
A Beginner's Guide to
Manipulating I/O Pins in PASM

By Michael J. Hanagan

Preface: I encountered the speed limitations of SPIN while interfacing the Propeller
with a Microchip MCP3202 chip. I could only achieve measurement speeds on the
order of 1-2,000 Hz but the ADC itself was capable of measurement speeds up to
100,000 Hz. The bottleneck was reading the serial transmitted data from the ADC.
The slow interpreted SPIN language could not manipulate the SPI clock and data
pins fast enough. The solution of course is programming the I/O function with the
ADC in the much faster language known as Propeller Assembly, or PASM.

When I began this venture well over a year ago there was not much out there on
learning the very basics of PASM. I read a few nice pdfs by “potatohead” and
“desilva”, and many PASM code examples in the OBEX library which help me to get
started. I still struggled for a long time trying to learn enough PASM to achieve high
speed SPI communications with the ADC. During this time I collected a set of
working notes which outlines some of the introductory basics of PASM. While I
have some programming experience I am no software engineer. My involvement
with the Propeller chip is primarily on a hobby/enthusiast level. As such I often
need to refer back to these and other notes as reminders when I am writing a
snippet of PASM code. I thought I would assemble a few of these notes into a short
text in hopes it might help others trying to learn the basics of PASM. This first set of
notes focuses on how to manipulate the Propeller’s I/O pins using PASM.

If you find any errors in this text you can reach me on the Propeller Forum under
my profile name “MJHanagan”. I greatly appreciate those on the forum who caught
errors in my original draft and made suggestions for clarifications, specifically
“Mark_T” and “tonyp12”.

If time permits in the future I will write a follow on set of notes covering the various
ways of passing data from cog RAM to main RAM. And if I ever get the chance I
hope to also write up my experience in interfacing the Propeller with the MDC320x
family of ADCs using both SPIN and PASM.

MJH 26-Jan-2014
Rutland, MA

26-Jan-2014 Page - 2 -

An overview of I/O pin manipulation using PASM

One of the most useful features of the Propeller chip is its high number of I/O pins coupled with its eight
coprocessors called cogs. After boot up each of the Propeller’s 32 pins can be programmed to act as an
input or an output (during boot up pins 28-31 are used load the program and data from the EEPROM). Each
of the eight coprocessors has shared access to all 32 I/O pins via three 32-bit special registers: DIRA, OUTA
and INA. Bits 0-31 in each register corresponds to pin numbers P0-P31 on the chip. The DIRA register is a
read-write variable whose bit settings define pins as inputs (0) or outputs (1). The OUTA register is also a
read-write variable whose bit setting determine of an output pin is low (0) or high (1). The INA register is a
read-only variable whose bit setting indicates the high/low status of all 32 I/O pins, inputs as well as
outputs.

Each cog maintains its own independent DIRA and OUTA registers. When a cog starts all bits in its DIRA are
set to 0 (inputs) and all bits in its OUTA register are also set to 0 (low). You must set each bit in the DIRA to
a 1 if its corresponding pin is to act as an output. Once a pin is set as an output in DIRA you can set it high
(+3.3V) by setting the corresponding bit in OUTA to 1 and set it low (0 V, i.e. Vcc) again setting the bit to 0.
If the same output pin is to also be controlled high and low by a different cog then each cog that uses that
pin must set that bit high in its own DIRA register. If a cog does not declare a pin as an output in its DIRA it
will not be able to manipulate its output state high or low. Each of the eight cog's DIRAs are ORed together
with the result being the final DIRA for all 32 pins. The DIRA of any inactive or stopped cog is automatically
cleared to 0 so only active cogs are factored into the final DIRA for the chip.

If any active cog sets a pin to be an output it supersedes any input setting in all other active cogs. However,
the contents of the other cog's DIRAs are not altered, only the final ORed DIRA for the chip is affected. Any
pin set as an output cannot be used as an input by any cog. Within a cog you can switch a pin's direction as
needed for synchronous communication via a single input/output data pin (provided no other active cog
has it set as an output). The DIRA and OUTA for each cog are ANDed together, then these eight results are
then ORed together to ultimately determine which output pins are high and low. The like the DIRA
registers the OUTA registers are local so reading these registers will not reveal what other setting have
been made by other cogs. Only the read-only INA reflects the final state of all the I/O pins regardless of
their input/output settings.

Here is another way of summarizing the overall effect of the eight independent read-write DIRA and OUTA
registers:

 Setting a bit high in a cog’s OUTA register will only result in the corresponding pin outputting +3.3V
if the same bit is also set to a 1 in the cog’s DIRA register.

 If any cog (including Spin) has a bit set high in both DIRA and OUTA the corresponding pin will
output +3.3V regardless of any other cog’s attempt to set it low or make it an input pin.

 A cog’s OUTA register does not reveal the true electrical state of the pins, only the INA register will
reflect the high/low state of each pin.

Additional details regarding I/O pins, DIRA, OUTA and INA can be found in the Propeller Manual on pages
26-27 (general I/O pin discussion), pp 104-106 (SPIN DIRA), pp 118-119 (SPIN INA), pp 175-177 (SPIN
OUTA), p 289 (PASM DIRA), p 297 (PASM INA) and p 330 (PASM OUTA). If you can read electrical
engineering flow diagrams and symbols there is a block diagram of the Propeller chip on pages 20-21.

26-Jan-2014 Page - 3 -

Methods for manipulating specific bits/pins in DIRA and OUTA

Since pin direction (input/output) and output status (high/low) are determined by the bit settings in DIRA
and OUTA we will need to learn how to set specific bits in these two registers low (0) and high (1). The bits
in these registers numbered 0 through 31 correspond to I/O pins labelled P0 through P31. The general
method for manipulating bits in DIRA and OUTA utilizes the PASM commands OR, ANDN and occasionally
XOR. The OR command is used to force bits high, ANDN forces bits low, and the XOR command inverts the
status of bits (if they are high they get set low and if already low it sets them high). You will often see these
bitwise functions shown as truth tables:

Initial Bit Value1 Bit Result

Value1 Value2 AND ANDN OR XOR

A B A & B A & !B A OR B A XOR B

0 0 0 0 0 0

0 1 0 0 1 1

1 0 0 1 1 1

1 1 1 0 1 0

The first step to controlling individual bits/pins is to setup what is often referred to as a bit mask. This is a
32-bit variable which typically has one bit set high corresponding to the pin it is meant to control. For
example, assume we want to manipulate P10, the pin mask would have a binary value of
%0100_0000_0000 (decimal value 1024, or hexadecimal value $400). We can use the LONG command in
the DAT section to assign a value to a variable using any one of these numerical methods:

PMask LONG %0100_0000_0000

PMask LONG 1024

PMask LONG $400

In general, individual bit mask variables tend to be more useful, but setting more than one bit high in a
variable does allow for the control of multiple pins using a single command. For example if we wanted to
simultaneously control P10 and P12 you would use a bit mask variable with a binary value of
%0001_0100_0000_0000 (decimal 5120, or $1400). With a bit mask variable defined with a single bit or
multiple bits we can now use it to manipulate that same bit or bits in DIRA and OUTA using a variety of
PASM commands.

To set bits contained in the bit mask variable high (1) in DIRA or OUTA without altering any others use the
OR command (p 327):

OR Value1, Value2

All 32 bits in Value1 are bitwise ORed with Value2 and the result stored back in Value1. Assuming we want
to set P10 as an output we would use DIRA as Value1 and PMask as Value2:

OR DIRA, PMask

 Value1: DIRA = %xxxxxxxx_xxxxxxxx_xxxxxxxx_xxxxxxxx

 Value2: PMask = %00000000_00000000_00000100_00000000

ORed Value1: DIRA = %xxxxxxxx_xxxxxxxx_xxxxx1xx_xxxxxxxx

The "x" bit designation means "doesn't matter". If a bit is low (0) in DIRA it will remain low after the ORing
it with any 0 in the pin mask and if it is high (1) it will remain high after the ORing it with a 0. The only bits
directly affected in DIRA are whose corresponding bits in PMask are set high since any value ORed with 1 is
1, which in this example is only bit 10. If bit 10 in DIRA was low or high it will be forced high by the OR
command.

26-Jan-2014 Page - 4 -

On the other hand, to set a specific bit low (0) in DIRA without altering the direction of any other bits use
the ANDN command (p 267):

ANDN Value1, Value2

All 32 bits in Value1 are bitwise ANDed with the inverted value (bitwise NOT) of Value2 and the result
stored back in Value1. Assuming we want to set P10 as an input pin we would use DIRA as Value1 and
PMask as Value2:

ANDN DIRA, PMask

The first step of ANDN command takes the inverse (bitwise NOT) of the PMask:
 Value2: PMask = %00000000_00000000_00000100_00010000

 !Value2: PMask = %11111111_11111111_11111011_11111111

The second part of the ANDN command takes !PinMask and ANDs it with DIRA:
 Value1: DIRA = %xxxxxxxx_xxxxxxxx_xxxxxxxx_xxxxxxxx

 !Value2: PMask = %11111111_11111111_11111011_11111111

ANDed Value1: DIRA = %xxxxxxxx_xxxxxxxx_xxxxx0xx_xxxxxxxx

Again, the "x" bit designation means "doesn't matter". If a bit is low (0) it will remain low after the ANDing
it with any bit set to a 1 in the inverted pin mask. Likewise, a high (1) bit will remain high after the ANDing
it with any bit set to 1 in the inverted pin mask. The only bits affected in DIRA are whose corresponding
bits in PMask are set low (0) after the bitwise NOT since any value ANDed with 0 is 0, which in this example
is only bit 10. If bit 10 in DIRA was low or high it will be forced low by the ANDN command.

The same OR and ANDN commands are used on OUTA to set output pins high (+3.3V) or low (0V). To set
an output pin high use the OR command:

OR OUTA, PMask

 Value1: OUTA = %xxxxxxxx_xxxxxxxx_xxxxxxxx_xxxxxxxx

 Value2: PMask = %00000000_00000000_00000100_00000000

 ORed Value1: OUTA = %xxxxxxxx_xxxxxxxx_xxxxx1xx_xxxxxxxx

To set an output pin low use the ANDN command:

ANDN OUTA, PMask

The first step of ANDN command takes the inverse (bitwise NOT) of the PMask:
 Value2: PMask = %00000000_00000000_00000100_00010000

 !Value2: PMask = %11111111_11111111_11111011_11111111

The second part of the ANDN command takes !PMask and ANDs it with OUTA:
 Value1: OUTA = %xxxxxxxx_xxxxxxxx_xxxxxxxx_xxxxxxxx

 !Value2: PMask = %11111111_11111111_11111011_11111111

ANDed Value1: OUTA = %xxxxxxxx_xxxxxxxx_xxxxx0xx_xxxxxxxx

To invert the state of an output pin use the XOR command:

XOR OUTA, PMask

If the output pin is already high (1) the XOR command makes it low (0):
 Value1: OUTA = %xxxxxxxx_xxxxxxxx_xxxxx1xx_xxxxxxxx

 Value2: PMask = %00000000_00000000_00000100_00010000

XORed Value1: OUTA = %xxxxxxxx_xxxxxxxx_xxxxx0xx_xxxxxxxx

If the output pin is already low (0) the XOR command makes it high (1):
 Value1: OUTA = %xxxxxxxx_xxxxxxxx_xxxxx0xx_xxxxxxxx

 Value2: PMask = %00000000_00000000_00000100_00010000

XORed Value1: OUTA = %xxxxxxxx_xxxxxxxx_xxxxx1xx_xxxxxxxx

26-Jan-2014 Page - 5 -

There is also a handy set of four MUX commands that can be used to conditionally set bits in DIRA and
OUTA based on a pin mask variable and the state of the C and/or Z flags:

MUXC Value1, Value2 Sets bits in Value1 equal to the C flag state (p 315)

MUXNC Value1, Value2 Sets bits in Value1 equal to the !C flag state (p 316)
MUXZ Value1, Value2 Sets bits in Value1 equal to the Z flag state (p 317)
MUXNZ Value1, Value2 Sets bits in Value1 equal to the !Z flag state (p 318)

Like in the OR and ANDN commands shown above the only bits affected in Value1 are those whose
corresponding bits in Value2 (the pin mask) are set high (1). All bits other bits in Value1 remain unaffected.
Prior to executing the MUX command we must first set the C and/or Z flags as desired. Many PASM
commands have the option of setting the C and Z flags based on the results of the instruction.

By way of example assume we are setting the output state of P10 high or low based on the value of the
variable CountNum. If CountNum is <15 set P10 high, and if CountNum equals or exceeds 15 set P10 low.
For this example using the CMP command provides a convenient way of setting the C and Z flags based on
the comparison of two unsigned values (p 272):

CMP Value1, Value2 wc, wz

If Value1 is less than Value2 and the WC is specified the C flag is set (1), otherwise the C flag is not set (0).
If Value1 equals Value2 and the WZ is specified the Z flag is set (1), otherwise it is not set (0). For this
example we want to compare the value in CountNum to 15:

CMP CountNum, #15 wc

If CountNum is less than 15 the C flag is set (1), if CountNum has a value of 15 or higher the C flag is not set
(0). In this case WZ was not specified so the Z flag result is not written. With the C flag now set use the
MUXC on OUTA to set the output of P10 based the C flag setting:

MUXC OUTA, PMask

Case 1: CountNum is <15, C flag is set (1) making all masked bits high (1):
 Value1: OUTA = %xxxxxxxx_xxxxxxxx_xxxxxxxx_xxxxxxxx

 Value2: PMask = %00000000_00000000_00000100_00000000

 MUXCed Value1: OUTA = %xxxxxxxx_xxxxxxxx_xxxxx1xx_xxxxxxxx

Case2: CountNum is =>15, C flag is not set (0) making all masked bits low (0):
 Value1: OUTA = %xxxxxxxx_xxxxxxxx_xxxxxxxx_xxxxxxxx

 Value2: PMask = %00000000_00000000_00000100_00000000

 MUXCed Value1: OUTA = %xxxxxxxx_xxxxxxxx_xxxxx0xx_xxxxxxxx

If we want the opposite effect on the output pins use the MUXNC command. In this case the !C flag is used
in place of C.

MUXNC OUTA, PMask

Case 1: CountNum is <15, C flag is set (1), thus !C is set (0) making all masked bits low (0):
 Value1: OUTA = %xxxxxxxx_xxxxxxxx_xxxxxxxx_xxxxxxxx

 Value2: PMask = %00000000_00000000_00000100_00000000

 MUXCed Value1: OUTA = %xxxxxxxx_xxxxxxxx_xxxxx0xx_xxxxxxxx

Case 2: CountNum is =>15, C flag is not set (0), thus !C is set (1) making all masked bits high (1):
 Value1: OUTA = %xxxxxxxx_xxxxxxxx_xxxxxxxx_xxxxxxxx

 Value2: PMask = %00000000_00000000_00000100_00000000

 MUXCed Value1: OUTA = %xxxxxxxx_xxxxxxxx_xxxxx1xx_xxxxxxxx

The MUXZ and MUXNZ commands work in the same way but using the status of the Z flag.

Other comparative commands include cmps, cmpx, cmpsx, cmpsub, test and testn. In addition, most other
commands have the ability to set the C and Z flags according to the resulting value.

26-Jan-2014 Page - 6 -

Methods for reading the status of an input pin in INA

Reading the status of a single input pin is typically done using the TEST command (p362):

TEST Value1, Value2 wc, wz

This command performs a bitwise AND of Value1 and Value2 and sets the Z and C flags based on the
ANDed value. If the WZ effect is specified, the Z flag is set (1) if the ANDed result is 0. If the WC effect is
specified, the C flag is set (1) if the result contains an odd number of high (1) bits. Since the C flag only
reflects the odd or even number of high bits in the result it will only work properly when the pin mask has a
single bit set. If two or more bits are set in the pin mask and they are both high in INA the AND result will
have even parity therefore the C flag result is 0.

If we want to see if a specific input pin is high or low use the TEST command on INA with a pin mask
variable. For example, assume we want to see if input pin P5 is set high or low. PMask should contain the
value %0010_0000:

TEST PMask, INA wc

Case 1: input pin P5 is low (0):
Value1: PMask = %00000000_00000000_00000000_00100000

Value2: INA = %xxxxxxxx_xxxxxxxx_xxxxxxxx_xx0xxxxx

ANDed result: = %00000000_00000000_00000000_00000000

 Result value = 0

 Z flag = 1 (result not written)

 C Flag = 0 even parity – no bit set(result written)

Case 2: input pin P5 is high (1):
Value1: PMask = %00000000_00000000_00000000_00100000

Value2: INA = %xxxxxxxx_xxxxxxxx_xxxxxxxx_xx1xxxxx

ANDed result: = %00000000_00000000_00000000_00100000

 Result value = 32

 Z flag = 0 (result not written)

 C Flag = 1 odd parity – one bit set(result written)

With the status of the input pin now captured in the C flag we can conditionally execute a subsequent
command or save the 0 or 1 C flag value in a variable. For example, if we are reading the input pin as a
form of data transmission we can use the RCL (p 333) or RCR (p 334) command to insert the value of the C
flag into a variable.

RCL Value, <#>N Shift bits in Value left “N” positions with vacated bits filled in with C flag value.

RCR Value, <#>N Shift bits in Value right “N” positions with vacated bits filled in with C flag

value.

Assuming the data bit transmission is coming in MSB to LSB we will want to insert the just read C flag result
in the LSB position to maintain proper bit order, therefore use the RCL command:

RCL ReadBits, #1

 Value: ReadBits = %abcxxxxx_xxxxxxxx_xxxxxxxx_xxxxxdef

 Rotate left 1 bit: ReadBits = %bcxxxxxx_xxxxxxxx_xxxxxxxx_xxxxdef?

Note that the value in bit 31 (a) is lost forever during the rotate left command (it gets sent to the proverbial
“bit bucket”). All other bit values are retained but shifted to the left by 1. Now the C flag value is inserted
into the vacated bit 0 (LSB) position:

Case 1: input pin was low so C flag is not set (0):
 C flag inserted: ReadBits = %bcxxxxxx_xxxxxxxx_xxxxxxxx_xxxxdef0

Case 2: input pin was high so C flag is set (1):
 C flag inserted: ReadBits = %bcxxxxxx_xxxxxxxx_xxxxxxxx_xxxxdef1

26-Jan-2014 Page - 7 -

On the other hand if the data bit transmission is coming in LSB to MSB we will want to insert the C flag
result in the MSB position to maintain proper bit order, therefore use the RCR command:

RCR ReadBits, #1

 Initial: ReadBits = %abcxxxxx_xxxxxxxx_xxxxxxxx_xxxxxdef

Rotate right 1 bit: ReadBits = %?abcxxxxxx_xxxxxxxx_xxxxxxxx_xxxxde

This time the value in bit 0 (f) is lost forever during the rotate right command. All other bit values are
retained but shifted to the right by 1. Now the C flag value is inserted into the vacated bit 31 (MSB)
position:

Case 1: input pin was low so C flag is not set (0):
 C flag inserted: ReadBits = %0abcxxxxxx_xxxxxxxx_xxxxxxxx_xxxcde

Case 2: input pin was high so C flag is set (1):
 C flag inserted: ReadBits = %1abcxxxxxx_xxxxxxxx_xxxxxxxx_xxxcde

In the case where the bits are coming in LSB to MSB we will probably be capturing fewer than 32 bits so
after the last bit is inserted into bit 31 in ReadBits we will need to shift the contents to the right moving the
first read bit (LSB) down to the 0 bit position. This can be done using the SHR command (p 348). Assume
we captured a 12-bit transmission (a-l), now the contents of ReadBits need to be shifted 20 bits to the right
(32-12=20 bits):

SHR ReadBits, #20

 Initial: ReadBits = %abcdefgh_ijklxxxx_xxxxxxxx_xxxxxxxx

Shift right 20 bits: ReadBits = %00000000_00000000_0000abcd_efghijkl

Note that in the above example 20 0's are shifted in from the left.

The INA is a read-only global register just like CNT. It not only reflects which input pins are at a voltage
above VDD/2, but also indicates which output pins are currently set high as well. As such, each cog has the
same view to the voltage status of all 32 I/O pins. Each active cog can "see" the status of all pins in INA
regardless of their input or an output designation in their local DIRA and OUTA registers. This feature can
be leveraged in a way so one cog can effectively communicate or coordinate activities with another cog.
For example cog A could wait for cog B to set a specific output pin high before performing some function by
monitoring that pin using INA and a pin mask.

Here are a couple of “quirks” regarding INA. The following command to write INA to a variable in main
RAM will not work:

WRLONG INA, MainAddr

However, this two-step method will work:

MOV Tmp, INA

WRLONG Tmp, MainAddr

And for the really oddity, this two-step method will also work:

MOV INA, INA

WRLONG INA, MainAddr

It has something to do with INA being a "shadow register" (and that is beyond my capability to explain).

26-Jan-2014 Page - 8 -

Summary of I/O pin manipulation commands

Set pins low (0) in DIRA (input pin) or OUTA (pin low) according to a pin mask variable:

ANDN DIRA, PMask Pins in PMask are set to inputs.

ANDN OUTA, PMask Output pins in PMask are set low (0V).

Set bits high (1) in DIRA (output pin) or OUTA (pin on) according to a pin mask variable:

OR DIRA, PMask Pins in PMask are set to outputs.

OR OUTA, PMask Output pins in PMask are set high (+3.3V).

Inverts bits in OUTA according to a pin mask variable:

XOR DIRA/OUTA, PMask Pins in PMask are toggled (low becomes high, and high becomes low).

Read the status of a single input pin in INA and insert the result (0 or 1) into the LSB of the variable
ReadBits:

TEST PinMask, INA wc

RCL ReadBits, #1

Read the status of a single input pin in INA and insert the result (0 or 1) into the MSB of the variable
ReadBits:

TEST PinMask, INA wc

RCR ReadBits, #1

