabled printing string literals while still printing string variables.

Fixed a bug that causes errors when : character was placed inside a string

0.23a:

Pin operations added

Atari ST mono look and feel (minus ST key click click that I have yet to sample)(mode=4)

PC look and feel modes (1,2,3) have now keyclick switched off as these PCs did.

0.22:

Load/save format changed to a plain text.

Solved the problem of disappearing strings.

Added dim - arrays and typed variables.

0.19:

Commands and function added: mouse, cursor, click, defsprite, sprite, sin, mousex, mousey, mousew, mousek, stick, strig,

getpixel

List can have parameters that select the fragment of the program to list.

rnd can now have a parameter.

0.17:

- proper GOTO that can be written at any time

- new commands: "paper", "ink", "font" and "mode"

- "load", "save" and "brun" file names can be written without ""

- only ctrl-c is now used to break the program

0.16: for-next loop added

