

Web Site: www.parallax.com
Forums: forums.parallax.com
Sales: sales@parallax.com
Technical: support@parallax.com

Office: (916) 624-8333
Fax: (916) 624-8003
Sales: (888) 512-1024
Tech Support: (888) 997-8267

© Parallax, Inc. • AVR Firmware: 7SEG1 (2007.02.27) Page 1 of 11

AVR Firmware: 7SEG, Version 1
7-Segment LED Display Driver
Introduction
This document describes AVR firmware that is used in conjunction with the BS2pe BASIC Stamp
motherboard (the MoBoStamp-pe). This firmware can be uploaded to either or both of the motherboard’s
two AVR coprocessors as file 7SEG1.hex, which can be downloaded from the 7Seg-DB product page at
www.parallax.com/detail.asp?product_id=28312. Once the hex file is installed, the coprocessor is capable
of communicating with the BASIC Stamp using PBASIC’s OWOUT and OWIN commands. This
communication takes place on the AVR’s OWIO pin (see illustration below) to read data from, and write
data to, the AVR. By utilizing the capabilities of the AVR coprocessor, this software driver handles all the
buffering and refreshing required by Parallax’s 7Seg-DB seven-segment display daughterboard, freeing
the BASIC Stamp to treat it simply as an ASCII display device.

This firmware does the following:

• Accepts character sequences from the BASIC Stamp for display on the LEDs.
• Displays letters as well as numbers on the seven-segment displays.
• Handles up to eight daisy-chained four-digit displays for up to 32 digits total.
• Performs leading zero suppression in fixed-width numerical fields (e.g. DEC4).
• Allows full control of windowing and cursor manipulation.
• Permits left- or right-justified text within a selected window.
• Performs blinking within a selected window.
• Performs vertical and horizontal scrolling functions for special effects.
• Adjusts the display intensity from nearly off to fully on in 255 steps.

The AVR (Atmel ATTiny13) pinout is shown below:

}{

Pin OWIO connects to the Stamp and has a pull-up resistor to Vdd. Communication is bi-directional via a
protocol using open-collector signaling. Ports 2 and 3 also connect to the Stamp without external pull-
ups, as well as to an attached daughtercard. Ports 0 and 1 connect to an attached daughtercard only and
are the quadrature inputs from the encoder. Because ports 2 and 3 are controlled exclusively by the
coprocessor, they should remain as inputs (pins 11 and 12 for socket “A”; 5 and 7, for socket “B”) on the
BASIC Stamp.

© Parallax, Inc. • AVR Firmware: 7SEG1 (2007.02.27) Page 2 of 11

Getting Started
To use the seven-segment driver, you will have to upload it to the desired AVR coprocessor (usually “B”)
on the MoBoStamp-pe board. This is accomplished using the program LoadAVR.exe, available on the
Parallax MoboStamp-pe product page: www.parallax.com/detail.asp?product_id=28300. Also, be sure to
start your program with a PAUSE 10 to give the AVR a chance to come out of reset before trying to
access it. Finally, anytime the AVR receives a reset pulse from the BASIC Stamp’s OWOUT or OWIN
commands, all special effects are cleared, the active window is set to all 32 characters, and the cursor is
homed. The display is not cleared, however.

Displaying Characters
Displaying characters on the seven-segment displays is as easy as sending them via PBASIC’s OWOUT
command. For example, to display the contents of the nibble variable A, just do the following:

 OWOUT Owio, 0, [“A=”, DEC A]

Owio is the pin (10 for coprocessor “A”; 6, for coprocessor “B”) used to communicate with the AVR. If
variable A had been equal to 12, he above command would have displayed:

When including a period (decimal point “.”) in an output string, it is automatically displayed between
characters:

 OWOUT Owio, 0, [“AB.CD”]

This displays as:

The displayable characters are all those with ASCII codes from $20 to $5F, i.e. all the punctuation
except `{|}~, all the numbers, and all the capital letters. Many of the capital letters are displayed in
lower-case, however, in order to accommodate the limitations of a seven-segment display or to
distinguish them from other characters. Several of the non-numerical characters, notably M, W, V, etc.,
may be difficult to decipher out of context. But within context, their identity is usually clear. And if you
don’t like a particular character, you can always change it. (See “Altering Characters” at the end of this
document.)

In addition to the standard character set, it is possible to display custom characters on the fly. All ASCII
characters in the range $80 to $FF are custom, with each of the seven least-significant bits representing
the state of one of the seven segments: 1 = “on”; 0 = “off”. The correspondence between segments and
bit positions is shown in the following diagram (bit 0 being the least-significant):

© Parallax, Inc. • AVR Firmware: 7SEG1 (2007.02.27) Page 3 of 11

0
1

2
6

3

5
4

So executing the following would display the segments shown:

 OWOUT Owio, 0, [%10010001] 'Display custom, segments 0 and 4.

To include the decimal point in a custom character, just add a period (“.”) in the string after the custom
character.

Command Codes
Sending commands to the display, or activating special effects, uses control characters in the range $00
to $1F, along with some of the lower-case letters a through z. We’ll consider them here, arranged in
functional groups.

Window Control
When you start your program, 32 characters are available as one contiguous display workspace. This is
true regardless of how many or how few physical modules you’ve daisy-chained together. The starting
active workspace, or “window”, is always 32 characters long. You can restrict display actions to a smaller
window by sending the window command: w, followed by two numbers. These numbers represent the
leftmost and rightmost extents, respectively, of the active display window, beginning on the left with
position 0, and ending on the far right of eight 7Seg-DB modules with position 31. The following code
fills an eight-digit display with hyphens, then defines a window between positions 2 and 5 and prints
some numbers there:

 OWOUT Owio, 0, ["--------w", 2, 5, "123456789"]

Here’s what gets displayed:

Notice that only those digits able to fit in the defined window get displayed. Character positions outside
the window (i.e. the hyphens) remain intact .

When defining a new window, special effects taking place in the old window (e.g. scrolling and blinking)
will be cancelled, and the new window gets initiated with no special effects.

If you are using fewer than eight display modules daisy-chained together, you will probably want to
define a window at the beginning of your program that encompasses only those character positions that
exist physically. This will help some of the special effects features to behave more like what you expect,
without actions being hidden off to the right among non-existent characters.

© Parallax, Inc. • AVR Firmware: 7SEG1 (2007.02.27) Page 4 of 11

Cursor Control and “Window Washing”
The cursor control and window-washing (clear) commands are used to move the cursor back and forth,
to position it to a fixed location, or to erase portions of the display. They are as follows:

CLS ($00) Clear the active window.
HOME ($01) Move cursor to the extreme left of the active window.
CRSRLF ($03) Move cursor left by one position within the active window.
CRSRRT ($04) Move cursor right by one position within the active window.
BKSP ($08) Backspace. Same as CRSRLF. Character to the left is not

erased.
TAB ($09) Move to the next cursor position divisible by four relative to the

beginning of the active window.
CLREOL ($0B) Clear the active window from the current cursor position

onward.
CR ($0D) Carriage return. Clear the active window from the current

position onward, then home the cursor.
CRSRX ($0E) Move the cursor to the position, relative to the beginning of the

active window, given by the following byte.

The symbol names in boldface in the above table are predefined in PBASIC 2.5 and can be used just as
they would be in a DEBUG statement. For example:

 OWOUT Owio, 0, [“----“, CRSRX, 1, “ABC”, BKSP, CLREOL]

This displays:

First, four hyphens are sent to the display, then the cursor is positioned to digit 1, “ABC” is printed. Next,
the cursor backs up one space, and finally everything after the “AB” is cleared.

Display Brightness
When your program starts, the LED is set to half brightness. This is to ensure that a large display doesn’t
demand more current than is available from the power supply. But you can change the brightness of the
entire display using the brightness (b) command. The range is from 0 (minimum brightness) to 255
(maximum brightness). It is used as follows:

 OWOUT Owio, 0, [“b“, 4, “THIS IS DIM.”]

This displays:

The visual brightness will not appear to be a linear function of the brightness value. This is partly because
your eyes are sensitive to percentage (logarithmic) changes, rather than absolute (linear) changes. So to

© Parallax, Inc. • AVR Firmware: 7SEG1 (2007.02.27) Page 5 of 11

get an even transition from “off” to “bright”, say, you would need to loop through a selected subset of
the 256 available brightness levels to give the appearance of a linear transition.

Right Justified Text
Normal text sent to a display is left-justified. You can change this to right-justified by using the justify (j)
command. After the j is sent, text will flow into the active window from the right, shifting existing
characters to the left with each new character. Here’s how it works:

 OWOUT Owio, 0, [“w“, 1,6, “j1234”]

This displays:

To change back to left-justification, send a CLS to clear the active window.

Flashing Text
To cause all the text in the active window to flash on and off, issue the flash (f) command:

 OWOUT Owio, 0, [“CORE: w”, 6, 11, “f900*F”]

This displays:

The 900°F in the window that goes from positions 6 through 11 will be flashing on and off about once a
second.

To turn flashing off, use the clear flashing command (c). Defining a new window will also turn flashing
off.

Leading Zero Suppression
In PBASIC you have two choices for outputting decimal numbers: free-formatted (left-justified) without
leading zeroes, or fixed-width with leading zeroes. In many cases, though, you will want fixed width
without leading zeroes, which you can get with the 7SEG1 firmware. The method is simple: just prepend
the zero-suppression (z) command ahead of any number to be displayed, followed by a single-byte count
value, and that many subsequent leading zeroes will be replaced by spaces. Here’s how a fixed-width
number would be displayed without zero-suppression:

 A = 23
 OWOUT Owio, 0, [DEC4 A]

© Parallax, Inc. • AVR Firmware: 7SEG1 (2007.02.27) Page 6 of 11

Now, try it with zero-suppression:

 A = 23
 OWOUT Owio, 0, [“z”, 3, DEC4 A]

The count value of 3 guarantees that up to three leading zeroes will be suppressed. This value is typically
one less than the width of the field because, if the number being displayed is zero, you want the single
digit 0 to display.

Bar Graph Display
Simple horizontal bar graphs can be displayed with the graph (g) command. It requires one single-byte
argument: the length of the bar. When executed, a horizontal bar graph is displayed in the active
window, replacing anything else that might have been there before. Here’s an example:

 OWOUT Owio, 0, [“--------w”, 1, 6, “g”, 9]

This produces:

The vertical lines are the bar graph. There are nine of them, as specified after the g command. The
remaining LED segments in the active window, (1, 6), are turned off. But previously-defined characters
outside the active window (the hyphens) remain untouched. By replacing the constant 9 with a variable
name or expression, you can easily track it’s value with a dynamically-changing bar graph.

Horizontal Shifting
Characters displayed in an active window can be shifted left or right after the fact. This can be useful for
many special effects and is simple to perform using the left (l) and right (r) shift commands. Sending an l
shifts all the characters in the active window left by one position, shifting out the leftmost character and
replacing the rightmost character with a blank. Sending an r does just the opposite. After a left shift, the
cursor will be at the rightmost position in the active window. After a right shift, it will be at the leftmost
position.

© Parallax, Inc. • AVR Firmware: 7SEG1 (2007.02.27) Page 7 of 11

Here’s a program that flows a message string onto the display from the left.

' {$STAMP BS2pe}
' {$PBASIC 2.5}

Owio PIN 6

Ptr VAR Word 'Pointer into EEPROM DATA area.
Chr VAR Byte 'Character read from EEPROM.

Msg DATA "INCOMING!", 0 'The message to be displayed.

Ptr = Msg 'Point to the beginning of the message.
DO 'Loop through it to find the zero at the end.
 READ Ptr, Chr
 IF (Chr = 0) THEN EXIT
 Ptr = Ptr + 1
LOOP

OWOUT Owio, 0, ["w", 0, 11] 'Define a window to encompass three modules.

DO 'Loop through the message in reverse order.
 Ptr = Ptr - 1
 READ Ptr, Chr 'Read a character.
 OWOUT Owio, 0, ["r", Chr] 'Shift the characters right, and display the new one.
 PAUSE 100 'Pause for dramatic effect.
LOOP UNTIL Ptr = Msg

Vertical Scrolling
Characters displayed in the active window can be scrolled vertically for additional “wipe-on/wipe-off”
effects. A character’s vertical position is given by a single number, which can take on values between –3
($FD) and 3 ($03). The illustration below shows characters at the different vertical scroll positions:

-3 -2 -1 0

3 2 1 0

The vertical position of the active window can be set directly with the vertical scroll (v) command,
followed by a single byte argument between –3 and 3 giving the position. For example, this statement
would produce the results shown:

 OWOUT Owio, 0, [“ABv”, -1, “CD”]

In the example, the scroll position was set halfway through the displayed string. Yet, the entire string
was affected. What this illustrates is that the setting is applied to the entire active window for characters

© Parallax, Inc. • AVR Firmware: 7SEG1 (2007.02.27) Page 8 of 11

that are already there, as well as for those yet to be written. The scroll state of the active window
persists until it’s changed by another scroll command or another window is defined. In the latter case,
the previously active window is cleared if its scroll state wasn’t equal to zero.

Rounding out the vertical scroll commands are scroll up (u) and scroll down (d). Each shifts the active
window one position in the indicated direction.

The following program shows how to simulate the rolling number wheels on an odometer using scrolling:

' {$STAMP BS2pe}
' {$PBASIC 2.5}

'--
'Program to demonstrate scrolling on the 7Seg-DB.
'It operates like the odometer in a car,
'scrolling up the digits that change.
'This program requires a single 7Seg-DB master.
'--

Owio CON 6

cnt VAR Word 'The counter: 0000-9999.
val VAR Word 'Changed part of cnt.
win VAR Nib 'Left side of changed window.
i VAR Nib 'Scroll counter.

PAUSE 10 'Wait for AVR to come out of reset.

cnt = 9990 'Start cnt at 9990 to demo max rollover.
OWOUT Owio, 0, [DEC4 cnt] 'Display the initial count.

DO 'Loop forever.
 PAUSE 200 'Leave time to view count.
 cnt = cnt + 1 // 10000 'Increment count modulo 10000.
 val = 1000 'We'll see if it's a multiple of 1000 first.
 win = 0 'Set the window to the left edge of display.
 DO WHILE val 'Val decreases, so loop terminates.
 IF cnt // val = 0 THEN 'Is cnt a multiple of val?
 val = cnt // (val * 10) ' Yes: Set val to the digits of cnt that changed.
 EXIT ' Exit LOOP.
 ENDIF
 val = val / 10 ' No: Try a smaller value for val
 win = win + 1 ' Move the left window border to the right.
 LOOP ' Try again.
 OWOUT Owio, 0, ["w", win, 3]'Define the new window.
 FOR i = 1 TO 3 'Scroll current contents of window up by three (off the screen).
 OWOUT Owio, 0, ["u"] ' Scroll up one.
 PAUSE 50 ' Wait, for animation effect.
 NEXT
 IF val THEN 'Is val equal to 0?
 OWOUT Owio, 0, [DEC val] ' No: Display it in the window (still scrolled off).
 ELSE
 OWOUT Owio, 0, [DEC4 val] ' Yes: Display "0000" in the full window (still scrolled off).
 ENDIF
 FOR i = 1 TO 3 'Scroll new value onto window. (It takes three scrolls.)
 OWOUT Owio, 0, ["u"] ' Scroll up one.
 PAUSE 50 ' Wait, for animation effect.
 NEXT
LOOP 'And so ON...

© Parallax, Inc. • AVR Firmware: 7SEG1 (2007.02.27) Page 9 of 11

Redefining the Standard Character Set
You can redefine the characters displayed by this firmware to suit your tastes or special application
requirements. This is done using the program 7SegFont.exe, available from the 7Seg-DB product page
on Parallax’s website. After starting this font editor, you will be presented with the following blank screen.

The first thing to do is to load an existing font from 7SEG1.HEX or one of its derivatives. This is done by
clicking the Load button and selecting the hex file you want to edit. Once this is done, you will see
something like the following:

© Parallax, Inc. • AVR Firmware: 7SEG1 (2007.02.27) Page 10 of 11

You can edit any character (except the period) by clicking segments to toggle them between “on” and
“off”. Once you have the font where you want it, click Save, and you can save the new font to the same
hex file or to a new one. After saving the font, just upload the new hex file to the AVR using
LoadAVR.exe, and your new font will be displayed in all its glory.

© Parallax, Inc. • AVR Firmware: 7SEG1 (2007.02.27) Page 11 of 11

Command Summary
The following chart summarizes the commands and control characters used to control your seven-
segment display:

Command Description Parameters that Follow
CLS ($00) Clear the active window. None

HOME ($01) Move cursor to the extreme left of the active window. None

CRSRLF ($03) Move cursor left by one position within the active
window.

None

CRSRRT ($04) Move cursor right by one position within the active
window.

None

BKSP ($08) Backspace. Same as CRSRLF. Character to the left is
not erased.

None

TAB ($09) Move to the next cursor position divisible by four,
relative to the beginning of the active window.

None

CLREOL ($0B) Clear the active window from the current cursor
position onward.

None

CR ($0D) Carriage return. Clear the active window from the
current position onward, then home the cursor.

None

CRSRX ($0E) Move the cursor to a new position, relative to the
beginning of the active window.

One: New cursor position
(0 to 31)

“b” Set overall display brightness. One: Brightness level
(0 to 255)

“c” Cancel flashing. None
“d” Scroll active window down. None
“f” Turn on flashing in the active window. None

“g” Draw a horizontal bar graph in the active window. One: Length of bar
(0 to 64)

“j” Change active window to right-justification. None
“l” Shift characters in active window left by one position. None

“r” Shift characters in active window right by one
position.

None

“u” Scroll active window up. None

“v” Set vertical scroll position. One: Vertical position
(-3 to 3)

“w” Set the active window Two: Left and right extents
of window (0 to 31)

“z”
Suppress leading zeroes in next numerical field. One: The maximum number

of leading zeroes to suppress
(1 to 32)

