
 Zuni/Tam Web Based Monitoring System

Summery:

The Web Based Monitoring System will provide us the ability to monitor and control the following ship board

systems on the former USS Zuni/USGCC Tamaroa over the web while no one is on board for the following.

1. Monitor the 9 float switches connected to the 120VAC Bilge Alarm Panel for flooding conditions and be

able to silence outside alarm.

2. Monitor the two 3 Phase Circuit Breakers in the Switchboard for power outages.

3. Monitor 4 additional Bilge Float Switches when the power fails to the 120 VAC Bilge Alarm Panel.

4. Monitor the Addressable Fire Alarm Panel for alarm and trouble conditions and silence the horns on the

fire alarm panel.

5. Monitor and control the Solar Charging System.

The idea for this design started years ago, with the idea of monitoring our ship through text messages. But, the

problem was that most systems out there didn’t offer what we were looking for. Those systems ether didn’t

have the I/O we needed or it was pay by each text message that was sent, which would be a costly problem

when false alarms were trigger.

So, when I joined the Parallax Forums I noticed a text message GSM modem based monitoring system done by

forum member Kevin Brown and this give me the idea I was looking for. So, this pointed me to use a GSM

modem and have it connect to the Spinneret and I can have all the I/O I needed to meet our needs. This mint I

needed to make an I/O board that would work with the Spinneret and this pointed to me using the Propeller chip

for this board, which it would communicate to the spinneret.

But after talking to forum members like Mike Green, my idea of using the GSM modem may not work like I

was thinking it would. So, I looked at another GSM modem that had Ethernet that was on the board. But, I

needed something work without a lot of programming changes from the original. So, I had to make a decision

on how I am going to communicate with the Spinneret. So, I posted a question on the Parallax forums and Mike

G. replied with the answer I was looking for and this was to use a CBA250 4G/3G network router (made by

Cradle Point) that works with a standard USB modem and that pointed me to another product made by the same

company and it had IP pass through which works even better. This way it would provide another benefit and

that was Internet access for a space that has poor cell phone signal.

System Components:

This system includes the following

1. Cradle Point CBA250 4G/3G network router which provides the connection for the USB modem which

communicates with the Spinneret using the RJ45 jack and provides future internet connection using a 5

port Ethernet switch.

2. Parallax Spinneret Web Server for storing the web page content and communicating with the I/O board

(Propeller I/O Board) using the J6 connection which is used for bi-directional serial communication.

3. I/O board (Propeller I/O Board) which monitors the inputs and controls the outputs, which is

programmed using spin, which communicates alarm and status values to the Spinneret using bi-

directional serial. This can be expended in the future using RS-485 communications.

System Operation:

The monitoring system will operate as follows:

120VAC Bilge Alarm Inputs

If any of the 9 Bilge Alarm inputs are triggered for more than 3 seconds, it will do the following.

1. Turn on the Alarm Light that is connected at output 19 on the I/O board (Propeller Pin 22) and turn on

the RC-4 (K1) via the serial port on the I/O board (Propeller Pin 26).

2. Set a alarm value for that input in variable “txalarmval” and send that value via the serial port on the I/O

board (Propeller Pin 27) to the Spinneret (J6 connection) to be displayed on the web page after all bilge

inputs are scanned by the Propeller.

12VDC Bilge Alarm Inputs

When the shore power is off, the generators aren’t running, or the power breaker is off, or the bilge panel power

is turned off. This will cause the “acbilgeloss” relay to be in a de-energize state and cause the 12V battery to

provide backup power for the following bilge alarm inputs on the I/O board and will lockout the any other bilge

alarm inputs.

1. Input 3 (Propeller Pin 6) “Bilge2”

2. Input 5 (Propeller Pin 8) “Bilge4”

3. Input 9 (Propeller Pin 12) “Bilge8”

4. Input 10 (Propeller Pin 13) “Bilge9”

When any of the above inputs are triggered for more then 3 seconds and the “acbilgeloss” is still in the de-

energize state it will cause the Alarm Light that is connected at output 19 on the I/O board to turn on (Propeller

Pin 22) and turn on the RC-4 (K1) via the serial port on the I/O board (Propeller Pin 26) and will set a alarm

value in “txalarmval” for the following inputs

1. Input 3 “Bilge2” value for “txalarmval” is 10

2. Input 5 “Bilge4” value for “txalarmval” is 11

3. Input 9 “Bilge8” value for “txalarmval” is 12

4. Input 10 “Bilge9” value for “txalarmval” is 13

When any of the bilge alarm inputs are triggered and when another bilge alarm is triggered it will take priority

over the first input that was triggered. This means the value in the variable “txalarmval” is over written and the

new value is displayed on the webpage. This will apply for both modes of operation.

When the Alarm Light is on or the web page is looked at by the staff members of our group. They can be

silence in two ways in order to silence the outside horn and turn off the Alarm Light.

1. Push the Silence pushbutton that is connected at input 16 on the I/O board (Propeller pin 19), which will

turn off the horn and Alarm Light.

2. Push the Silence pushbutton that is on the web page, which sets a “b” in variable “rxsilence”, which will

turn off the horn and Alarm Light.

When the bilge alarm inputs (float switches) reset (return to normal) this will cause a value of 0 to set in the

variable txalarmval”

Fire Alarm System

If the Fire Alarm panel is in alarm, the alarm relay in the panel will trigger input 11 on the I/O board (Propeller

pin 14), which will then set a alarm value of 14 for this input in the variable “txalarmval” and send that value

via the serial port on the I/O board (Propeller Pin 27) to the Spinneret (J6 connection) to be displayed on the

web page after all alarm inputs are scanned by the Propeller.

When the Fire Alarm panel is in alarm, the panel itself stays in alarm until an on-call staff member from our

group is dispatched to the ship. The alarm value of 14 in “alarmval” will continue to be sent to the Spinneret to

keep the web page updated. While this is all happening, the outside Horn/Strobe can be silenced in two ways

until the Fire Alarm panel is reset by our on-call staff member from our group.

1. Push the Silence pushbutton that is connected at input 16 on the I/O board (Propeller pin 19), which will

turn on the Horn Silence relay at is connected the I/O board output 21 (Propeller pin 24).

2. Push the Silence pushbutton that is on web page, which sets a “f” in variable “rxsilence”

When the Fire Alarm panel is in trouble (not alarm) indicating that there is problem with the Fire Alarm panel

this will cause the trouble relay in the panel to trigger the I/O board input 12 (Propeller pin 15). This will set a

value of 1 in the variable “txstatval” and send that value via the serial port on the I/O board (Propeller Pin 27) to

the Spinneret (J6 connection) to be displayed on the web page after all alarm inputs are scanned by the

Propeller. This value will continue to be sent to the Spinneret to keep the web page updated until the trouble or

troubles on the Fire Alarm panel is addressed. The only other thing, other than bad smoke detectors that can

cause the Fire Alarm to be in trouble is the Horn silence relay being turned on due do a alarm on the Fire Alarm

panel or the relay removed form its socket.

Power Monitoring

When shore power is loss or the shore power breaker is turned off, or the circuit breaker to the 120VAC bilge

alarm panel is turned off or tripped, this will cause the “acbilgeloss” relay to be in a de-energize state, causing

this relay to triggered the I/O board input 1 (Propeller pin 4). This will set a value of 2 in the variable “txstatval”

and send that value via the serial port on the I/O board (Propeller Pin 27) to the Spinneret (J6 connection) to be

displayed on the web page after all alarm inputs are scanned by the Propeller.

When the Port Shore power breaker is turned off or power is lost (breaker being tripped or utility is lost) this

will cause the Port Shore power breaker relay in the main switchboard to de-energize, causing this relay to

triggered the I/O board input 13 (Propeller pin 16) for 10 seconds or more. This will set a value of 3 in the

variable “txstatval” and send that value via the serial port on the I/O board (Propeller Pin 27) to the Spinneret

(J6 connection) to be displayed on the web page after all alarm inputs are scanned by the Propeller.

When the Port power breaker is turned off or power is lost (breaker being tripped or utility is lost) this will

cause the Port Shore power breaker relay in the main switchboard de-energize, causing this relay to triggered

the I/O board input 14 (Propeller pin 17) for 2 seconds or more. This will set a value of 4 in the variable

“txstatval” and send that value via the serial port on the I/O board (Propeller Pin 27) to the Spinneret (J6

connection) to be displayed on the web page after all alarm inputs are scanned by the Propeller.

Propeller (Spin) Code:
I/O controller:

The code for the I/O controller is straight forward in which the code uses only two Full Duplex Serial objects

for to handle the serial ports. One is for the RS485 and the bi-directional serial to the Spinneret board and

another serial port for the RC-4 and any other I/O boards.

The I/O controller uses two methods like (one in Main repeat loop and one child for each of the inputs) this to

read the inputs and sets the comm. variables for the Spinneret and turn on the outside alarm light. Note this spin

code is shown for 5 out of the 9 inputs.

 PUB Main

 if ((timer1 < 30) and (ina[Acbilgeloss] == 0))

 Bilgeinput1

 pub Bilgeinput1

 timer1 := ++timer1 * ina[Bilge1] ' update timer1

 if timer1 == 30 ' looks for "timer1" = 30

 outa[Alarmlt] := 1 ' turns the Alarm Light on

 txalarmval := 1 ' 120VAC Bilge Panel input 1 alarm value

 ' to be transmitted to the spinneret

The I/O controller uses two methods like (one in Main repeat loop and one child for each of the inputs) this to

read also the inputs and sets the comm. variables for the Spinneret and turn on the outside alarm light, but it also

prevents the comm. variable from being sent to the Spinneret when the Acbilgeloss is on. Note this shown is

done for 4 out of 9 inputs

 Pub Main

 if (timer2 < 30)

 Bilgeinput2

 pub Bilgeinput2

 timer2 := ++timer2 * ina[Bilge2] ' update timer2

 if timer2 == 30 ' looks for "timer2" = 30

 outa[Alarmlt] := 1 ' turns the Alarm Light on

 'set_relay(%00, 1, 1) ' turns on RC4 relay "K1"

 if (ina[Acbilgeloss] == 1) ' 12VDC Bilge Panel loss relay de-energize

 txalarmval := 10 ' Acbilgeloss alarm value

 else

 txalarmval := 2 ' 120VAC Bilge Panel input 2 alarm value

 ' to be transmitted to the spinneret

The above code is design to be read when any one of the TimerX is not at its set point (less than 30). When it

reaches its set point the main code will not call its child method (such as Bilge1).

The I/O controller uses this code to read the input connected to the Fire Alarm panel alarm relay and will set the

comm. variable for the Spinneret and calls its child code when true. The child code allows the outside horn to be

silenced when the SilencePb is true, but the txalarmval is continue to be sent to the Spinneret.

 if ina[Faalarm] == 1

 FA_in_alarm

Pub FA_in_alarm

 txalarmval := 14 ' F/A panel panel alarm value

 if (ina[Silencepb] == 1)

 outa[Fahornsil] := 1

The I/O controller uses this Main method code to read the states of all of the inputs related to the Alarm inputs

and clears all the timers to “0” when “bilgestates” == 0 and sets txalarmval to 0, which is transmitted to the

Spinneret when all the inputs are in a reset state.

 bilgestates := ina[Faalarm..Bilge1] ' store the states of INA in "bilgestates"

 if bilgestates == %0000000000 ' wait for all "bilgestates" inputs to be off

 outa[Alarmlt] := 0 ' turn off Alarmlt

 'reset_rc4(%00) ' turns off all relays on the RC4

 timer1 := 0 ' clear all timers to 0

 timer2 := 0

 timer3 := 0

 timer4 := 0

 timer5 := 0

 timer6 := 0

 timer7 := 0

 timer8 := 0

 timer9 := 0

 txalarmval := 0 ' clear "txalarmval" to 0

 outa[Fahornsil] := 0 ' turn off Fahornsil when F/A panel panel

 ' is not in alarm

This I/O controller Main method code reads inputs related to the status inputs like the F/A Trouble, Acbilgeloss,

Port Shore Power Breaker and the Port Power Breaker (located in the main switchboard)

 if timer10 < 30 and statpos == 1

 FA_trouble

 if timer11 < 30 and statpos == 2

 AC_bilge_loss

 if timer12 < 100 and statpos == 3

 Port_pwr_loss

 if timer13 < 30 and statpos == 4

 Port_breaker_status

 if restimer == 6000

 timer10 := 0

 timer11 := 0

 timer12 := 0

 timer13 := 0

 restimer := 0

 statpos := 0

 statpos ++

 restimer ++

This I/O controller method controls when "txalarmval" and "txstatval" is transmitted to the Spinneret, by using

the variable “txpos” to control when it’s transmitted. This method is call twice in the main repeat loop in the

middle and at the end.

pub txcomm_control

 if txpos == 1 ' transmits "txalarmval" when txpos ==1

 serial.dec(txalarmval)

 serial.tx (13) ' sends a carriage return

 if txpos == 2 ' transmits "txstatval" when txpos == 2

 serial.dec(txstatval)

 serial.tx (13) ' sends a carriage return

 if txpos == 4 ' resets "txpos" to 0 when "txpos" == 3

 txpos := 0

 txpos ++ ' advances txpos which controls when

 ' serial is transmitted

This I/O controller method receives the Spinneret commands using the variable “rxsilence” for resetting and

silencing the I/O controller. This method is call at the beginning of the repeat loop in the Main method.

pub spinneret_control

 ' spinneret remote control

 rxsilence := serial.rx

 case rxsilence

 "f":

 outa[Fahornsil] := 1 ' remotely silence outside F/A horn

 'set_relay(%00, 2, 1) ' turns off K2 relay on the RC4

 "b":

 outa[Alarmlt] := 0 ' turns off the Alarm Light

 'set_relay(%00, 1, 0) ' turns off K1 relay on the RC4

 "x":

 outa[Alarmlt] := 0 ' turns off the Alarm Light

 outa[Fahornsil] := 0 ' resets outside F/A horn

 'reset_rc4(%00) ' turns off all relays on the RC4

 'reboot ' software reboot

Spinneret code:

The Spinneret code that was going to be used is being finished at this time, this document is being written. But,

I used the Spinneret Demo code as an example, which I changed for testing and provide everyone an idea how

are system is going to work.

What I did, was I kept the first part of the code from Spinneret Demo and added this for looking at the serial

port (J6), which uses this method for receiving “txalarmval” and “txstatval”, which is called at the beginning of

the Main repeat loop.

Pub IOControllerInVal

 if txrxpos == 1

 txalarmval := Serial.rx

 PauseMSec(200)

 if txrxpos == 2

 txstatval := Serial.rx

 PauseMSec(200)

And change this part of the Main method repeat loop to call the different parts of the HTML code based the

variables “txalarmval” and “txstatval”.

 bytemove (@num1,STR.numberToDecimal(txalarmval, 4),5) ' show 120VAC alarm number in html code

 bytemove (@num2,STR.numberToDecimal(txalarmval, 4),5) ' show 12VDC alarm number in html code

 StringSend(0, @html1)

 StringSend(0, @html2)

 if txalarmval >= 1 or txalarmval <= 9

 StringSend(0, @html3) ' Show 120VAC Bilge Panel alarm values

 if txalarmval >= 10 or txalarmval <= 13

 StringSend(0, @html4) ' Show 12VDC Bilge Panel alarm values

 if txalarmval >= 14

 StringSend(0, @html5) ' Show F/A Panel in alarm

 if txstatval == 1

 StringSend(0, @html6) ' Show F/A Panel in trouble

 if txstatval == 2

 StringSend(0, @html7) ' Show 120VAC Bilge Panel is Offline

 if txstatval == 3

 StringSend(0, @html8) ' Show Port Shore Pwr Breaker is Off

 if txstatval == 4

 StringSend(0, @html9) ' Show Port Pwr Breaker is Off

Also change this part of the repeat loop to control when to open the socket on the W5100 chip.

 ' we don't support persistent connections when txalarmval == 0

 ' and txstatval == 0, so disconnect open socket here

 if txalarmval == 0 or txstatval == 0

 W5100.SocketTCPdisconnect(0)

 PauseMSec(25)

 'Connection terminated

 W5100.SocketClose(0)

 PST.Str(string("Connection complete", PST#NL, PST#NL))

Also change this part of the SetButtons method, which controls silencing of the alarms.

PUB SetButtons 'Toggle button state and dynamically change html code

 If ButtonSelection == 24 'Silence button state when "alarmvar" >= 1

 Silence := 1 - Silence

 Serial.tx("b")

 Serial.tx(rxsilence)

 If ButtonSelection == 25 'F/A Horn button state when "alarmvar" = 14

 FAHorn := 1 - FAHorn

 Serial.tx("f")

 Serial.tx(rxsilence)

 If ButtonSelection == 26 'Resets to I/O controller when toggled

 IOReset := 1 - IOReset

 Serial.tx("x") 'Sets "rxsilence" to "x"

 Serial.tx(rxsilence) 'Sends "x" to I/O controller

 If Silence == 0

 bytemove(@buttons[86+70*0],@RED,5) 'When "txalarmval" >= 1 then do this

 Else

 bytemove(@buttons[86+70*0],@GREEN,5)'When "txalarmval" = 0 then do this

 If FAHorn == 0

 bytemove(@buttons[86+70*1],@RED,5) 'When "txalarmval" = 14 then do this

 Else

 bytemove(@buttons[86+70*1],@GREEN,5)'When "txalarmval" <= 14 then do this

 If IOReset == 0

 bytemove(@buttons[86+70*1],@RED,5)

 Else

 bytemove(@buttons[86+70*1],@GREEN,5)

Other Uses:

Systems like this are used today in many applications and they are:

1. Energy Management Systems

2. Security Systems

Photos and Drawings:

I will provide this one photo of the I/O Controller, since the Spinneret is located down at are other member from

are group house where it’s being programmed and tested.

The Spinneret will be connected at SIO2, which is just to the right of the SD card slot on the Propeller Platform.

The inputs where the Bilge floats will be connected too are on the top and the outputs are where Alarm

Horn/Light relay and F/A Horn Silence relay are connected on the bottom right. The 12VDC power supply that

is located on the left of the Propeller Platform will be able to supply 1 amp of power for the Spinneret and the

Propeller Platform from the +VOUT on the I/O board.

The next 3 pages of drawing below show how everything is interfaced to the Propeller Platform.

