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I was surprised a while ago by 
what I heard in a coffee break 
conversation during a C++ 
course. The attendees were spec-
ulating on the relevance of C++ 
to embedded systems, and the 
misconceptions that surfaced 
drove me ultimately to write this 
article. 

Some perceive that C++ has 
overheads and costs that render 
it somehow unsuited to embed-
ded systems programming, that 
it lacks the control and brevity of 
C, or that, while it may be suited 
to some niche applications, it 
will never displace C as the lan-
guage of choice for embedded 
systems. 

These perceptions are wrong. 
Where compilers and other tools 
are adequate, C++ is always 
preferable to C as an implemen-
tation language for embedded 
systems. While doing everything 
that C does, it offers greater op-
portunities for expression, en-
capsulation, re-use, and it even 
allows size and speed improve-
ments that are impractical in C. 

Why, then, do these percep-
tions persist? The main reason 
is that when people form their 
opinions, they know a lot more 
about C than about C++. They 
have read some books, written 
some code, and are competent 
at using the features of C++, 
but they lack the knowledge of 
what is happening under the 
hood, the familiarity that allows 
one to visualise the disassembly 
while typing source or even 
while formulating a design. It is 
to these people that this article 
is addressed. 

This article aims to replace ex-
aggerated claims and misapplied 
generalisations with informed 
comment. It supports the view 
that C++, used appropriately, is 

superior to C for embedded sys-
tems programming. 

It aims to provide detailed 
understanding of what C++ 
code does at the machine level, 
so that readers can evaluate for 
themselves the speed and size 
of C++ code as naturally as they 
do for C code. 

To examine the nuts and 
bolts of C++ code generation, 
I will discuss the major features 
of the language and how they 
are implemented in practice. 
Implementations will be illus-
trated by showing pieces of C++ 
code followed by the equivalent 
(or near equivalent) C code. 

I will then discuss some pitfalls 
specific to embedded systems 
and how to avoid them. I won’t 
discuss the uses and subtleties 
of C++ or object-oriented (OO) 
design, as these topics have 
been well covered elsewhere. 

The Myths 
Some of the perceptions that dis-
courage the use of C++ in embed-
ded systems are: 
•   C++ is slow 
•   C++ produces large binaries 
•   Abstraction leads to 
 inefficiency 
•   Objects are large 
•   Virtual functions are slow 
•   C++ isn't ROMable 
•   Class libraries make large 
 binaries 

Some of these perceptions are 
exaggerated concerns. Others are 
just wrong. When the details of 
C++ code generation are exam-
ined in detail, it will be clear what 
the reality behind these myths is. 

Anything C can do, C++ can 
do better 
The most obvious property of 
C++ is so obvious that it’s often 
overlooked: C++ is a superset of 
C. If you write a code fragment 
(or an entire source file) in the C 
subset, the compiler will act like 

a C compiler and the machine 
code generated will be exactly 
what you would expect from a C 
compiler. 

This simple point invalidates 
any claims that a system can be 
implemented in C, but not in 
C++. In practice, existing C code 
can typically be re-compiled 
as C++ with about the same 
amount of difficulty that adopt-
ing a new C compiler entails. 

This also means that migrat-
ing to C++ can be done gradu-
ally, starting with C and working 
in new language features at your 
own pace. Although this isn’t the 
best way to reap the benefits of 
OO design, it minimises short 
term risk and it provides a basis 
for iterative changes to a work-
ing system. 

Front end features: a free 
lunch 
Many features of C++ are strictly 
front end issues and have no ef-
fect on code generation. The ben-
efits conferred by these features 
are therefore free of cost at run 
time. These features include use 
of the keywords const, private, 
protected, and public, which al-
low the programmer to prevent 
misuse of interfaces. No physical 
difference exists between private, 
protected, and public members. 
Neither is there a difference 

between const and non-const 
data. These specifiers allow the 
programmer to prevent misuse 
of data or interfaces through 
compiler-enforced restrictions. 

Default arguments to func-
tions are another neat, free front 
end feature. The compiler inserts 

Listing 1

Function name 
overloading.
// C++ function name 
overload example
void foo(int i)
{
//...
}
void foo(char* s)
{
//...
}
void main()
{
foo(1);
foo(“Hello world”);
}

Listing 2

Function name 
overloading in C.
/* C substitute for */
/* function name over-
load */
void foo_int(int i)
{
/*... */
}
void foo_charstar(char* 
s)
{
/*... */
}
void main()
{
foo_int(1);
foo_charstar(“Hello 
world”);
}

Listing 4

C substitute for trivial class 
with member function.
/* C substitute for 
trivial class foo */
struct foo
{
int x;
};
void bar_foo(struct foo* 
this)
{
this->x = 0;
}

Listing 3

A trivial class with 
member function.
/ A trivial class
class foo
{
private:
int x;
public:
void bar();
};
void foo::bar()
{
x = 0;
}
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default arguments to a function 
call, where none are specified by 
the source. 

A less obvious front end fea-
ture is function name overload-
ing. Function name overloading 
is made possible by a remarkably 
simple compile-time mecha-
nism. The mechanism is com-
monly called name mangling, 
but has been called name deco-
ration by those who have noth-
ing better to do than sanitise 
perfectly good terms. Anyone 
who has seen a linker protesting 
the absence of ?foo@@YAHH@
Z knows which term is more 
appropriate. Name mangling 
modifies the label generated for 
a function using the types of the 
function arguments, or function 
signature. So a call to int foo(int) 

generates a reference to a label 
such as ?foo@@YAHH@Z, while 
a call to a function void foo(int) 
generates a label like ?foo@@
YAXH@Z and a call to a function 
void foo(bar*) generates a label 
like ?foo@@YAXPAU bar@@@
Z. Name mangling ensures that 
functions aren’t called with the 
wrong argument types and it 
also allows the same name to 
be used for different functions 
provided their argument types 
are different. 

Listing 1 shows a C++ code 
fragment with function name 
overloading. There are two func-
tions called foo, one taking an int 
argument, the other taking a char* 
argument. 

Listing 2 shows how this 
would be implemented in C. 

Function names are altered to 
add argument types, so that the 
two functions have different 
names. 

In C++, name mangling is au-
tomatic, but in a C substitute, it 
would be the responsibility of the 
programmer. 

Classes, Member Functions, 
and Objects 
Classes and member functions are 
the most important new concept 
in C++. Unfortunately, they are 
usually introduced without ex-
planation of how they are imple-
mented, which tends to disorient 
C programmers from the start. In 
the subsequent struggle to come 
to terms with OO design, hope of 
understanding code generation 
quickly recedes. 

Behind the protection and 
scoping, a class is almost the 
same as a C struct. Indeed, in 
C++, a struct is defined to be a 
class whose members are public 
by default. A member function is 
a function that takes a pointer to 
an object of its class as an implicit 
parameter. So a C++ class with a 
member function is equivalent, 
in terms of code generation, to a 
C struct and a function that takes 
that struct as an argument. 

Listing 3 shows a trivial class 
foo with one member variable x 
and one member function bar(). 

Listing 4 shows the C substi-
tute for Listing 3. Struct foo has 
the same member variable as 
class foo and the member func-
tion foo::bar() is replaced with 
a function bar_foo(struct foo*). 

Listing 5

A simple string class featuring constructors, 
destructors, operator overloading, new, and delete.
// A simplified string class
#include 
#include 
using namespace std;
class String {
private:
char* data;
unsigned len;
public:
String();
~String();
unsigned length() const;
String& operator=(const char* s);
};
inline unsigned String::length() const
{
return len;
};
String::String() {
len = 0;
data = 0;
}
String::~String() {
if (data != 0)
delete [] data;
}
String& String::operator=(const char* s) {
len = strlen(s);
data = new char [ len+1 ];
if (data == 0)
len = 0;
else
strcpy(data, s);
return *this;
}
void main() {
String s;
s = “Hello world”;
cout 
<
<
s.length();
}

Listing 6

C substitute for simple string class.
/* C substitute
for simplified string class */
#include 
#include 
#include 
struct String {
char* data;
unsigned len;
};
#define length_String(s) ((s)->len)
void StringConstructor(String* this) {
this->len = 0;
this->data = 0;
}
void StringDestructor(String* this) {
if (this->data != 0)
free(this->data);
}
String operatorEquals_String_const_char_star(
String* this, const char* s) {
this->len = strlen(s);
this->data = (char*) malloc(
(this->len+1) * sizeof(char));
/*
If char had a constructor, */
/* it would be have to be */
/* called here. */
if (this->data == 0)
this->len = 0;
else
strcpy(this->data, s);
return *this; 
}
FILE*
operatorShiftLeft_ostream_unsigned(FILE*,
unsigned);
void main() {
String s;
StringConstructor(&s);
operatorEquals_String_const_char_star(
&s, “Hello world”);
operatorShiftLeft_ostream_unsigned(stdout,
length_String(&s));
StringDestructor(&s);
}
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Note the name of the argument 
of bar_foo(struct foo*) has been 
chosen as this, which is a key-
word in C++, but not in C. The 
choice is made deliberately to 
highlight the point that in C++, 
an object pointer named this is 
implicitly passed to a member 
function. 

An object in C++ is simply 
a variable whose type is a C++ 
class. It corresponds to a vari-
able in C whose type is a struct. 
A class is little more than the 
group of member functions that 
operate on objects belonging to 
the class. At the machine code 
level, data is mostly made up of 
objects and code is mostly made 
up of classes. 

Clearly, arranging code into 
classes and data into objects 
is a powerful organising prin-
ciple. Dealing with classes and 
objects is inherently just as ef-
ficient as dealing with functions 
and data. 

Constructors and Destructors 
In C++, a constructor is a member 
function guaranteed to be called 
when an object is instantiated or 
created. This typically means the 
compiler generates a constructor 
call at the point where the object 
is declared. Similarly, a destructor 
is guaranteed to be called when 
an object goes out of scope. So a 
constructor typically contains any 
initialisation that an object needs 
and a destructor does any tidying 
up needed when an object is no 
longer needed. 

The insertion of construc-
tor and destructor calls by the 
compiler outside the control of 
the programmer is something 
that makes the C programmer 
uneasy at first. Indeed, program-
ming practices to avoid exces-
sive creation and destruction of 
so-called temporary objects are 
a preoccupation of C++ pro-
grammers in general. However, 
the guarantee that constructors 
and destructors provide-that 
objects are always initialised and 
are always tidied up-is generally 
worth the sacrifice. In C, where 
no such guarantees are provid-
ed, the consequence is frequent 

initialisation bugs and resource 
leakage. 

Inline Functions 
Inline functions are a safer and 
more powerful substitute for C 
macros in many situations. It is 
rare to see a macro that has local 
variables, and rightly so, because 
macros rapidly become illegible. 
Inline functions, by contrast, have 
the legibility and safety of ordi-
nary functions. Clearly, indiscrimi-
nate use of inline functions can 
lead to bloated code, and novice 
C++ programmers are invariably 
cautioned on this point. 

However, appropriate use 
of inline functions can improve 
both size and speed. To estimate 
the code size impact of an inline 
function, estimate how many 
bytes of code it takes to imple-
ment it and compare that to 
the number of bytes needed to 
do the corresponding function 
call. Also consider that compiler 
optimisation can tilt the balance 
dramatically in favour of the 
inline function. If you conduct 

actual comparisons studying 
generated code with optimi-
sation turned on, you may be 
surprised by how complex an 
inline function can profitably be. 
The break-even point is often far 
beyond what can be expressed 
in a legible C macro. 

Operator Overloading 
A C++ compiler substitutes a 
function call when it encounters 
an overloaded operator in the 
source. Operators can be over-
loaded with member or global 
functions. So foo+bar is evaluated 
to be operator+(foo, bar) or foo.

Listing 9

Virtual functions.
// Classes with virtual functions
class A {
private:
int value;
public:
A();
virtual int f();
};
A::A() {
value
= 0;
}
int A::f() {
return 0;
}
class B : public A {
public:
B();
virtual int f();
};
B::B() {
}
int B::f() {
return 1;
}
void main() {
B b;
A* aPtr = &b;
a->f();
}

Listing 8

C substitute for inheritance.
/* C Substitute for inheritance */
struct A {
int value;
};
void AConstructor(struct A* this) {
this->value = 1;
}
int f_A(struct A* this) {
return this->value;
}
struct B {
struct A a;
int secondValue;
};
void BConstructor(struct B* this) {
AConstructor(&this->a);
this->secondValue = 2;
}
int g_B(struct B* this) {
return this->secondValue;
}
void main() {
B b;
BConstructor(&b);
f_A ((struct A*)&b);
g_B (&b);
}

Listing 7

Inheritance.
// Simple example of in-
heritance
class A {
public:
A();
int f();
private:
int value;
};
A::A() {
value = 1;
}
int A::f() {
return value;
}
class B : public A {
private:
int secondValue;
public:
B();
int g();
};
B::B() {
secondValue = 2;
}
int B::g() {
return secondValue;
}
void main() {
B b;
b.f();
b.g();
}
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operator+ (bar), which in terms of 
code generation amounts to the 
same thing. Operator overload-
ing is a front end issue and can be 
viewed as a function call for the 
purposes of code generation. 

New and Delete 
In C++, new and delete do the 
same job as malloc() and free() in 
C, except that they guarantee con-
structor and destructor calls. They 
also tend to be better-suited to 
frequent use with small quantities 
of memory than older implemen-
tations of malloc() and free(). 

Simplified String Class 
To illustrate the implementation of 
a class with the features we’ve dis-
cussed, let’s consider an example 
of a simplified C++ class and its C 
alternative. 

Listing 5 shows a string class 
featuring a constructor and de-
structor, operator overloading, 
new and delete, and an inline 
function. 

Listing 6 is a C substitute for 
the string class shown in Listing 5. 
The inline function String::length() 
is replaced by the macro length_
String(). Operator overloads 
String::operator=(const char*) 
and operator < < (ostream&, int) 
are replaced with function calls 
operatorEquals_String_const_ 
char_star(String*, const char*) and 
operator ShiftLeft_ostream_un-
signed (ostream*, int) respectively. 
The constructor and destructor 
must then be called by the user of 
the class, rather than being added 
automatically by the compiler. 

See how much harder to read 
the function main() is in Listing 
6 than in Listing 5 and consider 
how much more danger there is 
of a bug occurring. Consider how 
much worse the problem would 
be for a more realistic string class. 
This is why C++ and the object 
paradigm are so much superior to 
C and the procedural paradigm for 
partitioning complex problems. 

Next, consider that the code 
and data generated by Listing 5 
is just as small and just as fast as 
that generated by Listing 6. It is 
also safer, more coherent, more 
readable, and more maintainable. 
Of the C++ features discussed so 

far, all confer substantial benefit at 
no run-time cost. 

Inheritance 
In discussing how C++ imple-
ments inheritance, we will limit 
our discussion to the simple case 
of single, non-virtual inheritance. 
Multiple inheritance and virtual 
inheritance are more complex and 
their use is rare by comparison. 

Let’s consider the case in which 
class B inherits from class A. (We 
can also say that B is derived from 
A or that A is a base class of B.) 

We now know what the inter-
nal structure of an A is. What is the 
internal structure of a B? An object 
of class B is made up of an object 
of class A, with the member data 
of B tacked on at the end. In fact, 
the result is the same as if the B 
contains an A as its first member. 
Therefore, any member functions 
of class A called on an object of 
class B will work properly. When 
an object of class B is constructed, 

the class A constructor is called 
first and the reverse happens with 
destructors. 

Listing 7 shows an example of 
inheritance. Class B inherits from 
class A and adds the member 
function B::g() and the member 
variable B::secondValue. 

Listing 8 shows how this 
would be achieved in C. Struct 
B contains a struct A as its first 
member, to which it adds a vari-
able secondValue. The function 
BConstructor(struct B*) calls 
AConstructor to ensure initialisa-
tion of its “base class.” Where the 
function main() calls b.f() in Listing 
7, f_A(struct A*) is called in Listing 
8 with a cast. 

It is startling to discover that 
the rather abstract concept of 
inheritance corresponds to such 
a straightforward mechanism. 
The result is that appropriately de-
signed inheritance relationships 
have no run-time cost in terms of 
size or speed. 

Inappropriate inheritance, 
however, can make objects larger 
than necessary. This is most likely 
to arise in class hierarchies, where 
a typical class has several layers 
of base class, each with its own 
member variables. 

Virtual Functions 
Virtual member functions allow us 
to derive class B from class A and 
override a virtual member func-
tion of A with one in B and have 
the new function called by code 
that knows only about class A. 
Virtual member functions provide 
polymorphism, which is a key fea-
ture of OO design. 

Virtual functions have been 
controversial. It would seem that 
they exact a price for the benefit 
of polymorphism. Let’s see, then, 
how they work and what the 
price is. 

Virtual functions are imple-
mented using an array of func-
tion pointers called a vtable for 
each class that has virtual func-
tions. Each object of such a class 
contains a pointer to the class’s 
vtable. This pointer is put there 
by the compiler and is used by 
the generated code, but it isn’t 
available to the programmer 
and it can’t be referred to in 
the source code. Inspection of 
objects with a low-level debug-
ger will reveal the vtable pointer, 
if the reader is interested. Of 

Listing 10

C substitute for virtual functions.
/* C substitute for virtual functions */
struct A {
void **vTable;
int value;
};
int f_A(struct A* this);
void* vTable_A[] = {
(void*) &f_A
};
void AConstructor(struct A* this) {
this->vTable = vTable_A;
this->value = 1;
}
int f_A(struct A* this) {
return 0;
}
struct B {
A a;
};
int f_B(struct B* this);
void* vTable_B[] = {
(void*) &f_B
};
void
BConstructor(struct B* this) {
AConstructor((struct A*) this);
this->a.vTable = vTable_B;
}
int f_B(struct B* this) {
return 1;
}
void main() {
struct B b;
struct A* aPtr;
BConstructor(&b);
typedef void (*f_A_Type)(struct A*);
aPtr = (struct A*) &b;
((f_A_Type)aPtr->vTable[0]) (aPtr);
}

Listing 11

A C++ template.
// Sample template class
template
 class A {
private:
T value;
public:
A(T);
T f();
};
template
 A
::A(T initial) {
value = initial;
}
template
 T A
::f() {
return value;
}
void main() {
A
 a(1);
a.f();
}
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course, the vtable pointer is kept 
from the programmer for good 
reasons, and using it directly is 
an excellent way to prevent your 
code being ported and to make 
its maintenance exciting! 

When a virtual member func-
tion is called on an object, the 
generated code can use the ob-
ject’s vtable pointer to access the 
vtable for that class and extract 
the correct function pointer. That 
pointer is then called. 

Listing 9 shows an example 
using virtual member functions. 
Class A has a virtual member func-
tion f(), which is overridden in class 
B. Class A has a constructor and a 
member variable, which are actu-
ally redundant, but are included 
to show what happens to vtables 
during object construction. 

Listing 10 shows what a C 
substitute would look like. The 
result is both extremely ugly 
and hazardous. In the last line of 
main(), we see the virtual function 
call, which, after all the casting, 
uses the object’s vtable pointer to 
look up the vtable of its class for 
the function pointer. 

Let’s quantify the costs of vir-
tual functions, in order of prior-
ity. The first cost is that it makes 
objects bigger. Every object of a 
class with virtual member func-
tions contains a vtable pointer. 
So each object is one pointer 
bigger than it would be oth-
erwise. If a class inherits from 
a class that already has virtual 
functions, the objects already 
contain vtable pointers, so there 
is no additional cost. But adding 
a virtual function can have a dis-
proportionate effect on a small 
object. An object can be as small 
as one byte and if a virtual func-
tion is added and the compiler 
enforces four-byte alignment, 
the size of the object becomes 
eight bytes. But for objects that 
contain a few member variables, 
the cost in size of a vtable pointer 
is marginal. 

The second cost of using vir-
tual functions is the one that gen-
erates the most controversy. That 
is the cost of the vtable lookup for 
a function call, rather than a direct 
one. The cost is a memory read be-
fore every call to a virtual function 

(to get the object’s vtable pointer) 
and a second memory read (to 
get the function pointer from the 
vtable). This cost has been the 
subject of heated debate and it 
is hard to believe that the cost is 
typically less than to that of adding 
an extra parameter to a function. 
We hear no arguments about the 
performance impact of additional 
function arguments because it 
is generally unimportant, just as 
the cost of a virtual function call is 
generally unimportant. 

A less discussed cost of virtual 
functions is their impact on code 
size. Because each class with virtual 
functions has a vtable containing 
pointers to all its virtual functions, 
the pointers in this vtable must be 
resolved by the linker. This means 
that all virtual functions of all 
classes used in a system are linked. 
Therefore, if a virtual function is 
added to a class, the chances are 

that it will be linked, even if it isn’t 
used in a particular system. 

So the bottom line on virtual 
functions is that they have little 
impact on speed, but be aware 
of their effects on code size and 
data size. Virtual functions are not 
mandatory in C++, unlike in other 
OO languages. 

Templates 
C++ templates are powerful, as 
shown by their use in the Standard 
C++ Library. A class template is 
rather like a macro which produces 
an entire class as its expansion. 
Because a class can be produced 
from a single statement of source 
code, misuse of templates can 
have a devastating effect on code 
size. Older compilers will expand 
a templated class every time it is 
encountered, producing a differ-
ent expansion of the class in each 

source file where it’s used. Newer 
compilers and linkers, however, find 
duplicates and produce at most 
one expansion of a given template 
with a given parameter class. 

Used appropriately, templates 
can save a lot of effort at little or 
no cost. After all, it’s a lot easier 
and generally more efficient to 
use complex from the Standard 
C++ Library, rather than write 
your own class. 

Listing 11 shows a simple 
template class A. An object of 
class A has a member variable of 
class T, a constructor to initialise 
and a member function A::f() to 
retrieve it. 

The macro A(T) in Listing 
12 approximates a template 
class in C. It expands to a struct 
declaration and function defini-
tions for functions correspond-
ing to the constructor and the 

Listing 12

A C “template.”
/* C approximation of 
template class */
#define A(T)
\
struct A_##T
\
{
\
T value;
\
};
\
\
void AConstructor_##T(A_
##T* this,
\
T initial)
\
{
\
(this)->value = initial;
\
}
\
\
T A_f_##T(A_##T* this)
\
{
\
return (this)->value;
\
}
A(int) /* Macro expands 
to ýclass’ A_int */
  
void main() {
  A_int a;
  AConstructor_int(&a, 
1);
  A_f_int(&a);
}

Listing 13

A C++ exception example.
/ C++ Exception example
#include 
using namespace std;
int factorial(int n) throw(const char*)
{
  if (n
<
0)
    throw 
      “Negative Argument to factorial”;
  if (n>0)
return n*factorial(n-1);
  return 1;
}
void main()
{
  try
  {
     int n = factorial(10);
     cout 
<
<
 “factorial(10)=” 
<
<
 n;
  }
  catch (const char* s)
  {
    cout 
<
<
 
      “factorial threw exception : “
      
<
<
 s 
<
<
 “\n”;
  }
}
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member function. We can see 
that although it’s possible to 
approximate templates in C, it 
is impractical for any significant 
functionality. 

Exceptions 
Exceptions are to setjmp() and 
longjmp() what structured pro-
gramming is to goto. They im-
pose strong typing, guarantee 
that destructors are called, and 
prevent jumping to a unused 
stack frame. 

Exceptions are intended to 
handle conditions that don’t 
normally occur, so implementa-
tions are tailored to optimise per-
formance for the case when no 
exceptions are thrown. Support 
for exceptions results in a small 
performance penalty for each 
function call. (This is to record 
information to ensure destructor 
calls are made when an excep-
tion is thrown.) The time taken 
to throw an exception is unpre-
dictable and may be long due to 
two factors. The first is that the 
emphasis on performance in the 

normal case is somewhat at the 
expense of performance in the 
abnormal case. The second factor 
is the run time of destructor calls 
between an exception being 
thrown and being caught. 

Because of the performance 
penalty in the no exceptions case, 
many compilers have a “no excep-
tions” option, which eliminates ex-
ception support and its associated 
performance cost. 

Listing 13 shows an example 
of an exception and Listing 14 
shows a C substitute that has sev-
eral shortcomings. It uses global 
variables. It allows longjmp(Cons
tCharStarException) to be called 
either before it is initialised by se
tjmp(ConstCharStarException) or 
after main() has returned. In addi-
tion, substitutes for destructor calls 
must be done by the programmer 
before a longjmp(). There is no 
mechanism to ensure that these 
calls are made. 

Run-time Type Information 
Run-time type information is a 
recent addition to C++. Its name 

suggests an association with purer 
OO languages like Smalltalk. This 
association causes anxiety among 
the performance-conscious that 
efficiency has been compromised 
for purity. This is not so. Run-time 
type information exploits the 
vtable pointer in an object that 
has one and provides sensible de-
faults for an object that does not. If 
you don’t use run-time type infor-
mation, the only run-time cost is 
that classes are a little larger. If you 
use a compiler option to disable 
run-time type information, that 
cost is avoided. 

Memory Considerations 
Having discussed the implemen-
tation of the major C++ language 
features, we can now evaluate 
C++ in terms of the machine code 
it generates. Embedded systems 
programmers are particularly 
concerned about code and data 
size, so we need to discuss C++ in 
these terms. 

How big is a class? 
In C++, most code is in class mem-
ber functions and most data is in 
objects belonging to these class-
es. C++ classes tend to have many 

more member functions than a C 
programmer would expect to use. 
This is because properly designed 
classes are complete and contain 
member functions to do anything 
with objects belonging to the 
class that might legitimately be 
needed. For a well conceptualised 
class, this number will be reason-
ably small, but nevertheless larger 
than what the C programmer is 
accustomed to. 

When calculating code size, 
bear in mind that modern linkers 
designed for C++ extract from 
object files only those functions 
that are actually called, not the 
entire object files. In essence, 
they treat object files like librar-
ies. This means that non-virtual 
class member functions that 
are unused have no code size 
penalty. So a class that seems to 
have a lot of baggage in terms 
of unused member functions 
may be quite economical in 
practice. 

In the case of virtual functions, 
it is reasonable to assume that all 
virtual functions of all classes used 
in a system will be linked into the 
binary. But class completeness in 
itself does not lead to code bloat. 

Listing 14

A C “exception” example.
/* C approximation of exception handling */
#include 
#include 
jmp_buf ConstCharStarException;
const char* ConstCharStarExceptionValue;
int factorial(int n)
{ 
  if (n
<
0)
  {
ConstCharStarExceptionValue =
      “Negative Argument to factorial”;
    longjmp(ConstCharStarException, 0);
  }
  if (n>0)
return n*factorial(n-1);
  return 1;
}
void main()
{
  if (setjmp(ConstCharStarException)==0)
  {
     int n = factorial(10);
     printf(“factorial(10)=%d”,
 n);
  }
  else
  {
    printf(
     “factorial threw exception : %s\n”,
      ConstCharStarExceptionValue);
  }
}

Listing 15

A C ROMable dictionary.
/* A C ROMable dictionary */
#include 
typedef struct 
{
  const char* englishWord;
  const char* foreignWord;
} DictEntry;
const static DictEntry germanDict[] =
{
  {“yes”, “ja”},
  {“no”, “nein”},
  {NULL, NULL}
};
const static DictEntry frenchDict[] =
{
  {“yes”, “oui”},
  {“no”, “non”},
  {NULL, NULL}
};
const char* FromEnglish(
  const DictEntry* dict,
  const char* english);
const char* ToEnglish(
  const DictEntry* dict, 
  const char* foreign);
/*... */
void main()
{
  puts(FromEnglish(frenchDict, “yes”));
}
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How big is an object? 
The size of an object can be cal-
culated by examining its class 
(and all its base classes). Ignore 
member functions and treat the 
data the same as for a struct. 
Then add the size of a pointer if 
there are any virtual functions in 
the class or base classes. You can 
confirm your result by using the 
sizeof operator. It will become ap-
parent that the combined size of 
objects in a system need be no 
greater than the size of data in a 
C-based procedural model. This 
is because the same amount of 
state is needed to model a system 
regardless of whether it is organ-
ised into objects. 

C++ and the Heap 
Heap usage is much more com-
mon in C++ than in C. This is 
because of encapsulation. In C, 
where a function requires an 
unknown amount of memory, 
it is common to externalise the 
memory as an input parameter 
and leave the user with the prob-
lem. This is at least safer than mal-
loc ing an area and relying on the 
user to free it. But C++, with its 
encapsulation and destructors, 
gives class designers the option 
(and responsibility) of managing 
the class heap usage. 

This difference in philosophy is 
evident in the difference between 
C strings and a C++ string class. 
In C, you get a char array. You 
have to decide in advance how 
long your string can be and you 
have to continuously make sure 
it doesn’t get any bigger. A C++ 
string class, however, uses new 
and delete to allow a string to be 
any size and to grow if necessary. 
It also makes sure that the heap 
is restored when the string is no 
longer needed. 

The consequence of all this 
is that you can scrape by in an 
embedded system written in C 
without implementing malloc 
and free, but you won’t get far in 
C++ without implementing new 
and delete. 

ROMable Objects 
Linkers for embedded systems 
allow const static data to be kept 

in ROM. For a system written in C, 
this means that all the non-vary-
ing data known at compile time 
can be specified by static initialis-
ers, compiled to be stored in ROM 
and left there. 

In C++, we can do the same, 
but we tend not to. In well de-
signed C++ code, most data is 
encapsulated in objects. Objects 
belong to classes and most class-
es have constructors. The natural 
OO equivalent to const initialised 
data is a const object. A const 
static object that has a construc-
tor must be stored in RAM for its 
constructor to initialise it. So while 
in C a const static object occupies 
cheap and plentiful ROM, its natu-
ral heir in C++ occupies expensive 
and scarce RAM. Initialisation is 
performed by start-up code that 
calls static constructors with pa-
rameters specified in declarations. 
This start-up code occupies more 
ROM than the static initialiser 
would have. 

So if a system includes a lot 
of data that can be kept in ROM, 
special attention to class design 
is needed to ensure that the rel-
evant objects are ROMable. For an 
object to be ROMable, it must be 
capable of initialisation by a static 
initialiser like a C struct. Although 
the easy way to do this is to make 
it a simple C struct (without 
member functions), it is possible 
to make such a class a bit more 
object-oriented. 

The criteria for a static initialiser 
to be allowed for a class are: 
•  The class must have no base 

classes 
•   It must have no constructor 
•   It must have no virtual 
 functions 
•   It must have no private or pro-

tected members 
•   Any classes it contains must 

obey the same rules 

In addition, we should also 
require that all member functions 
of a ROMable class be const. A C 
struct meets these criteria, but 
so does a class that has member 
functions. Although this solves 
the ROMability problem and en-
hances the C struct with mem-
ber functions, it falls far short 

of the OO ideal of a class that is 
easy to use correctly and difficult 
to use incorrectly. The unwary 
class user can, for example, 
declare and use a non- const, 
uninitialised instance of the class 
that is beyond the control of the 
class designer. 

To let us sleep securely in our 
OO beds, something more is 
needed. That "something" is class 
nesting. In C++, we can declare 
classes within classes. We can take 
our dubious class that is open to 
misuse, and put it in the private 
segment of another class. We can 
also make the const static instanc-
es of the dubious class private 
static members of the encapsulat-
ing class. This outer class is subject 

to none of the restrictions that the 
ROMable class is, so we can put in 
it a proper restricted interface to 
our const static data. 

To illustrate this discussion, 
let's consider a simplified example 
of a hand-held electronic multi-
language dictionary. To keep it 
simple, the translator handles 
translation to German or French 
and it has a vocabulary of two 
words, "yes" and "no." Obviously, 
these dictionaries must be held 
on ROM. A C solution would be 
something like Listing 15. 

A Dict is an array of DictEntry. 
A DictEntry is a pair of const char* 
pointers, the first to the English 
word, the second to the foreign 

Listing 16

A C++ ROMable dictionary NOT!
// NOT a ROMable dictionary in C++
#include 
using namespace std;
class Dict
{
public:
  Dict();
  const char* fromEnglish(
    const char* english) const;
  const char* toEnglish(
    const char* foreign) const;
private:
  enum { DictSize = 3 };
  struct
  {
    const char* english;
    const char* foreign;
  } table[DictSize];
};
// *** Following won’t compile ***
const static Dict germanDict =
{
  {
    {“yes”, “ja”},
    {“no”, “nein”},
    {NULL, NULL}
  }
};
// *** Following won’t compile ***
const static Dict frenchDict =
{
  {
    {“yes”, “oui”},
    {“no”, “non”},
    {NULL,
 NULL}
  }
};
//...
void main()
{
  cout 
<
<
 germanDict.fromEnglish(“yes”);
}
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word. The end of a Dict is marked 
by a DictEntry containing a pair of 
NULL strings. 

To complete the design, we 
add a pair of functions which 
perform translation from and to 
English using a dictionary. This is a 
simple design. The two dictionar-
ies and the strings to which they 
point reside in ROM. 

Let’s now consider what 
happens if we produce a naýve 
OO design in C++. Looking at 
Listing 15 through OO glasses, 
we identify a class Dict with 
two member functions const 
char* Dict::fromEnglish(const 
char*), and const char* Dict::
toEnglish(const char*). We have 

a clean and simple interface. 
Unfortunately, Listing 16 won’t 
compile. The static initialisers 
for frenchDict and germanDict 
try to access private members of 
the objects. 

If we make these members 
public and eliminate the construc-
tor as in Listing 17, the class will 
meet the criteria for static initialis-
ers and the code will compile, 
but we’ve broken encapsulation. 
Users can see the internal imple-
mentation of the class and bypass 
the intended access functions. 
Even worse, they can create their 
own (con-const) instances of Dict 
whose internal state is outside our 
control. 

Now, let’s do it right. In Listing 
18, the class Dict in Listing 17 be-
comes DictTable, which is nested 
privately within the new class Dict. 
Class Dict also contains, as a static 
member, an array of DictTables, 
which we can initialise statically. 
The function main() shows use of 
this class Dict, which has a clean 
interface. So to make the best use 
of OO design for data on ROM, 
special class design is needed, 
which is quite unlike the casual 
approach typical of C. 

EC++ 
As we’ve seen, some C++ features 
have costs that may be undesir-
able in embedded systems. Could 
a subset of C++ be more cost-ef-
fective in embedded systems? 
Which subset? Programmers who 
use ad hoc subsets are frustrated 
in importing libraries, an ironic 
consequence of adopting a lan-
guage which offers such promise 
for libraries. Wouldn’t a widely 
recognised subset be better? 
Class library vendors could supply 
products written in the subset. 
Compiler vendors could enforce 
it and take advantage in code 
generation of the known absence 
of troublesome features. This was 
the motivation behind Embedded 
C++ (EC++), a de facto standard 
subset of C++. Embedded C++ 
is the same as C++ except that 
it prohibits multiple inheritance, 
templates, exceptions, namespac-
es, and run-time type identifica-
tion. Because it’s a strict subset 
of C++ with no extensions, it can 
be compiled with an existing C++ 
compiler. 

EC++ shouldn’t be an auto-
matic choice for embedded sys-
tems programming. While most of 
its restrictions are easy to accept, 
forswearing templates and the 
Standard C++ Library shouldn’t 
be done lightly. There is no reason 
why the full language can’t be 
used in embedded systems. But 
if you do decide to use a subset, 
EC++ would be better supported 
than an ad hoc subset. 

For more information about 
EC++, see P.J Plauger’s articles on 
the subject (“Embedded C++: An 
Overview,” ESP, December 1997, p. 

40; and “Embedded C++,” C/C++ 
User’s Journal, February 1997, p. 
35). 

Class Libraries and Embedded 
Systems 
A major benefit of using C++ is the 
availability of class libraries and the 
productivity gains they promise. 
OO design makes class libraries 
much easier to use (and harder to 
misuse) then their procedural pre-
decessors. But a suspicion exists 
that class libraries are large and of 
little use, and that while this may 
be tolerable on a desktop PC, class 
libraries are generally unsuited to 
embedded systems. 

This is a misplaced generalisa-
tion. If a judgement is made on 
the basis of so-called applica-
tion framework libraries, such 
as Microsoft Foundation Classes 
(MFC), it is easy to see how this 
opinion is formed. Application 
frameworks are designed to do 
as much as possible of an applica-
tion, allowing the programmer to 
concentrate on the specifics of his 
or her project. This is usually done 
by inheriting from classes in the 
library to produce specialised be-
haviour. Most of the functionality 
of the classes in the framework are 
not the concern of the program-
mer using them. 

While this type of class library 
is well suited to its intended use, 
small code size isn’t its best fea-
ture, and its narrow focus makes 
it essentially useless outside its 
target application area. An em-
bedded system needs a more 
general purpose class library that 
can help with a variety of pro-
gramming problems. (Indeed, the 
same could be said of any system 
whose implementation isn’t domi-
nated by the needs addressed by 
a framework.) The characteristics 
of a class library suitable for em-
bedded systems are as follows. 

It should include classes such 
as strings and container classes 
like lists, vectors, hash tables, 
maps and sets, and more. Such 
a class library can dramatically 
shrink and improve code that in 
C manipulates char* s and arrays. 

Classes in the library should 
be independent. This implies 

Listing 17

A C++ ROMable corruptable dictionary.
// A ROMable dictionary in C++,
// but with poor encapsulation
#include 
using namespace std;
class Dict
{
public:
  const char* fromEnglish(
    const char* english) const;
  const char* toEnglish(
    const char* foreign) const;
// PLEASE don’t access anything in the class
// below this comment.
// PLEASE don’t create your own instances
//
 of this class.
  enum { DictSize = 3 };
  struct
  {
    const char* english;
    const char* foreign;
  } table[DictSize];
};
const static Dict germanDict =
{
  {
    {“yes”, “ja”},
    {“no”, “nein”},
    {NULL, NULL}
  }
};
const static Dict frenchDict =
{
  {
    {“yes”, “oui”},
    {“no”, “non”},
    {NULL, NULL}
  }
};
//...
void main()
{
  cout 
<
<
 germanDict.fromEnglish(“yes”);
}
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limited use of inheritance. This 
characteristic is in contrast with 
a framework in which most 
classes are in an inheritance hier-
archy. Independence allows the 
programmer to treat the library 
like an a la carte menu, while a 
framework is more like a dietary 
regime. 

Several general purpose class 

libraries exist, though none has 
been used as much as MFC. They 
include the draft Standard C++ 
Library, gnu’s libg++, and Rogue 
Wave Tools.h++. None are tai-
lored to embedded systems, but 
all are better models of a class 
library for embedded systems 
than a framework library. Class 
libraries specifically designed for 

embedded systems are starting 
to emerge, most notably a revi-
sion of the Standard C++ Library 
for embedded systems. 
Compilers and Tools for 
Embedded Systems 
Most C cross compiler vendors 
for 32-bit targets now offer C++ 
compilers as well. The older com-
pilers among them are based on 
AT&T’s cfront. Cfront was the origi-
nal C++ compiler and it produces 
C code output, which is then fed 
to a C compiler. Naturally, cfront 
was an easy option for estab-
lished C compiler vendors who 
were looking for a C++ offering. 
But cfront has a poor reputation 
in terms of efficiency and optimi-
sations, and it is understandable 
that a compiler whose mission it 
was to prototype the language 
should suffer from these limita-
tions. Unfortunately for the ac-
ceptance of C++, opinions have 
been formed on the basis of 
experience with this compiler, 
which compared badly with ma-
ture, optimising C compilers. 

The Free Software 
Foundation’s g++, which is well 
established as a native compiler 
that generates excellent machine 
code on several platforms, has 
been used successfully as a cross 
compiler. 

Several compiler vendors now 
offer improved C++ compilers 
in a package with source-level 
debugging and other necessities 

of modern embedded systems 
development. Unfortunately, we 
are not yet at the stage where a 
C++ cross compiler from an es-
tablished vendor can be assumed 
to produce good code quality and 
be supported by a good robust 
tool set, so it is necessary to be 
cautious about tool investments. 

Reality Check 
Having minutely examining the 
costs of C++ features, it is only 
fair to see how C stands up to the 
same degree of scrutiny. Consider 
the C code in Listing 19. One line 
contains a floating-point value, 
which will pull in parts of the 
floating-point library and have a 
disproportionate effect on code 
size, if floating point isn’t needed. 
The next line will have a similar 
effect, if printf had been avoided 
elsewhere. The next line calls 
strlen(s) strlen(s) times, rather 
than once, which has a serious 
impact on run time. 

But who would argue that 
these abuses are reasons not 
to use C in embedded systems? 
Similarly, it is wrong to brand 
C++ as unsuitable for embed-
ded systems because it can be 
misused. 

Bigger than a bread box? 
There is no need for a system 
implemented in C++ to be larger 
than a C implementation. Most 
C++ features have no impact on 
code size or on speed. Some C++ 
features have a minimal impact in 
these areas, and they have been 
discussed out of proportion to 
their significance. Using C++ ef-
fectively in embedded systems re-
quires that you be aware of what 
is going on at the machine code 
level, just as in C. Armed with that 
knowledge, the embedded sys-
tems programmer can gain great 
benefits from using C++, while 
instinctively avoiding the pitfalls 
that intimidate the novice. 
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Listing 18

A clean C++ ROMable dictionary.
#include 
using namespace std;
class Dict
{
public:
  typedef enum 
  {
    german,
    french
  } Language;
  Dict(Language lang);
  const char* fromEnglish(
    const char* english) const;
  const char* toEnglish(
    const char* foreign) const;
private:
  class DictTable
  {
  public:
    const char* fromEnglish(
      const char* english) const;
    const char* toEnglish(
      const char* foreign) const;
    enum { DictSize = 3 };
    struct
    {
      const char* english;
      const char* foreign;
    } table[DictSize];
  };
  const static DictTable
    DictTables[];
  Language myLanguage;
};
const Dict::DictTable Dict::DictTables[]=
{
  {
      {“yes”, “ja”},
      {“no”, “nein”},
      {NULL, NULL}
  },
  {
      {“yes”, “oui”},
      {“no”, “non”},
      {NULL, NULL}
  }
};
//...
void main()
{
  Dict germanDict (Dict::german);
  cout 
<
<
 germanDict.fromEnglish(“yes”);
}

Listing 19

C reality check.
/* Reality check - */
/* some things to avoid 
in C */
#include 
#include 
void main()
{
  char s[] = “Hello 
world”;
  unsigned i;
  int var =1.0;
  printf(s);
  for (i=0; i 
<
 strlen(s); i++)
    /*... */
}
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