Extremum seeking control: convergence analysis Dragan Nešić The University of Melbourne

Acknowledgements:

Y. Tan, I. Mareels, A. Astolfi, G. Bastin, C. Manzie; Australian Research Council.

Outline

- Motivating examples
- Problem formulation
- Background
- Non-local stability:
- No local extrema
- With local extrema
- Some open problems.
- Conclusions

Motivating example

Continuously Stirred Tank (CST) Reactor

Single enzymatic reaction Michaelis-Menten Kinetics

In steady-state, we would typically want to operate around u^* $J_T(\bar{u})$ is typically unknown!!

Other examples

Plant	Performance output
Turbine	Generated power
Solar cell	Generated power
Optical amplifiers	Uniformity of the gain spectrum
Tokamak	Reflected power during Lower Hybrid (LH) plasma heating experiments
Non-holonomic vehicles	Distance from a source of a signal
Paper machine	Retention of fines and fibers in the sheet
Ultrasonic/Sonic Driller/Corer	Distance from resonance
Human Exercise Machine	The user's power output
ABS	Magnitude of friction force
Variable cam timing	Fuel consumption

Problem formulation

Assumption 1:

- Q(.) has an extremum (max)

$$y^*:=Q(u^*)$$
 , $Q(u),\; {\sf 8} u$

- Q(.) is unknown

Dynamic case:

$$egin{array}{rcl} 9\ell({\it \phi}) & 0 & = & f(\ell(u),u) \ & Q(u) & := & h \pm \ell(u) \end{array}$$

Problem:

Background

Also continuous-time versus discrete-time.

Brief history (deterministic):

Adaptive ESC [Krstić & Wang 2000], local stability

Our goals:

Precise non-local convergence analysis.

Controller tuning guidelines and trade-offs.

Non-local stability (no local extrema)

Y. Tan, D. Nešić and I. Mareels, "On non-local stability properties of extremum seeking control", Automatica, Vol. 42, No. 6, pp. 889-903, 2006.

Average system

• The system is periodic in time:

$$\dot{\theta} = \delta Q(\theta + a\sin(t))\sin(t) =: \delta f(t, \theta, a)$$

• Its average is a gradient descent scheme:

This assumption holds for many plants, e.g. some models of CST reactor.

KL functions

Linear UGES systems satisfy the bound

 $\mathbf{j}x(t)\mathbf{j}$ · $K\exp(\mathbf{j} \lambda(t\mathbf{j} t_0))\mathbf{j}x_0\mathbf{j}$, $\mathbf{8}t$, $t_0, \mathbf{8}x_0$

- for some K, λ >0.
- Nonlinear UGAS systems satisfy

 $\mathbf{j}x(t)\mathbf{j}$ · $\beta(\mathbf{j}x_0\mathbf{j}, t \mathbf{j} t_0), \mathbf{8}t \mathbf{j} t_0, \mathbf{8}x_0$

for some $\beta \in KL$.

Suppose Assumptions 1 and 2 hold. Then, there exists $\beta \in KL$ such that:

where $\theta^* := u^*$.

We say that the system in SPA stable in a, δ .

A trade-off

Larger Δ Smaller aSloweror)and)Smaller ν Smaller δ Convergence

Sketch of proof:

Use the Lyapunov function candidate

$$V(\theta) = \frac{1}{2} (\theta \mid \theta^*)^2$$
$$DV(\theta) \delta f_{av}(\theta, a) = \delta \left[\frac{a}{2} \underbrace{DQ(\theta)(\theta \mid \theta^*)}_{<0} + O(a^3) \right]$$

- Average system is SPA stable in a.
- Actual system is SPA stable in a, δ .

Comments

- Theorem provides a tuning rule for ESC.
- The trade-off limits the rate of convergence!
- ES with filters can be treated similarly.
- Stronger result possible:

the rate of convergence is proportional the power of dither signal – square wave best.

Y. Tan, D. Nešić and I. Mareels, "On the choice of dither signals in extremum seeking control scheme", Automatica, Vol. 44, No. 5, pp. 1446-1450, 2008.

Dynamic SISO case

Singularly perturbed model:

• New time scale $\sigma = \omega$ t:

$$\omega \frac{dx}{d\sigma} = f(x, \theta + a\sin(\sigma))$$
$$\frac{d\theta}{d\sigma} = \delta h(x)\sin(\sigma)$$

- The model is in standard form.
- Time scale separation: slow & fast systems.

Slow model

Set ω=0

 $0 = f(x, \theta + a\sin(\sigma))$) $x = \ell(\theta + a\sin(\sigma))$

• Substitution in θ equation yields:

 $\frac{d\theta}{d\sigma} = \delta h \pm \ell(\theta + a\sin(\sigma))\sin(\sigma) = \delta Q(\theta + a\sin(\sigma))\sin(\sigma)$

- This is the same system as in static case!
- We use Assumptions 1 and 2.

Fast model

• In the fast time scale:

$$\dot{x} = f(x, \underbrace{\theta_0 + a\sin(\sigma_0)}_{u_0})$$

Assumption 3:

For any u_0 the equilibrium

$$x = \ell(u_0)$$

of the fast system is UGAS, uniformly in u_0 .

Theorem

• Suppose Assumptions 1-3 hold. Then, there exist $\beta_1, \beta_2 \in KL$ such that

Geometrical interpretation

 $t \rightarrow \infty$

Bioreactor example

All our assumptions hold.

Non-local stability (with local extrema)

Y. Tan, D. Nešić and I. Mareels and A. Astolfi, "On the global extremum seeking control", Automatica, Vol. 45, No. 1, pp. 245-251, 2009.

Assumption 2 does not hold!

Assumption 4: There exists a unique global maximum:

9!
$$u^*$$
) $Q(u^*) > Q(u), 8u \oplus u^*.$

Parameters: a_0, δ, ϵ

Model of the system

• The system is time-varying:

$$\begin{split} \dot{\theta} &= & \delta Q(\theta + a \sin(t)) \sin(t) =: \delta f(t, \theta, a) \\ \dot{a} &= & \mathbf{i} \ \epsilon \delta a, \ a(0) = a_0 \end{split}$$

and its average with a change of time σ =t/ ϵ

$$\begin{aligned} \epsilon \frac{d\theta}{d\sigma} &= \delta f_{av}(\theta, a) \\ \frac{da}{d\sigma} &= \mathrm{i} \, \delta a, \ a(0) = a_0 \end{aligned}$$

is a singularly perturbed system.

Desired bifurcation diagram

Assumption 5:

The average system $f_{av}(\theta, a)$ has a desired bifurcation diagram.

Comments

- All 4th order polynomials that satisfy Assumption 4 also satisfy Assumption 5.
- There exists a 6th order polynomial that satisfies Assumption 4 but does not satisfy Assumption 5.
- Dither shape affects Assumption 5!

Theorem

Suppose Assumptions 4 and 5 hold. Then

Comments

Note that

 $a(t) \mathrel{!} 0$) $\lim_{t \to \infty} \mu(a(t)) = \mu(0) = \theta^*$

 To achieve robustness, we would typically modify ESC so that

$$\lim_{t \to \infty} a(t) = \bar{a} > 0$$

• Similar to "simulated annealing".

Idea

Comments

- Assumptions are impossible to verify a priori.
- Our result provides a tuning strategy for ESC that can improve performance.

Some open problems

- Convergence rate improvements.
- Using the model knowledge in the best way.
- Adaptive versions of non-gradient schemes.
- Selection of efficient algorithms and dithers for particular applications.
- More detailed tuning guidelines, and so on.
- Multi-valued functions.

Multi-valued functions

G. Bastin, D. Nešić, Y. Tan and I. Mareels, "On Extremum Seeking in Bioprocesses with Multi-valued Cost Functions", Biotechnology Progress, Vol. 25, No. 3, pp. 683-689, 2009.

Multi-valued cost

• Our assumptions sometimes do not hold.

 J_{P} is a multi-valued function

For some initial conditions our analysis is fine

Effects of "small" amplitude

Amplitude "too large"

Conclusions

- Non-local convergence analysis of a class of adaptive ES controllers is presented.
- Tuning guidelines follow from our results.
- Interesting trade-offs arise.
- Global ES possible with local extrema.
- Many open problems.