. FACS - A FORTH ANALOG COMPUTER SIMULATOR

Nicholas G. Lordi
College of Pharmacy
Rutgers University
Piscataway, N.J. 08854

Forth provides a natural programming environment for creating
special purpose simulation languages. FACS is a block-oriented
continuous-system simulation language implemented in both integer and
floating-point versions., Forth versions of CSSL's (including FDARE, a
Forth equation-oriented CSSL) have the following advantages over CSSL's
written in Pascal and Fortran: minimal memory requirements, keyboard
alteration of model parameters without recompilation, and extensibility.
Only the integer version, programmed in F83 Forth, will be discussed.

In developing a FACS simulation, all state variables should be
scaled so that they do not exceed one unit (= 100,000,000) during a
simulation run. Scalars, in contrast to state variables, are defined so
that 1 scalar unit = 10000, All numbers except integers are entered and
displayed in decimal format, using no more than 4 decimal places. This
restriction is consistent with the degree of accuracy attainable with
reasonable integration step sizes (ca., 0.01). The current version
allows output to be displayed or printed as well as low resolution
character plotting on a printer.

Table 1 lists the FACS vocabulary included in the integer version..
Transcendental functions, which have been implemented using series
approximations, are generally accurate to 7 decimal places in the range
0 to 1. Unlike other block-oriented CSSL's, there is no limit on the
number of or specific blocks which may be used in a simulation. Special
block-defining words are used to define integrators, arbitrary function
generators, tables, differentiators, track/store elements, and delays.
The integrator block implements the second-order Runge-Kutta algorithm.

Definitions of the three principal FACS data types are listed below.
Bartholdi's "TO" solution is used to simplify use of FACS variables.
DIO? is a double number version of TO?. #IN converts a decimal number to
a scaled integer.

INTEGER (S — n) CREATE , DOES> TO? ;

SCALAR (S — n) #IN INTEGER ;

VECTOR (S n — d) 1+ CREATE 4 * DUP HERE SWAP ERASE
ALIOT DOES> SWAP 4 * 4 DIO? ;

The Van der Pol equation simulation outlined in Figure 1 illustrates
how FACS is used as well as some of the implementation details. The FACS
user should first scale the problem so that state variables do not
exceed 1 unit, then construct an analogous block diagram. The first
step in developing a FACS program is to set the number of nodes to 3+
the number of blocks required by the simulation. The first 3 nodes are
reserved for system use. The user must define 2 vectors: one to store
current block outputs, e.g., Z(), and a second which stores initial
conditions assigned to integrator blocks, e.g., Z0(). These definitions
have been deferred to minimize system memory allocation, thereby
avoiding recompilation for large problems. Execution of SET-Y and SET-IC
resolve the deferred vectors.

147

: SET-Y (S —) DEFINED DROP IS Y() ;

Two system parameters must then be set. COMINT is the communication
interval, i.e., the number of integration steps executed before output
is requested. DI/2 is one-half the integration step interval. TO is
used to assign values to scalars (always in decimal format) or integers.
Model parameters are defined as scalars (e.g., K); initial conditions
other than 0 are assigned (e.g., integrator block 5 is set to 0.5 unit);
and the specific blocks for which output is requested are identified by
PR-NODE.

Each integrator block must be separately named using the word RK2;
thus, only those integrators required by the simulation need be defined.
Execution of nl n2 <name> twice replaces Y(nl) with the integral of
¥(n2), since the 2nd-order integrator requires two passes. Each
integrator allocates memory space for a flag which identifies the pass
and for temporary storage of the previous integrator output.

: RR2 (S nl n2 —) CREATE 0 ,4AU.OI‘DOES>TOPFA(storespfa)
Y() DI/2 10000 M*/ (multiplies input vector by scalar 3t
PFA @ 0= IF (lst pass) 2 PICK Y() 2DUP PFA 2+ 2! D+
ELSE (2nd pass) D2* PFA 2+ 2@ D+ 0 PFA ! (restore flag)
THEN -> ROT Y() (update output) 7

The simulation model (e.g., VDPOL) is defined using MODEL: (a
redefinition of ":"). The general format for block program statements
is: scalar out-node in-nodel in-node2 ... word. Figure 2 shows an
example of displayed output. SIMULATE <model name> selects the named
r'r'aodel for simulation by vectoring to the system defined dummy word
model”.

model NOOP ;

SIMULATE (S —) DEFINED DROP ['] model 2+ ! ;

RUN (S n —) RESET INITIALIZE CONTINUE MESS1 ;
INITIALIZE (S —) DI/2 TODT' 0 TO DT/2 model model
DT' TO DT/2 CR output ;

¢+ CONTINUE (S n —) 0 DO HALT COMINT 0 DO model TIME
model TIME LOOP output LOOP ;

oo oo o0 oo

DISPLAY selects output in tabular form on the current output device;
alternatively, PLOT would provide low resolution character plotting of
selected blocks. RUN controls the simulation: it sets all initial
conditions (RESET), it calculates the output of all other blocks by
calling "model" twice with DI/2 temporarily set to 0 (INITIALIZE), and
executes the simulation’ (CONTINUE) n*COMINT times (in this case, 500) .
The 2nd-order integrator requires that "model TIME" be executed twice.
TIME increments Y(0) by DI/2 (node 0 is reserved for the time function).
HALT suspends a run when any key is pressed, continues if any key is
pressed again except for CR which aborts the run. Each time "output" is
called, results will be displayed (or plotted). When a run is
completed, execution of n CONTINUE will provide further output.
Parameter changes may be made or initial conditions altered without
recompilation. ‘

In FACS, one may easily collapse complex problems into single

148

words, which can subsequently be used as blocks in more complicated
similations. For example, FIN-DIF (Figure 3) is a block—defining word
(really a special purpose integrator) which solves the 1l-dimensional
diffusion problem using the difference-differential equation method. It
is used in the form n FIN-DIF <name>, where n is the number of stations.
Execution of RECT/SPHER/CYLIN nl n2 <name> (where nl is the output and
n2 is the input boundary node) solves Fick's Second Law in rectangular,
spherical, or cylindrical coordinates, depending on which word is first
executed. DX and D/DX2 are user modifiable parameters.

TABLE 1 - FACS VOCABULARY

—Data Types _1/0 _ Block-Defining Words
INTBGER NODE ASSIGN-IC INITIALIZE DISPLAY DELAY RK2
LABEL SCALAR ASSIGN-Y RUN PLOT DIF TABLE
MATRIX = VECTIOR CONTINUE SIMULATE PR-NODE FIN-DIF T/S
HALT TIME sy P E FUNCTGEN
Blocks System Nodes
ABSV. GAIN INV OFFSET POT RAND STOP T
DIV MULT SQR SQRT SUM YHEX 10%* +REF
ARCT COS EXP IN LOG SIN OREF
BANG CMP DEAD LIMIT SWITCH +CLIP —CLIP ~REF
Figure 1

Van der Pol Eguation

2
dZ o QZ Z 20
= + KZ i)dt +

BLOCK DIAGRAM

B

o 7 K

sy bl e R]
REhC T

=== -REF

FACS PROGRAM 11 NODES
11 VECTOR Z() 11 VECTOR Z0()
SET-Y Z() SET-IC Z0()
0.001 TO DI/2 100 TO COMINT
0.5 SCALAR K
5 0.5 ASSIGN-IC 5 4 11 PR-NODE
RR2 DZ/DT RR2 Z

MODEL: VDPOL 4 11 DzZ/DT 54 Z 6 5 SQR 7 6 —-REF SUM
K87 POT 9 48 MULT 10 95 sSuM 11 10 INV ;

SIMULATE VDPOL Blocks 2 2
DISPLAY 5 RUN i 5 (2) 4 (dz/dt) 11 (4 z/at”")
0 0.5000 0 -0.5000
0.2 0.4896 -0.1031 -0.5288
0.4 0.4582 -0.2104 -0.5413
0.6 0.4052 -0.3186 -0.5383
0.8 0.3307 -0.4247 -0.5198
1.0 0.2354 -0.5254 -0.4836
Figure 3
27 LIS 28 LIST
Scr # 27 A:FACS.BLK ,
0 \ special functions - finite-difference block 9May86ngl
0 INTEGER I1 0 INTEGER BNO 0 INTEGER BNN

CIN (S —n) BNO I1 + BNN BNO - + 7
COUT (S—n) BNOIL+;
POUT (S =—n) PFA 2+ I1 1-4 * + ;
0. SCALAR X0 1. SCALAR DX 0.01 SCALAR D/DX2
VARIABLE CORD-TYPE
s CALC-RDR (S —)
COuUT 1+ ¥Y() ©ouT 1- ¥() D- DX 10000 M*/ 10000 I1 DX *
X0 + M*/ ;
: (RECT) (Ss—d) NXOP ;
: (SPHER) (sd—ad4d) CAILC-RDR D+
: (CYLIN) (sd—d) CAILC-RDR 1 2 M*/ D+ ;
: RECT (S —) ['] (RECT) CORD-TYPE ! ;
s SPHER (S —) ['] (SPHER) CORD-TYPE !
g P]Eﬂm)wmﬂﬂE!

e
M ROHOWOIAOULEWNH
oo 600 o0

e o

&

e L=
WOV NAOUIBWNHOR

28 A:FACS.BLK

\ finite-difference block 9May86ngl
: FIN-DIF S Ml Rg =)

CREATE 0 , DO 0. , , LOOP DOES> TO PFA TO BNO

TO BNN BNN BNO - 1 DO I TO I1 CIN Y() DI/2 10000 M*/
PFA @ 0= IF COUT Y() 2DUP POUT 2! D+

EISE 2 1 M*/ POUT 2@ D+ THEN 2DUP

COUT TO Y() 2 1 M*/ DNEGATE COUT 1- ¥() D+ COUT 1+ Y()

D+ CORD-TYPE @ EXECUTE D/DX2 10000 M*/ CIN TO ¥Y()

LOOP PFA @ 0= PFA ! ;

A 2nd-order Runge-Kutta integrator which simulates a 2nd-order
partial differential equation by solving n equations of the
form (e.g., in rectangular co-ordinates) :

b
A3
\
\
h
)
A

dUeceD ot il i,
e __a.'é__:z_x.z (UJ_—L 2U1+ UH-i)

150

i =

