

Web Site: www.parallax.com
Forums: forums.parallax.com
Sales: sales@parallax.com
Technical: support@parallax.com

Office: (916) 624-8333
Fax: (916) 624-8003
Sales: (888) 512-1024
Tech Support: (888) 997-8267

Parallax, Inc. • © Philip C. Pilgrim • Bell 202 Modem Object (2009.02.20) Page 1 of 17

Bell 202 Modem Object
©2009 Philip C. Pilgrim, Bueno Systems, Inc. (propeller@phipi.com)

This document and the software it describes are provided under terms of the MIT license, as follows:

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation
files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify,
merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT
LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN
NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Introduction

The Parallax Propeller chip is capable of both generating and processing analog audio signals. This makes
it particularly appropriate for transmitting and receiving data over audio channels. In such applications,
the outgoing data is modulated at audio frequencies, and the incoming audio at the receiving end is
demodulated in order to recover the original data. A program or device which performs these operations
is thus called a modem.

When dial-up internet connections predominated, PC-hosted modems were quite common (and in some
places still are). These are typically capable of transmission at 56K baud (bits per second) over regular
phone lines. But many years prior to the development of these high-speed modems, slower speed
devices using different standards were available. One such standard is known as “Bell 202”. This is a half-
duplex (transmissions occurring in one direction at a time) protocol operating at 1200 baud. Serial data
consisting of ones and zeroes are coded as sine waves of 2200 Hz for “marking” (ones) and 1200 Hz for
“spacing” (zeroes). This type of modulation is called “audio frequency shift keying” (AFSK). It is the
modem’s job to create the frequency-shifted sine waves at one end from the binary input data stream
and to interpret the sine waves at the other end in order to reconstruct the same binary data stream at
the output, hopefully without introducing errors. Here is what a typical data transmission might look like:

Modem

Modem

Input Data Stream

Modulated Audio

Output Data Stream

Parallax, Inc. • © Philip C. Pilgrim • Bell 202 Modem Object (2009.02.20) Page 2 of 17

The medium through which the audio travels can be a wire pair, such as an audio cable, or the “ether”,
as a radio transmission. The Bell 202 standard is frequently used among amateur radio operators to send
data on VHF (very high frequency) bands using FM (frequency modulation). In fact the impetus for this
project came from Ken Gracey at Parallax, who was using a pair of two-meter ham transceivers to
exchange data with a mobile robot. As a result, much of the emphasis in this paper will center on the
software’s use with amateur two-way radios.

Modulation

Modulation involves reading an incoming bitstream and producing a segment of 2200 Hz sine waves for
each “one” bit, and a segment of 1200 Hz sinewaves for each “zero” bit. Since the output needs to be
1200 baud, each bit segment will be 1/1200th second long. This means that each “zero” segment will
contain one full cycle at 1200 Hz, and each “one” segment will contain 2200 / 1200 = 1.833 cycles at
2200 Hz. In the bell202_modem.spin object written for the Propeller, each bit segment is further
divided into 16 sub-segments, for each of which an instantaneous output value is computed.

One further requirement is that the output waveform has to be continuous. This means that when the
frequency changes, say, from 2200 Hz to 1200 Hz that the 1200 Hz waveform has to pick up at the same
relative phase point where the 2200 Hz waveform left off. This is done to ensure that there are no high-
frequency glitches in the output, as there would be from sudden discontinuities. The following diagram
illustrates this requirement:

The vertical lines are at 90° phase intervals, relative to the frequency of the waveform at that point.
Notice that, even though each waveform segment consists of 16 equally spaced points, the phase angle
changes more rapidly in the 2200 Hz sections than in the 1200 Hz section. When we generate such a
waveform, we will produce 16 points, equally-spaced in time; but the phase angle that we use to
compute the sine at each point will advance at different rates for the high- and low-frequency segments.
Moreover, when the instantaneous frequency changes, we will change the phase increment but continue
from the actual phase at which the previous segment ended.

The Propeller includes a sine table in ROM, beginning at $E000, that has 2049 entries covering a 0° to
90° interval. For the remaining 270°, the following trigonometric identities can be used to compute sin(x)
from the table lookup function Sin().

sin(x) = Sin(x) 0° < x < 90° (Quadrant I)
sin(x) = Sin(180° - x), 90° < x < 180° (Quadrant II)

sin(x) = -Sin(x - 180°), 180° < x < 270° (Quadrant III)
sin(x) = -Sin(360° - x), 270° < 360° (Quadrant IV)

These identities are encapsulated in the following Propeller assembly code, which computes both sines
and cosines over the entire 0° ($0000_0000 internally) to nearly 360° ($FFFF_FFFF internally) interval:

Parallax, Inc. • © Philip C. Pilgrim • Bell 202 Modem Object (2009.02.20) Page 3 of 17

'-------[Cosine and Sine lookup routines]--------------------------------------

' On entry, acc contains the angle: 0 to $ffff_ffff (unsigned).
' On exit, acc contains the sine or cosine: -$ffff to $ffff.

cosine add acc,_0x4000_0000 'Add 90 degrees for cosine.

sine test acc,_0x4000_0000 wz 'nz = quadrants II or IV.
 test acc,_0x8000_0000 wc 'c = quadrants III or IV.
 shr acc,#18 'Setup to index into ROM sine table.
 negnz acc,acc 'Negate offset if quadrants II or IV.
 or acc,sine_table 'OR offset to index.
 rdword acc,acc 'Read the sine value into acc.
 negc acc,acc 'Negate if quadrants III or IV.
sine_ret
cosine_ret ret 'Return value (-65535 - 65535) in acc.

Here is a Spin-like pseudo-code encapsulation of the modulation function used to produce one bit:

 Case bit

 0: PhaseInc := Inc1200
 1: PhaseInc := Inc2200

 Repeat i from 0 to 15

 Level := sine(Phase)
 Phase += PhaseInc
 Wait 1/(1200 * 16) seconds
 Output(Level)

To produce an actual analog level, as implied by the above Output function, we need to employ one of
the Propeller’s counters in its DUTY mode. In this mode the counter, say ctra, adds the value in frqa to
its phsa register on every clock cycle, producing a logic “high” on its output pin whenever a carry out of
phsa’s most-significant bit occurs. This behavior has the following property: if frqa is low, carries will
happen infrequently, so the relative number of highs versus lows on the pin will be low; if frqa is high,
carries will happen frequently, producing more highs versus lows on the pin. By applying an RC low-pass
filter to the output, a voltage proportional to the high-versus-low outputs and, hence, to the value of
frqa can be obtained. It’s also a good idea to add a series capacitor to AC couple the output to the audio
channel. Here’s a typical low pass filter schematic used with a two-way radio:

The schematic includes an extra transistor and two resistors, which combine to form a push-to-talk (PTT)
trigger that will work with many two-way radios that lack a separate PTT input. This part of the circuit
may be ignored for the purpose of discussing modulation.

Parallax, Inc. • © Philip C. Pilgrim • Bell 202 Modem Object (2009.02.20) Page 4 of 17

Here is a visual representation of the effect produced by the DUTY mode output and low pass filtering:

FRQA

OUTA

OUTA filtered

Notice that the low-pass filtering produces a slight phase lag in the output. This is a normal side effect of
a simple RC filter and won’t cause us any problems. (Actually, since OUTA’s duty cycles have a much
higher frequency than what is illustrated here – by a factor of more than 1000 – the filtering and
consequent phase shift are less severe than what was required to produce the illustration.)

So far, we’ve seen how to produce one bit’s worth of modulated output. The next job is to string multiple
bits into bytes so we can send some real data. To do this we will use the same asynchronous protocol
used in common RS232 and other serial modes of communication. In this protocol, each byte of data is
sent with a “0” bit preamble (the “start” bit), followed by eight data bits, least-significant bit first, and
followed by one or more “1”s (the “stop” bits). A typical byte will look like this:

Sending $51 = %01010001 = "Q"

The minimum number of stop bits to use depends somewhat on the reliability of the data channel. Since
the modem can be used for radio transmission, which is subject to noise and other kinds of interference,
it’s sometimes possible for the receiver to get confused if a noise blast should obliterate one or more bits.
Sometimes, after a noise burst, the receiver will misinterpret a “0” data bit for a start bit and begin
decoding a byte in the wrong place. Depending on the data, it could stay out of sync for several bytes
before encountering a “0” stop bit, which is an error condition, forcing resynchronization. By adding extra
stop bits, an out-of-sync receiver can come back into sync more quickly, since the bytes become slightly
more separated from each other. We will use two stop bits, for a total of eleven bits per transmitted byte.
Tests have shown that this increases reliability significantly over using a single stop bit.

Finally, since we’re dealing with half-duplex transmission that requires a “turnaround” between
transmitting and receiving, we need to inject a time delay at the beginning of each new transmission. We
will do this by sending a continuous 2200Hz tone for a half second, which is the default “marking” or “1”
state. This not only gives the other modem time to switch to “receive”, but allows it to synchronize to the
marking state.

Parallax, Inc. • © Philip C. Pilgrim • Bell 202 Modem Object (2009.02.20) Page 5 of 17

Demodulation

Demodulation is the process of taking a modulated signal like that produced above and converting it back
to discrete bits. But first we have to convert the modulated signal, which is analog, to a digital
representation the Propeller can handle. There are two ways to do this: 1) thresholding, and 2) analog-
to-digital conversion. Thresholding is the simplest and can be accomplished with a minimum of external
hardware. Three resistors and a cap are the only components required:

The cap is there to AC-couple the incoming signal to the Propeller. The voltage divider ensures that the
AC-coupled signal straddles the Propeller’s logic threshold equally, thus converting it to square waves.
The additional series resistor is there to protect the Propeller from signal levels that exceed 3.3V peak-to-
peak.

In operation, the input pin is not sampled directly by the demodulation code; rather, it is input to one of
the Propeller’s counters, which counts up by one at an 80MHz rate every time it sees a “high” on this
input. At each sampling interval, the program reads the count value from the counter’s phsx register and
subtracts the previous value to get the “width” of the “high” during the current sampling interval. That
way, there is less chance that a single errant reading will exert undue influence on the sample.

The Propeller is also capable of digital-to-analog conversion, using a “delta-sigma” technique. This
requires an additional resistor and, ideally, a couple more caps (0.001µF or so):

This technique also requires a counter that counts up every time it sees a “high” on its input pin. But this
time the counter fights back by returning the opposite signal on a feedback pin. The net effect when the
feedback is coupled to the input pin is to keep the input pin biased at the Propeller’s logic threshold of
around Vdd/2. But here’s the interesting part: the higher the incoming voltage is, the more times during
the sample interval the input pin will be above threshold and have to be corrected. What this means is
that the number of new phsx counts during the sampling interval will be proportional to the average
input voltage during that interval. The constant of proportionality will depend on the value of the
feedback resistor, relative to the (nominal) 2.2K input resistor, which sets the A/D converter’s “gain”.

So now we have a way to read an input signal, be it a simple sample count or an average voltage. Both
methods involve reading the value from a counter’s phsx register, which makes the demodulator code
universal in the sense that, once the counter is configured, it needn’t know how the data are being
obtained.

Parallax, Inc. • © Philip C. Pilgrim • Bell 202 Modem Object (2009.02.20) Page 6 of 17

To perform the actual demodulation, we not only have to recognize the difference between the 1200 Hz
and 2200 Hz segments (slicing), but we also have to locate the boundaries between them accurately
(dicing). So, to get on with all this slicing and dicing, we might be tempted to ask, “What is the frequency
at each point of the incoming waveform?” After all, if we knew that, we could assign each point a 0 or a
1, based on whether the frequency was 1200 Hz or 2200 Hz. Unfortunately, frequency is not something
that can defined at individual points but, rather, over an interval of points. So what we’re going to do
instead is take a window, one bit-time (1/1200th second) wide and slide it across the incoming waveform,
incrementing 1/16th of one bit time at each step:

At each position, we will analyze the waveform inside the window for its 1200 Hz and 2200 Hz frequency
components and gauge their relative amplitudes. Windows in which 1200 Hz dominates will be deemed
“more zero than one”, and vice versa for windows in which 2200 Hz dominates.

To get these relative amplitudes at each window position, given the incoming modulated signal samples
Sigi, we will compute the Fourier power coefficient for each frequency: 1200 Hz and 2200 Hz. This is
given by:

Powerf(t) = [ΣΣΣΣi=t-15..t Sigi · sin(2ππππ · i/16 · f/1200)]
2
+ [ΣΣΣΣi=t-15..t Sigi · cos(2ππππ · i/16 · f/1200)]

2

By comparing Power1200(t) with Power2200(t) at each incremented window position t, we will be able
to tell whether the waveform fragment inside the window is “more one than zero” or “more zero than
one”, and we can assign a corresponding binary value to that window position. Here’s are graphs of
Power1200 and Power2200 for the waveform shown in the previous illustration:

Power2200

Power1200

Modulated
Waveform

Original
Data

Demodulated
Data

Note that this demodulation introduces a half bit’s worth of delay between the original binary data and
the demodulated binary data.

In the Bell 202 object, the power functions go through an additional level of smoothing to filter out any
high-frequency glitches. After that, the comparisons between Power1200 and Power2200 are performed with
a programmable amount of hysteresis. “Hysteresis”, in this case, means that a 0 → 1 or 1 → 0 transisiton
cannot take effect until the absolute difference between Power1200 and Power2200 is greater than a certain
threshold. This creates a “hysteresis band”, inside of which no transitions can take place. This helps to
ensure that the transitions between “0” and “1” bits are clean, without bouncing rapidly back and forth

Parallax, Inc. • © Philip C. Pilgrim • Bell 202 Modem Object (2009.02.20) Page 7 of 17

near the threshold in the case of noisy data. The following illustrates the effects of these additional
measures. The yellow region is the hysteresis band:

Power2200

Power1200

Modulated
Waveform

Original
Data

Demodulated
Data

One final adjustment needs to be made before comparing Power1200 and Power2200: the application of a
“slicing” or “offset” level. This is a value that’s added to Power2200 before Power1200 is compared with it.
It’s necessary because the modulator’s RC filter – not to mention the audio data channel – will attenuate
the 2200 Hz frequency more than the 1200 Hz frequency. This will result in a narrowing of the “1” bits
relative to the “0” bits, which could lead to received data errors. By engaging a programmable slicing
level, this disparity can be corrected.

Another problem that can arise on a radio channel is what to do when there’s no signal present. In such
a case, comparing anything computed for Power1200 and Power2200 makes no sense and could lead to
garbage data. The way around this is to add these two components and to see whether, combined, they
are higher than a programmable noise threshold. If not, any data derived from them will be discarded.
This is similar to the way the squelch controls on many radios work.

As a final guard against garbage data, we keep track of how many “0” and “1” samples are detected in
each 16-sample bit window. For example, if the ratio were 9:7, that’s not convincing enough to assign a
bit value one way or the other. In the Bell 202 object, the ratio between the “winner” and the “loser” has
to be at least 11:5 to count as a legitimate bit.

To summarize, we’ve introduced a couple strategies for detecting errors: 1) Comparison of the signal to a
noise threshold to make sure it’s higher, and 2) requiring a supermajority of at least 11:5 for a bit value
to be assigned, given a 16-count sample. If either condition is not met during demodulation, the bit
decoding process is reset, and the receiver is forced to wait for the next start bit.

What we have so far can be described schematically, as if it were a hard-wired circuit. The multiplication
of the incoming signal by sine (called “I” or “in-phase”) and cosine (called “Q” or “quadrature-phase”)
oscillations is often performed in hardware by analog multipliers, or “mixers”. The comparison operation
could be performed in hardware by a comparator with adjustable hysteresis and offset levels. Here is a
block diagram that summarizes (ignoring the error reset) what the Propeller does in software:

Parallax, Inc. • © Philip C. Pilgrim • Bell 202 Modem Object (2009.02.20) Page 8 of 17

× ×

××

2200Hz

I
2200Hz

Q

1200Hz

Q
1200Hz

I

+

+

LP

LP

+

+

Signal

Hysteresis

Offset

+

Mixers

Window
Sum,
Squared

Window
Sum,
Squared

Add
Lowpass
Filters

Noise Level

Programmable Parameters

Demodulated
Serial Data

Local Oscillators

Local Oscillators

Comparators

Using the Modem Object

Like most Propeller objects, the modem object requires calling a “start” method to initialize everything
and get it going. Unlike most other objects, this object has three start methods. Which one you use
depends on your particular hardware setup. The following sections describe each one.

Also, this object requires another object, umath.spin, which is included in this bundle and which is also
available separately from the Propeller Object Exchange.

Note: In all the following example code fragments, it’s assumed that the modem object has been given
the name mdm in a prior OBJ declaration:

OBJ

 mdm : B"bell202_modem"B

start_simple

Usage: start_simple(rcvpin, xmtpin, pttpin, mode), returning new cogid + 1 on success; 0 on
failure.

This is the start routine to call if your transmit circuit (non-feedback version) looks like those in the
Modulation and Demodulation sections of this document. All you have to specify are the receive, transmit,
and PTT pins. Any of these could be set to NONE if you’re only transmitting, only receiving, or not using
PTT. Finally, the mode parameter can be used to set the transmit audio level (LVL0 through LVL8) and
can be bit-wise ORed (or not) with AUTOXR, which will automatically switch channel directions when
you begin transmitting or receiving. If mode is zero, it will default to LVL6 | AUTOXR. When
start_simple returns, the modem will be in standby mode. Here’s an example that sets up the modem
object to receive on pin A5, transmit on pin A6, with no push-to-talk, and a transmit level of 6. Then
receive is called to begin receiving right away.

 mdm.start_simple(5, 6, mdm#NONE, mdm#LVL6)
 receive

Note: You should experiment to get the optimum transmit level. If you’re using a PTT circuit multiplexed
to the microphone input (like the one shown in this document) and the volume is set too high, it can
interfere with the PTT, causing intermittent transmission.

Parallax, Inc. • © Philip C. Pilgrim • Bell 202 Modem Object (2009.02.20) Page 9 of 17

start_bp

Usage: start_bp(mode), returning new cogid + 1 on success; 0 on failure.

This start routine is used with Parallax’s “Propeller Backpack” board (#28327), which is preconfigured
with all the passive components required by the modem. The only option is the mode parameter, which
is the same as for start_simple. When start_bp returns, the modem will be in standby. Here’s some
sample code that sets the output to level 5 and enables automatic transmit/receive. Receiving would then
begin as soon as receive or one of the input methods is called. Likewise, transmitting would begin as
soon as transmit or one of the output methods is called.

 mdm.start_bp(mdm#LVL5 | mdm#AUTOXR)

start_explicit

Usage: start_explicit(rcvm, rfbm, rhim, rlom, xmtm, xhim, xlom, shim, slom, mode), returning
new cogid + 1 on success; 0 on failure.

This is the mother of all start methods and the one the other two invoke to get their work done. It should
work with virtually any hardware configuration. Excepting the mode parameter (explained above), all the
other parameters are bit masks that are used to select pins on port A. A “1” in any bit position selects the
corresponding pin as having a role for the particular parameter. The parameters are as follows:

rcvm: Receive pin mask. Contains a 1 at the bit position corresponding to the pin that receives
the incoming audio. May be set to zero if modem is transmit-only.

rfbm: Receive feedback mask. Contains a 1 at the bit position corresponding to the pin that
provides counter feedback to rcvm for delta-sigma A/D conversion. May be set to zero for non-
analog input schemes.

rhim: Receive high mask. Contains 1s at the bit positions for every pin that must be set to
output a logic “high” during receive. For example, a pin-controlled voltage divider leg can be left
floating during idle or transmit periods to reduce overall current consumption.

rlom: Receive low mask. Contains 1s at the bit positions for every pin that must be set to output
a logic “low” during receive.

xmtm: Contains a 1 at the bit position corresponding to the pin that is used to provide the DUTY
mode audio output. May be set to zero if modem is receive-only.

xhim: Transmit high mask. Contains 1s at the bit positions for every pin that must be set to
output a logic “high” during transmit.

xlom: Transmit low mask. Contains 1s at the bit positions for every pin that must be set to
output a logic “low” during transmit.

shim: Standby high mask. Contains 1s at the bit positions for every pin that must be set to
output a logic “high” during standby.

slom: Standby low mask. Contains 1s at the bit positions for every pin that must be set to
output a logic “low” during standby.

mode: Sets the transmit audio level and auto transmit/receive flag, as defined above. This
parameter is required. There is no default provided if it’s set to zero.

Parallax, Inc. • © Philip C. Pilgrim • Bell 202 Modem Object (2009.02.20) Page 10 of 17

Notice that there is no special mask for PTT. This can be established using rlom, slom, and xhim for an
active high enable or rhim, shim, and xlom for an active low enable.

Here’s an example invocation in which pin A5 is used for input, A6 for feedback, A7 for transmit, and A8
for a high-enable PTT. The audio output level is 5, and there is no automatic transmit/receive switching.

 mdm.start_explicit(|<5, |<6, 0, |<8, |<7, |<8, 0, 0, |<8, mdm#LVL5)

stop

Usage: stop

Calling stop halts the modem software and frees a cog.

receive

Usage: receive

This method waits for any data already buffered for output to be sent, if the modem is transmitting. Then
it configures the selected port A pins and modem for receiving data. Received data will be buffered in the
background for readout by the input routines.

transmit

Usage: transmit

If the modem is not currently in transmit mode, this method configures the selected port A pins, including
any PTT pin, and modem for sending data. Then the modem waits for ½ second while the transmitter is
sending “mark” 2200 Hz. This gives the receiver at the other end time to break out of squelch and adjust
to the incoming audio.

standby

Usage: standby

If the modem is currently in transmit mode, this method waits for the transmit buffer to empty, then
switches the modem into a neutral mode whereby it’s neither transmitting nor receiving. With certain pin
configurations, this mode can be used to save current consumption.

Note: None of the methods receive, transmit, or standby needs to be called if automatic
transmit/receive is in effect, although they can be called if you want.

out

Usage: out(char), returning true on success, false on failure.

Send the byte value char. If the modem is not in transmit mode and if automatic transmit/receive is in
effect, it will enter transmit mode first. Once in transmit mode, this routine will block, waiting for
available buffer space. Then, char is buffered for transmission. If, however, the buffer is already full and
the modem is not transmitting, out will return false, indicating failure.

The following example sends an ASCII 13 ($0D), a carriage return:

 mdm.out(13)

Parallax, Inc. • © Philip C. Pilgrim • Bell 202 Modem Object (2009.02.20) Page 11 of 17

outstr

Usage: outstr(straddr), returning true on success, false on failure.

This method sends an entire zero-terminated string, whose address is given by straddr. It calls out, and
switches modes (or not) accordingly. If any of its calls to out results in failure, outstr will abort and
return false. Here’s an example that sends the string “Testing 123”:

 mdm.outstr(string("Testing 123"))

inp

Usage: inp, returning a value.

This method will switch to receive if automatic transmit/receive switching is in effect. Then it will return
the next character from the input buffer. If the receive buffer is empty but the modem is configured to
receive data, inp will block until a character appears. Otherwise, it will return the constant NONE
($8000_0000).

In this example, the program loops until it receives a question mark:

repeat until mdm.inp == "?"

inp0

Usage: inp0, returning a value.

This non-blocking input method will switch to receive if automatic transmit/receive switching is in effect.
Then it will return the next character from the input buffer. If the receive buffer is empty, it will return
the constant NONE ($8000_0000).

In this example, inp0 is called, and if a bona fide character was received, it’s displayed on a TV monitor.
Note that “<> mdm#NONE” can be replaced with “=> 0”, since NONE is negative.

if ((char := mdm.inp0) <> mdm#NONE)
 tv.out(char)

inpstr

Usage: inpstr(straddr, terminator, maxlen, maxtime), returning a value.

This method will switch to receive if automatic transmit/receive switching is in effect. Then it reads
characters into the string (byte array) whose address is given by straddr. Reading continues until a
character given by terminator is read or maxlen characters have been read, whichever comes first. In
either case the string is terminated with a zero character. Therefore, the array at straddr must have a
size of at least maxlen + 1. If you don’t want a terminal character to be recognized, set terminator to
NONE.

Optionally, if the maxtime argument is greater than zero and less than 232 · 1000 / clkfreq (53687 for
an 80 MHz clock), the method will time out after maxtime milliseconds, returning the characters
received up to the timeout.

The value returned by this method is the number of characters received, excluding the zero terminator
(i.e. the resultant string length).

Parallax, Inc. • © Philip C. Pilgrim • Bell 202 Modem Object (2009.02.20) Page 12 of 17

In the following example, the program waits for a command indicator (“!”), then reads a three-character
command into the byte array cmd, waiting indefinitely, if necessary, since maxtime is zero:

repeat until mdm.inp == "!"
mdm.inpstr(@cmd, mdm#NONE, 3, 0)

waitstr

Usage: waitstr(straddr, maxtime), returning true on success, false on timeout.

This method will switch to receive if automatic transmit/receive switching is in effect. Then it waits for a
string of consecutive input characters matching the string at straddr. If maxtime is greater than zero
and less than 232 · 1000 / clkfreq (53687 for an 80 MHz clock), the method will time out after maxtime
milliseconds, returning false.

For best results, the string to be matched should not have any duplicates of its first character. The reason
is that upon a mismatch, the match index is reset to zero. So, for example, if the string to be matched
was “MAMA MIA” and the incoming string was “MAMAMA MIA”, it would not match because, once
waitstr saw the incoming “MAMAM”, it would reset the pointer to the beginning of “MAMA MIA”, which
the remaining “AMA MIA” in the input stream would fail to match.

In this example, we are looking for the string “$GPGGA”, timing out after a two-second wait. If the
“$GPGGA” is received in time, the rest of the string, up to and including a carriage return (13), is
buffered in bytearray.

if (mdm.waitstr(string("$GPGGA"), 2000))
 mdm.inpstr(@bytearray, 13, 80, 0)
else
 tv.outstr(string("No signal from GPS.", 13))

outchars

Usage: outchars, returning a value.

Retrieve the number of characters in the output buffer awaiting transmission. The following example uses
outchars to ensure that a one-second delay is inserted between message sections:

mdm.outstr(string("This is a very long message to fill the buffer. Now wait a second..."))
repeat while mdm.outchars
waitcnt(cnt + clkfreq)
mdm.outstr(string("Okay, that was one second."))

inpchars

Usage: inpchars, returning a value.

Retrieve the number of characters in the input buffer. Note: Calling inpchars does not start receive
automatically when automatic transmit/receive is in effect. Therefore, any repeat loop begun with the
modem in transmit or standby that waits for inpchars to be non-zero will never terminate. To switch
automatically to receive under AUTOXR, you must call inp, inp0, waitstr, or inpstr. Of course, you
can always just call receive first, as well.

In the following example, the program will not input the next four characters unless there are at least
that many in the buffer available to be read:

Parallax, Inc. • © Philip C. Pilgrim • Bell 202 Modem Object (2009.02.20) Page 13 of 17

if (mdm.inpchars => 4)
 inpstr(@strarray, 4)

set

Usage: set(param, value)

This method sets any of three demodulator variables after the modem has been started. The param
argument specifies which variable to set and can be one of HYST or “H” (hysteresis), SLICE or “S” (0/1
slicing/offset level), and NOISE or “N” (noise/ squelch level). The value parameter is the new value for
the selected variable. All three values default upon start to usable levels, but it may be necessary to
tweak them for optimum performance. The provided programs, modem_monitor.exe and
modem_monitor.spin, can be used to do this accurately and efficiently. See the Monitor Program
section for details.

In this example, the hysteresis is set to zero:

mdm.set(mdm#HYST, 0)

signal

Usage: signal, returning a value.

Return latest instantaneous signal stats from the demodulator in the form:

%zLLLLLLLLLLL_oHHHHHHHHHHH_nnnnnnnn%zLLLLLLLLLLL_oHHHHHHHHHHH_nnnnnnnn%zLLLLLLLLLLL_oHHHHHHHHHHH_nnnnnnnn%zLLLLLLLLLLL_oHHHHHHHHHHH_nnnnnnnn, where

z and o (bits 31 and 19) are coded as follows:

0 0 : Signal is below noise threshold.
0 1 : Signal is marking (1).
1 0 : Signal is spacing (0).
1 1 : Signal is in hysteresis band between mark and space.

L...L (bits 30 .. 20) sum-of-squares of 1200 Hz demodulator outputs.
H...H (bits 18 .. 8) sum-of-squares of 2200 Hz demodulator outputs.
n...n (bits 7 .. 0) -16 (pure 0) to 16 (pure 1) level count for latest bit (2's complement).

This method is used extensively in modem_monitor.spin to return signal quality information to the PC
host program. It is probably not of much use beyond that, except possibly for auto-tuning (left as an
exercise for the reader). Note: This method always returns the last values obtained during reception and
does not reset them. For this reason, if the reception of active data ceases, it will continue to return the
same old values.

Parallax, Inc. • © Philip C. Pilgrim • Bell 202 Modem Object (2009.02.20) Page 14 of 17

Monitor Program

The Windows program modem_monitor.exe comes bundled with this object. It is used to tune the
modem parameters for optimum data reception. Also included in this bundle is the Propeller-resident
monitor program, modem_monitor.spin, listed here:

CON

 _clkmode = xtal1 + pll8x '<--------Change this line, as appropriate, for your
Propeller setup.
 _xinfreq = 10_000_000 '<--------Change this line, as appropriate, for your
Propeller setup.

VAR

 byte inpstr[5]

OBJ

 mdm : "Bell202_modem"
 dbg : "FullduplexSerial"

PUB Start | nstr, ch, param

 dbg.start(31, 30, 0, 38400)
 mdm.start_bp(0) '<--------Change this line, as appropriate, for your
modem setup.
 mdm.receive
 nstr~
 waitcnt(cnt + clkfreq / 2)
 repeat
 if (mdm.inpchars)
 dbg.tx("?")
 dbg.tx(mdm.inp)
 dbg.tx("!")
 dbg.hex(mdm.signal, 8)
 dbg.tx(10)
 if ((ch := dbg.rxcheck) => 0)
 if (nstr and nstr < 5)
 inpstr[nstr++] := ch
 if (nstr == 5)
 mdm.set(inpstr[1], hex(inpstr[2])<<28 | hex(inpstr[3])<<24 | hex(inpstr[4])<<20)
 nstr~
 elseif (ch == "!")
 nstr := 1

PRI hex(char)

 if ((char -= "0") > 9)
 char -= 7
 return char

You will probably have to change some lines in this program (marked above) to get it to work with your
particular setup. Then, you will need to connect the audio input to a radio or other audio source.

You will also need a transmitter running full bore sending data for the monitor program to pick up.
Something like the following will work fine. Just be sure to send a variety of data, not just the same
character repeated ad infinitum.

Parallax, Inc. • © Philip C. Pilgrim • Bell 202 Modem Object (2009.02.20) Page 15 of 17

CON

 _clkmode = xtal1 + pll8x '<--------Change this line, as appropriate, for your setup.
 _xinfreq = 10_000_000 '<--------Change this line, as appropriate, for your setup.

OBJ

 mdm : "bell202_modem"

PUB Start

 mdm.start_bp(0) '<--------Change this line, as appropriate, for your setup.
 waitcnt(cnt + clkfreq / 2)
 repeat
 mdm.outstr(string("!Testing "))
 mdm.outstr(string("ABCDEFGHIJKLMNOPQRSTUVWXYZ"))
 mdm.outstr(string(" de YOUR CALLSIGN", 13)) '<--------Add your callsign here for a radio.

Once you’ve got the transmit and receive ends set up and working with a clear data channel, make sure
your receiver’s program port is connected to your PC, and start modem_monitor.exe. It will search the
available serial ports for output from the receiver. Assuming it finds the expected data patterns, it will
display the following:

The right-hand panel shows how the modem is currently interpreting the incoming signal. You can
compare this for accuracy with what you’ve programmed the transmitter to send.

Parallax, Inc. • © Philip C. Pilgrim • Bell 202 Modem Object (2009.02.20) Page 16 of 17

The scatter plot shows the low-pass-filtered 2200 Hz sum-of-squares response (y axis) graphed against
the same for 1200 Hz (x axis). Red dots correspond to those samples deemed “1”s; green, for “0”s. The
yellow dots are in the hysteresis band, so may have been interpreted either way. You can adjust the
width of this band in real time by moving the #HYST slider. Ideally, all the red, yellow, and green dots
would lie along a single, thin diagonal line. In the real world, there will be some spread, as the above
screen capture illustrates.

The thin, white diagonal line represents the current noise threshold. Anything above the line is deemed
“signal”; below it, “noise”. By moving the #NOISE slider, you can adjust the position of the noise
threshold. Don’t move it too close to the signal dots, though, particularly if your transmitter and receiver
are in close proximity. As your communications channel becomes less reliable with distance, these dots
will naturally migrate lower, and you don’t want them misinterpreted as noise if some sense can be
wrested from them.

Each received bit is sampled sixteen times. Within each bit frame, the modem program counts how many
times the sum-of-squares comparisons produced a “1” level and how many times a “0” level. Then it’s
just a matter of voting to get a bit value, but it takes a super majority to “win”. The little bar graph
embedded in the scatter plot keeps track of how many times a particular vote count occurred for each
bit. Ideally, only the bars at the very ends would show any counts, signifying unanimity. But unanimity is
hard to come by in the real world, as the plot above shows. What’s important, then, is that the average
vote count for “0” equals the average vote count for “1”. The number in the little slider below the bar
graph shows the difference between these. You should adjust the #SLICE slider to get this number as
close to zero as possible. At this point the “1” versus “0” detection will be balanced.

You can clear the display at any time by clicking the “CLEAR” button. Once you’ve made your
adjustments to the demodulator settings, you can click the “COPY” button to save them to the clipboard.
When you paste the settings into your programs that use the modem object, you will get something like
this:

mdm.set(mdm#HYST, $0200_0000)
mdm.set(mdm#SLICE, $0250_0000)
mdm.set(mdm#NOISE, $1000_0000)

This code should be pasted right after your call to the modem’s start routine, whichever one you use.
(Make sure to indent it properly!)

Audio Channel Hardware

Although the thrust of this discussion has centered upon radio communication, the same techniques can
be applied to hard-wired audio connections. For best results over long distances, isolation transformers
(baluns), along with a twisted-pair cable should be used, as the following schematic illustrates:

The bell202_modem object is designed for half-duplex operation. By starting two separate instances of
the object, however, full-duplex operation is possible, with each instance handling traffic in a single
direction. Therefore, a hard-wired full duplex system would involve four transformers and two twisted
pair cables. (There is a possibility that a two-transformer/single-twisted-pair arrangement could be used
instead, along with a two-wire to four-wire “hybrid” circuit; but as of this writing, this has not been tried.)

Parallax, Inc. • © Philip C. Pilgrim • Bell 202 Modem Object (2009.02.20) Page 17 of 17

Regulatory Issues

In the United States, communication via the airwaves and public wire networks is regulated by the
Federal Communications Commission (FCC). Any connections made to the public telephone system, for
example, must be done using an FCC-approved Data Access Arrangement (DAA). This is to protect the
phone system from damage caused by poorly-designed or -implemented hardware and is governed by
Part 68 of the FCC regulations. There may be other requirements as well, which are beyond the scope of
this document to consider.

Communication via amateur radio is governed by Part 97 of the FCC regulations and requires a license. A
Technician Class license is very easy to obtain and is a highly recommended route for the kind of
experimentation this modem object enables.

Data transmission via unlicensed radio services (e.g. Family Radio Service) is either heavily restricted or
prohibited altogether. Be sure to read the appropriate regulations carefully before even contemplating
unlicensed operation.

