
By Dominic Herity
Senior Software Engineer
Silicon and Software Systems

I was surprised a while ago by
what I heard in a coffee break
conversation during a C++
course. The attendees were spec-
ulating on the relevance of C++
to embedded systems, and the
misconceptions that surfaced
drove me ultimately to write this
article.

Some perceive that C++ has
overheads and costs that render
it somehow unsuited to embed-
ded systems programming, that
it lacks the control and brevity of
C, or that, while it may be suited
to some niche applications, it
will never displace C as the lan-
guage of choice for embedded
systems.

These perceptions are wrong.
Where compilers and other tools
are adequate, C++ is always
preferable to C as an implemen-
tation language for embedded
systems. While doing everything
that C does, it offers greater op-
portunities for expression, en-
capsulation, re-use, and it even
allows size and speed improve-
ments that are impractical in C.

Why, then, do these percep-
tions persist? The main reason
is that when people form their
opinions, they know a lot more
about C than about C++. They
have read some books, written
some code, and are competent
at using the features of C++,
but they lack the knowledge of
what is happening under the
hood, the familiarity that allows
one to visualise the disassembly
while typing source or even
while formulating a design. It is
to these people that this article
is addressed.

This article aims to replace ex-
aggerated claims and misapplied
generalisations with informed
comment. It supports the view
that C++, used appropriately, is

superior to C for embedded sys-
tems programming.

It aims to provide detailed
understanding of what C++
code does at the machine level,
so that readers can evaluate for
themselves the speed and size
of C++ code as naturally as they
do for C code.

To examine the nuts and
bolts of C++ code generation,
I will discuss the major features
of the language and how they
are implemented in practice.
Implementations will be illus-
trated by showing pieces of C++
code followed by the equivalent
(or near equivalent) C code.

I will then discuss some pitfalls
specific to embedded systems
and how to avoid them. I won’t
discuss the uses and subtleties
of C++ or object-oriented (OO)
design, as these topics have
been well covered elsewhere.

The Myths
Some of the perceptions that dis-
courage the use of C++ in embed-
ded systems are:
• C++ is slow
• C++ produces large binaries
• Abstraction leads to
 inefficiency
• Objects are large
• Virtual functions are slow
• C++ isn't ROMable
• Class libraries make large
 binaries

Some of these perceptions are
exaggerated concerns. Others are
just wrong. When the details of
C++ code generation are exam-
ined in detail, it will be clear what
the reality behind these myths is.

Anything C can do, C++ can
do better
The most obvious property of
C++ is so obvious that it’s often
overlooked: C++ is a superset of
C. If you write a code fragment
(or an entire source file) in the C
subset, the compiler will act like

a C compiler and the machine
code generated will be exactly
what you would expect from a C
compiler.

This simple point invalidates
any claims that a system can be
implemented in C, but not in
C++. In practice, existing C code
can typically be re-compiled
as C++ with about the same
amount of difficulty that adopt-
ing a new C compiler entails.

This also means that migrat-
ing to C++ can be done gradu-
ally, starting with C and working
in new language features at your
own pace. Although this isn’t the
best way to reap the benefits of
OO design, it minimises short
term risk and it provides a basis
for iterative changes to a work-
ing system.

Front end features: a free
lunch
Many features of C++ are strictly
front end issues and have no ef-
fect on code generation. The ben-
efits conferred by these features
are therefore free of cost at run
time. These features include use
of the keywords const, private,
protected, and public, which al-
low the programmer to prevent
misuse of interfaces. No physical
difference exists between private,
protected, and public members.
Neither is there a difference

between const and non-const
data. These specifiers allow the
programmer to prevent misuse
of data or interfaces through
compiler-enforced restrictions.

Default arguments to func-
tions are another neat, free front
end feature. The compiler inserts

Listing 1

Function name
overloading.
// C++ function name
overload example
void foo(int i)
{
//...
}
void foo(char* s)
{
//...
}
void main()
{
foo(1);
foo(“Hello world”);
}

Listing 2

Function name
overloading in C.
/* C substitute for */
/* function name over-
load */
void foo_int(int i)
{
/*... */
}
void foo_charstar(char*
s)
{
/*... */
}
void main()
{
foo_int(1);
foo_charstar(“Hello
world”);
}

Listing 4

C substitute for trivial class
with member function.
/* C substitute for
trivial class foo */
struct foo
{
int x;
};
void bar_foo(struct foo*
this)
{
this->x = 0;
}

Listing 3

A trivial class with
member function.
/ A trivial class
class foo
{
private:
int x;
public:
void bar();
};
void foo::bar()
{
x = 0;
}

� eetindia.com | February 1998 | EE Times-India

C++ in embedded systems:
Myth and reality

C++

http://www.eetindia.co.in

default arguments to a function
call, where none are specified by
the source.

A less obvious front end fea-
ture is function name overload-
ing. Function name overloading
is made possible by a remarkably
simple compile-time mecha-
nism. The mechanism is com-
monly called name mangling,
but has been called name deco-
ration by those who have noth-
ing better to do than sanitise
perfectly good terms. Anyone
who has seen a linker protesting
the absence of ?foo@@YAHH@
Z knows which term is more
appropriate. Name mangling
modifies the label generated for
a function using the types of the
function arguments, or function
signature. So a call to int foo(int)

generates a reference to a label
such as ?foo@@YAHH@Z, while
a call to a function void foo(int)
generates a label like ?foo@@
YAXH@Z and a call to a function
void foo(bar*) generates a label
like ?foo@@YAXPAU bar@@@
Z. Name mangling ensures that
functions aren’t called with the
wrong argument types and it
also allows the same name to
be used for different functions
provided their argument types
are different.

Listing 1 shows a C++ code
fragment with function name
overloading. There are two func-
tions called foo, one taking an int
argument, the other taking a char*
argument.

Listing 2 shows how this
would be implemented in C.

Function names are altered to
add argument types, so that the
two functions have different
names.

In C++, name mangling is au-
tomatic, but in a C substitute, it
would be the responsibility of the
programmer.

Classes, Member Functions,
and Objects
Classes and member functions are
the most important new concept
in C++. Unfortunately, they are
usually introduced without ex-
planation of how they are imple-
mented, which tends to disorient
C programmers from the start. In
the subsequent struggle to come
to terms with OO design, hope of
understanding code generation
quickly recedes.

Behind the protection and
scoping, a class is almost the
same as a C struct. Indeed, in
C++, a struct is defined to be a
class whose members are public
by default. A member function is
a function that takes a pointer to
an object of its class as an implicit
parameter. So a C++ class with a
member function is equivalent,
in terms of code generation, to a
C struct and a function that takes
that struct as an argument.

Listing 3 shows a trivial class
foo with one member variable x
and one member function bar().

Listing 4 shows the C substi-
tute for Listing 3. Struct foo has
the same member variable as
class foo and the member func-
tion foo::bar() is replaced with
a function bar_foo(struct foo*).

Listing 5

A simple string class featuring constructors,
destructors, operator overloading, new, and delete.
// A simplified string class
#include
#include
using namespace std;
class String {
private:
char* data;
unsigned len;
public:
String();
~String();
unsigned length() const;
String& operator=(const char* s);
};
inline unsigned String::length() const
{
return len;
};
String::String() {
len = 0;
data = 0;
}
String::~String() {
if (data != 0)
delete [] data;
}
String& String::operator=(const char* s) {
len = strlen(s);
data = new char [len+1];
if (data == 0)
len = 0;
else
strcpy(data, s);
return *this;
}
void main() {
String s;
s = “Hello world”;
cout
<
<
s.length();
}

Listing 6

C substitute for simple string class.
/* C substitute
for simplified string class */
#include
#include
#include
struct String {
char* data;
unsigned len;
};
#define length_String(s) ((s)->len)
void StringConstructor(String* this) {
this->len = 0;
this->data = 0;
}
void StringDestructor(String* this) {
if (this->data != 0)
free(this->data);
}
String operatorEquals_String_const_char_star(
String* this, const char* s) {
this->len = strlen(s);
this->data = (char*) malloc(
(this->len+1) * sizeof(char));
/*
If char had a constructor, */
/* it would be have to be */
/* called here. */
if (this->data == 0)
this->len = 0;
else
strcpy(this->data, s);
return *this;
}
FILE*
operatorShiftLeft_ostream_unsigned(FILE*,
unsigned);
void main() {
String s;
StringConstructor(&s);
operatorEquals_String_const_char_star(
&s, “Hello world”);
operatorShiftLeft_ostream_unsigned(stdout,
length_String(&s));
StringDestructor(&s);
}

� eetindia.com | February 1998 | EE Times-India

http://www.eetindia.co.in

Note the name of the argument
of bar_foo(struct foo*) has been
chosen as this, which is a key-
word in C++, but not in C. The
choice is made deliberately to
highlight the point that in C++,
an object pointer named this is
implicitly passed to a member
function.

An object in C++ is simply
a variable whose type is a C++
class. It corresponds to a vari-
able in C whose type is a struct.
A class is little more than the
group of member functions that
operate on objects belonging to
the class. At the machine code
level, data is mostly made up of
objects and code is mostly made
up of classes.

Clearly, arranging code into
classes and data into objects
is a powerful organising prin-
ciple. Dealing with classes and
objects is inherently just as ef-
ficient as dealing with functions
and data.

Constructors and Destructors
In C++, a constructor is a member
function guaranteed to be called
when an object is instantiated or
created. This typically means the
compiler generates a constructor
call at the point where the object
is declared. Similarly, a destructor
is guaranteed to be called when
an object goes out of scope. So a
constructor typically contains any
initialisation that an object needs
and a destructor does any tidying
up needed when an object is no
longer needed.

The insertion of construc-
tor and destructor calls by the
compiler outside the control of
the programmer is something
that makes the C programmer
uneasy at first. Indeed, program-
ming practices to avoid exces-
sive creation and destruction of
so-called temporary objects are
a preoccupation of C++ pro-
grammers in general. However,
the guarantee that constructors
and destructors provide-that
objects are always initialised and
are always tidied up-is generally
worth the sacrifice. In C, where
no such guarantees are provid-
ed, the consequence is frequent

initialisation bugs and resource
leakage.

Inline Functions
Inline functions are a safer and
more powerful substitute for C
macros in many situations. It is
rare to see a macro that has local
variables, and rightly so, because
macros rapidly become illegible.
Inline functions, by contrast, have
the legibility and safety of ordi-
nary functions. Clearly, indiscrimi-
nate use of inline functions can
lead to bloated code, and novice
C++ programmers are invariably
cautioned on this point.

However, appropriate use
of inline functions can improve
both size and speed. To estimate
the code size impact of an inline
function, estimate how many
bytes of code it takes to imple-
ment it and compare that to
the number of bytes needed to
do the corresponding function
call. Also consider that compiler
optimisation can tilt the balance
dramatically in favour of the
inline function. If you conduct

actual comparisons studying
generated code with optimi-
sation turned on, you may be
surprised by how complex an
inline function can profitably be.
The break-even point is often far
beyond what can be expressed
in a legible C macro.

Operator Overloading
A C++ compiler substitutes a
function call when it encounters
an overloaded operator in the
source. Operators can be over-
loaded with member or global
functions. So foo+bar is evaluated
to be operator+(foo, bar) or foo.

Listing 9

Virtual functions.
// Classes with virtual functions
class A {
private:
int value;
public:
A();
virtual int f();
};
A::A() {
value
= 0;
}
int A::f() {
return 0;
}
class B : public A {
public:
B();
virtual int f();
};
B::B() {
}
int B::f() {
return 1;
}
void main() {
B b;
A* aPtr = &b;
a->f();
}

Listing 8

C substitute for inheritance.
/* C Substitute for inheritance */
struct A {
int value;
};
void AConstructor(struct A* this) {
this->value = 1;
}
int f_A(struct A* this) {
return this->value;
}
struct B {
struct A a;
int secondValue;
};
void BConstructor(struct B* this) {
AConstructor(&this->a);
this->secondValue = 2;
}
int g_B(struct B* this) {
return this->secondValue;
}
void main() {
B b;
BConstructor(&b);
f_A ((struct A*)&b);
g_B (&b);
}

Listing 7

Inheritance.
// Simple example of in-
heritance
class A {
public:
A();
int f();
private:
int value;
};
A::A() {
value = 1;
}
int A::f() {
return value;
}
class B : public A {
private:
int secondValue;
public:
B();
int g();
};
B::B() {
secondValue = 2;
}
int B::g() {
return secondValue;
}
void main() {
B b;
b.f();
b.g();
}

� eetindia.com | February 1998 | EE Times-India

http://www.eetindia.co.in

operator+ (bar), which in terms of
code generation amounts to the
same thing. Operator overload-
ing is a front end issue and can be
viewed as a function call for the
purposes of code generation.

New and Delete
In C++, new and delete do the
same job as malloc() and free() in
C, except that they guarantee con-
structor and destructor calls. They
also tend to be better-suited to
frequent use with small quantities
of memory than older implemen-
tations of malloc() and free().

Simplified String Class
To illustrate the implementation of
a class with the features we’ve dis-
cussed, let’s consider an example
of a simplified C++ class and its C
alternative.

Listing 5 shows a string class
featuring a constructor and de-
structor, operator overloading,
new and delete, and an inline
function.

Listing 6 is a C substitute for
the string class shown in Listing 5.
The inline function String::length()
is replaced by the macro length_
String(). Operator overloads
String::operator=(const char*)
and operator < < (ostream&, int)
are replaced with function calls
operatorEquals_String_const_
char_star(String*, const char*) and
operator ShiftLeft_ostream_un-
signed (ostream*, int) respectively.
The constructor and destructor
must then be called by the user of
the class, rather than being added
automatically by the compiler.

See how much harder to read
the function main() is in Listing
6 than in Listing 5 and consider
how much more danger there is
of a bug occurring. Consider how
much worse the problem would
be for a more realistic string class.
This is why C++ and the object
paradigm are so much superior to
C and the procedural paradigm for
partitioning complex problems.

Next, consider that the code
and data generated by Listing 5
is just as small and just as fast as
that generated by Listing 6. It is
also safer, more coherent, more
readable, and more maintainable.
Of the C++ features discussed so

far, all confer substantial benefit at
no run-time cost.

Inheritance
In discussing how C++ imple-
ments inheritance, we will limit
our discussion to the simple case
of single, non-virtual inheritance.
Multiple inheritance and virtual
inheritance are more complex and
their use is rare by comparison.

Let’s consider the case in which
class B inherits from class A. (We
can also say that B is derived from
A or that A is a base class of B.)

We now know what the inter-
nal structure of an A is. What is the
internal structure of a B? An object
of class B is made up of an object
of class A, with the member data
of B tacked on at the end. In fact,
the result is the same as if the B
contains an A as its first member.
Therefore, any member functions
of class A called on an object of
class B will work properly. When
an object of class B is constructed,

the class A constructor is called
first and the reverse happens with
destructors.

Listing 7 shows an example of
inheritance. Class B inherits from
class A and adds the member
function B::g() and the member
variable B::secondValue.

Listing 8 shows how this
would be achieved in C. Struct
B contains a struct A as its first
member, to which it adds a vari-
able secondValue. The function
BConstructor(struct B*) calls
AConstructor to ensure initialisa-
tion of its “base class.” Where the
function main() calls b.f() in Listing
7, f_A(struct A*) is called in Listing
8 with a cast.

It is startling to discover that
the rather abstract concept of
inheritance corresponds to such
a straightforward mechanism.
The result is that appropriately de-
signed inheritance relationships
have no run-time cost in terms of
size or speed.

Inappropriate inheritance,
however, can make objects larger
than necessary. This is most likely
to arise in class hierarchies, where
a typical class has several layers
of base class, each with its own
member variables.

Virtual Functions
Virtual member functions allow us
to derive class B from class A and
override a virtual member func-
tion of A with one in B and have
the new function called by code
that knows only about class A.
Virtual member functions provide
polymorphism, which is a key fea-
ture of OO design.

Virtual functions have been
controversial. It would seem that
they exact a price for the benefit
of polymorphism. Let’s see, then,
how they work and what the
price is.

Virtual functions are imple-
mented using an array of func-
tion pointers called a vtable for
each class that has virtual func-
tions. Each object of such a class
contains a pointer to the class’s
vtable. This pointer is put there
by the compiler and is used by
the generated code, but it isn’t
available to the programmer
and it can’t be referred to in
the source code. Inspection of
objects with a low-level debug-
ger will reveal the vtable pointer,
if the reader is interested. Of

Listing 10

C substitute for virtual functions.
/* C substitute for virtual functions */
struct A {
void **vTable;
int value;
};
int f_A(struct A* this);
void* vTable_A[] = {
(void*) &f_A
};
void AConstructor(struct A* this) {
this->vTable = vTable_A;
this->value = 1;
}
int f_A(struct A* this) {
return 0;
}
struct B {
A a;
};
int f_B(struct B* this);
void* vTable_B[] = {
(void*) &f_B
};
void
BConstructor(struct B* this) {
AConstructor((struct A*) this);
this->a.vTable = vTable_B;
}
int f_B(struct B* this) {
return 1;
}
void main() {
struct B b;
struct A* aPtr;
BConstructor(&b);
typedef void (*f_A_Type)(struct A*);
aPtr = (struct A*) &b;
((f_A_Type)aPtr->vTable[0]) (aPtr);
}

Listing 11

A C++ template.
// Sample template class
template
 class A {
private:
T value;
public:
A(T);
T f();
};
template
 A
::A(T initial) {
value = initial;
}
template
 T A
::f() {
return value;
}
void main() {
A
 a(1);
a.f();
}

� eetindia.com | February 1998 | EE Times-India

http://www.eetindia.co.in

course, the vtable pointer is kept
from the programmer for good
reasons, and using it directly is
an excellent way to prevent your
code being ported and to make
its maintenance exciting!

When a virtual member func-
tion is called on an object, the
generated code can use the ob-
ject’s vtable pointer to access the
vtable for that class and extract
the correct function pointer. That
pointer is then called.

Listing 9 shows an example
using virtual member functions.
Class A has a virtual member func-
tion f(), which is overridden in class
B. Class A has a constructor and a
member variable, which are actu-
ally redundant, but are included
to show what happens to vtables
during object construction.

Listing 10 shows what a C
substitute would look like. The
result is both extremely ugly
and hazardous. In the last line of
main(), we see the virtual function
call, which, after all the casting,
uses the object’s vtable pointer to
look up the vtable of its class for
the function pointer.

Let’s quantify the costs of vir-
tual functions, in order of prior-
ity. The first cost is that it makes
objects bigger. Every object of a
class with virtual member func-
tions contains a vtable pointer.
So each object is one pointer
bigger than it would be oth-
erwise. If a class inherits from
a class that already has virtual
functions, the objects already
contain vtable pointers, so there
is no additional cost. But adding
a virtual function can have a dis-
proportionate effect on a small
object. An object can be as small
as one byte and if a virtual func-
tion is added and the compiler
enforces four-byte alignment,
the size of the object becomes
eight bytes. But for objects that
contain a few member variables,
the cost in size of a vtable pointer
is marginal.

The second cost of using vir-
tual functions is the one that gen-
erates the most controversy. That
is the cost of the vtable lookup for
a function call, rather than a direct
one. The cost is a memory read be-
fore every call to a virtual function

(to get the object’s vtable pointer)
and a second memory read (to
get the function pointer from the
vtable). This cost has been the
subject of heated debate and it
is hard to believe that the cost is
typically less than to that of adding
an extra parameter to a function.
We hear no arguments about the
performance impact of additional
function arguments because it
is generally unimportant, just as
the cost of a virtual function call is
generally unimportant.

A less discussed cost of virtual
functions is their impact on code
size. Because each class with virtual
functions has a vtable containing
pointers to all its virtual functions,
the pointers in this vtable must be
resolved by the linker. This means
that all virtual functions of all
classes used in a system are linked.
Therefore, if a virtual function is
added to a class, the chances are

that it will be linked, even if it isn’t
used in a particular system.

So the bottom line on virtual
functions is that they have little
impact on speed, but be aware
of their effects on code size and
data size. Virtual functions are not
mandatory in C++, unlike in other
OO languages.

Templates
C++ templates are powerful, as
shown by their use in the Standard
C++ Library. A class template is
rather like a macro which produces
an entire class as its expansion.
Because a class can be produced
from a single statement of source
code, misuse of templates can
have a devastating effect on code
size. Older compilers will expand
a templated class every time it is
encountered, producing a differ-
ent expansion of the class in each

source file where it’s used. Newer
compilers and linkers, however, find
duplicates and produce at most
one expansion of a given template
with a given parameter class.

Used appropriately, templates
can save a lot of effort at little or
no cost. After all, it’s a lot easier
and generally more efficient to
use complex from the Standard
C++ Library, rather than write
your own class.

Listing 11 shows a simple
template class A. An object of
class A has a member variable of
class T, a constructor to initialise
and a member function A::f() to
retrieve it.

The macro A(T) in Listing
12 approximates a template
class in C. It expands to a struct
declaration and function defini-
tions for functions correspond-
ing to the constructor and the

Listing 12

A C “template.”
/* C approximation of
template class */
#define A(T)
\
struct A_##T
\
{
\
T value;
\
};
\
\
void AConstructor_##T(A_
##T* this,
\
T initial)
\
{
\
(this)->value = initial;
\
}
\
\
T A_f_##T(A_##T* this)
\
{
\
return (this)->value;
\
}
A(int) /* Macro expands
to ýclass’ A_int */

void main() {
 A_int a;
 AConstructor_int(&a,
1);
 A_f_int(&a);
}

Listing 13

A C++ exception example.
/ C++ Exception example
#include
using namespace std;
int factorial(int n) throw(const char*)
{
 if (n
<
0)
 throw
 “Negative Argument to factorial”;
 if (n>0)
return n*factorial(n-1);
 return 1;
}
void main()
{
 try
 {
 int n = factorial(10);
 cout
<
<
 “factorial(10)=”
<
<
 n;
 }
 catch (const char* s)
 {
 cout
<
<

 “factorial threw exception : “

<
<
 s
<
<
 “\n”;
 }
}

� eetindia.com | February 1998 | EE Times-India

http://www.eetindia.co.in

member function. We can see
that although it’s possible to
approximate templates in C, it
is impractical for any significant
functionality.

Exceptions
Exceptions are to setjmp() and
longjmp() what structured pro-
gramming is to goto. They im-
pose strong typing, guarantee
that destructors are called, and
prevent jumping to a unused
stack frame.

Exceptions are intended to
handle conditions that don’t
normally occur, so implementa-
tions are tailored to optimise per-
formance for the case when no
exceptions are thrown. Support
for exceptions results in a small
performance penalty for each
function call. (This is to record
information to ensure destructor
calls are made when an excep-
tion is thrown.) The time taken
to throw an exception is unpre-
dictable and may be long due to
two factors. The first is that the
emphasis on performance in the

normal case is somewhat at the
expense of performance in the
abnormal case. The second factor
is the run time of destructor calls
between an exception being
thrown and being caught.

Because of the performance
penalty in the no exceptions case,
many compilers have a “no excep-
tions” option, which eliminates ex-
ception support and its associated
performance cost.

Listing 13 shows an example
of an exception and Listing 14
shows a C substitute that has sev-
eral shortcomings. It uses global
variables. It allows longjmp(Cons
tCharStarException) to be called
either before it is initialised by se
tjmp(ConstCharStarException) or
after main() has returned. In addi-
tion, substitutes for destructor calls
must be done by the programmer
before a longjmp(). There is no
mechanism to ensure that these
calls are made.

Run-time Type Information
Run-time type information is a
recent addition to C++. Its name

suggests an association with purer
OO languages like Smalltalk. This
association causes anxiety among
the performance-conscious that
efficiency has been compromised
for purity. This is not so. Run-time
type information exploits the
vtable pointer in an object that
has one and provides sensible de-
faults for an object that does not. If
you don’t use run-time type infor-
mation, the only run-time cost is
that classes are a little larger. If you
use a compiler option to disable
run-time type information, that
cost is avoided.

Memory Considerations
Having discussed the implemen-
tation of the major C++ language
features, we can now evaluate
C++ in terms of the machine code
it generates. Embedded systems
programmers are particularly
concerned about code and data
size, so we need to discuss C++ in
these terms.

How big is a class?
In C++, most code is in class mem-
ber functions and most data is in
objects belonging to these class-
es. C++ classes tend to have many

more member functions than a C
programmer would expect to use.
This is because properly designed
classes are complete and contain
member functions to do anything
with objects belonging to the
class that might legitimately be
needed. For a well conceptualised
class, this number will be reason-
ably small, but nevertheless larger
than what the C programmer is
accustomed to.

When calculating code size,
bear in mind that modern linkers
designed for C++ extract from
object files only those functions
that are actually called, not the
entire object files. In essence,
they treat object files like librar-
ies. This means that non-virtual
class member functions that
are unused have no code size
penalty. So a class that seems to
have a lot of baggage in terms
of unused member functions
may be quite economical in
practice.

In the case of virtual functions,
it is reasonable to assume that all
virtual functions of all classes used
in a system will be linked into the
binary. But class completeness in
itself does not lead to code bloat.

Listing 14

A C “exception” example.
/* C approximation of exception handling */
#include
#include
jmp_buf ConstCharStarException;
const char* ConstCharStarExceptionValue;
int factorial(int n)
{
 if (n
<
0)
 {
ConstCharStarExceptionValue =
 “Negative Argument to factorial”;
 longjmp(ConstCharStarException, 0);
 }
 if (n>0)
return n*factorial(n-1);
 return 1;
}
void main()
{
 if (setjmp(ConstCharStarException)==0)
 {
 int n = factorial(10);
 printf(“factorial(10)=%d”,
 n);
 }
 else
 {
 printf(
 “factorial threw exception : %s\n”,
 ConstCharStarExceptionValue);
 }
}

Listing 15

A C ROMable dictionary.
/* A C ROMable dictionary */
#include
typedef struct
{
 const char* englishWord;
 const char* foreignWord;
} DictEntry;
const static DictEntry germanDict[] =
{
 {“yes”, “ja”},
 {“no”, “nein”},
 {NULL, NULL}
};
const static DictEntry frenchDict[] =
{
 {“yes”, “oui”},
 {“no”, “non”},
 {NULL, NULL}
};
const char* FromEnglish(
 const DictEntry* dict,
 const char* english);
const char* ToEnglish(
 const DictEntry* dict,
 const char* foreign);
/*... */
void main()
{
 puts(FromEnglish(frenchDict, “yes”));
}

� eetindia.com | February 1998 | EE Times-India

http://www.eetindia.co.in

How big is an object?
The size of an object can be cal-
culated by examining its class
(and all its base classes). Ignore
member functions and treat the
data the same as for a struct.
Then add the size of a pointer if
there are any virtual functions in
the class or base classes. You can
confirm your result by using the
sizeof operator. It will become ap-
parent that the combined size of
objects in a system need be no
greater than the size of data in a
C-based procedural model. This
is because the same amount of
state is needed to model a system
regardless of whether it is organ-
ised into objects.

C++ and the Heap
Heap usage is much more com-
mon in C++ than in C. This is
because of encapsulation. In C,
where a function requires an
unknown amount of memory,
it is common to externalise the
memory as an input parameter
and leave the user with the prob-
lem. This is at least safer than mal-
loc ing an area and relying on the
user to free it. But C++, with its
encapsulation and destructors,
gives class designers the option
(and responsibility) of managing
the class heap usage.

This difference in philosophy is
evident in the difference between
C strings and a C++ string class.
In C, you get a char array. You
have to decide in advance how
long your string can be and you
have to continuously make sure
it doesn’t get any bigger. A C++
string class, however, uses new
and delete to allow a string to be
any size and to grow if necessary.
It also makes sure that the heap
is restored when the string is no
longer needed.

The consequence of all this
is that you can scrape by in an
embedded system written in C
without implementing malloc
and free, but you won’t get far in
C++ without implementing new
and delete.

ROMable Objects
Linkers for embedded systems
allow const static data to be kept

in ROM. For a system written in C,
this means that all the non-vary-
ing data known at compile time
can be specified by static initialis-
ers, compiled to be stored in ROM
and left there.

In C++, we can do the same,
but we tend not to. In well de-
signed C++ code, most data is
encapsulated in objects. Objects
belong to classes and most class-
es have constructors. The natural
OO equivalent to const initialised
data is a const object. A const
static object that has a construc-
tor must be stored in RAM for its
constructor to initialise it. So while
in C a const static object occupies
cheap and plentiful ROM, its natu-
ral heir in C++ occupies expensive
and scarce RAM. Initialisation is
performed by start-up code that
calls static constructors with pa-
rameters specified in declarations.
This start-up code occupies more
ROM than the static initialiser
would have.

So if a system includes a lot
of data that can be kept in ROM,
special attention to class design
is needed to ensure that the rel-
evant objects are ROMable. For an
object to be ROMable, it must be
capable of initialisation by a static
initialiser like a C struct. Although
the easy way to do this is to make
it a simple C struct (without
member functions), it is possible
to make such a class a bit more
object-oriented.

The criteria for a static initialiser
to be allowed for a class are:
• The class must have no base

classes
• It must have no constructor
• It must have no virtual
 functions
• It must have no private or pro-

tected members
• Any classes it contains must

obey the same rules

In addition, we should also
require that all member functions
of a ROMable class be const. A C
struct meets these criteria, but
so does a class that has member
functions. Although this solves
the ROMability problem and en-
hances the C struct with mem-
ber functions, it falls far short

of the OO ideal of a class that is
easy to use correctly and difficult
to use incorrectly. The unwary
class user can, for example,
declare and use a non- const,
uninitialised instance of the class
that is beyond the control of the
class designer.

To let us sleep securely in our
OO beds, something more is
needed. That "something" is class
nesting. In C++, we can declare
classes within classes. We can take
our dubious class that is open to
misuse, and put it in the private
segment of another class. We can
also make the const static instanc-
es of the dubious class private
static members of the encapsulat-
ing class. This outer class is subject

to none of the restrictions that the
ROMable class is, so we can put in
it a proper restricted interface to
our const static data.

To illustrate this discussion,
let's consider a simplified example
of a hand-held electronic multi-
language dictionary. To keep it
simple, the translator handles
translation to German or French
and it has a vocabulary of two
words, "yes" and "no." Obviously,
these dictionaries must be held
on ROM. A C solution would be
something like Listing 15.

A Dict is an array of DictEntry.
A DictEntry is a pair of const char*
pointers, the first to the English
word, the second to the foreign

Listing 16

A C++ ROMable dictionary NOT!
// NOT a ROMable dictionary in C++
#include
using namespace std;
class Dict
{
public:
 Dict();
 const char* fromEnglish(
 const char* english) const;
 const char* toEnglish(
 const char* foreign) const;
private:
 enum { DictSize = 3 };
 struct
 {
 const char* english;
 const char* foreign;
 } table[DictSize];
};
// *** Following won’t compile ***
const static Dict germanDict =
{
 {
 {“yes”, “ja”},
 {“no”, “nein”},
 {NULL, NULL}
 }
};
// *** Following won’t compile ***
const static Dict frenchDict =
{
 {
 {“yes”, “oui”},
 {“no”, “non”},
 {NULL,
 NULL}
 }
};
//...
void main()
{
 cout
<
<
 germanDict.fromEnglish(“yes”);
}

� eetindia.com | February 1998 | EE Times-India

http://www.eetindia.co.in

word. The end of a Dict is marked
by a DictEntry containing a pair of
NULL strings.

To complete the design, we
add a pair of functions which
perform translation from and to
English using a dictionary. This is a
simple design. The two dictionar-
ies and the strings to which they
point reside in ROM.

Let’s now consider what
happens if we produce a naýve
OO design in C++. Looking at
Listing 15 through OO glasses,
we identify a class Dict with
two member functions const
char* Dict::fromEnglish(const
char*), and const char* Dict::
toEnglish(const char*). We have

a clean and simple interface.
Unfortunately, Listing 16 won’t
compile. The static initialisers
for frenchDict and germanDict
try to access private members of
the objects.

If we make these members
public and eliminate the construc-
tor as in Listing 17, the class will
meet the criteria for static initialis-
ers and the code will compile,
but we’ve broken encapsulation.
Users can see the internal imple-
mentation of the class and bypass
the intended access functions.
Even worse, they can create their
own (con-const) instances of Dict
whose internal state is outside our
control.

Now, let’s do it right. In Listing
18, the class Dict in Listing 17 be-
comes DictTable, which is nested
privately within the new class Dict.
Class Dict also contains, as a static
member, an array of DictTables,
which we can initialise statically.
The function main() shows use of
this class Dict, which has a clean
interface. So to make the best use
of OO design for data on ROM,
special class design is needed,
which is quite unlike the casual
approach typical of C.

EC++
As we’ve seen, some C++ features
have costs that may be undesir-
able in embedded systems. Could
a subset of C++ be more cost-ef-
fective in embedded systems?
Which subset? Programmers who
use ad hoc subsets are frustrated
in importing libraries, an ironic
consequence of adopting a lan-
guage which offers such promise
for libraries. Wouldn’t a widely
recognised subset be better?
Class library vendors could supply
products written in the subset.
Compiler vendors could enforce
it and take advantage in code
generation of the known absence
of troublesome features. This was
the motivation behind Embedded
C++ (EC++), a de facto standard
subset of C++. Embedded C++
is the same as C++ except that
it prohibits multiple inheritance,
templates, exceptions, namespac-
es, and run-time type identifica-
tion. Because it’s a strict subset
of C++ with no extensions, it can
be compiled with an existing C++
compiler.

EC++ shouldn’t be an auto-
matic choice for embedded sys-
tems programming. While most of
its restrictions are easy to accept,
forswearing templates and the
Standard C++ Library shouldn’t
be done lightly. There is no reason
why the full language can’t be
used in embedded systems. But
if you do decide to use a subset,
EC++ would be better supported
than an ad hoc subset.

For more information about
EC++, see P.J Plauger’s articles on
the subject (“Embedded C++: An
Overview,” ESP, December 1997, p.

40; and “Embedded C++,” C/C++
User’s Journal, February 1997, p.
35).

Class Libraries and Embedded
Systems
A major benefit of using C++ is the
availability of class libraries and the
productivity gains they promise.
OO design makes class libraries
much easier to use (and harder to
misuse) then their procedural pre-
decessors. But a suspicion exists
that class libraries are large and of
little use, and that while this may
be tolerable on a desktop PC, class
libraries are generally unsuited to
embedded systems.

This is a misplaced generalisa-
tion. If a judgement is made on
the basis of so-called applica-
tion framework libraries, such
as Microsoft Foundation Classes
(MFC), it is easy to see how this
opinion is formed. Application
frameworks are designed to do
as much as possible of an applica-
tion, allowing the programmer to
concentrate on the specifics of his
or her project. This is usually done
by inheriting from classes in the
library to produce specialised be-
haviour. Most of the functionality
of the classes in the framework are
not the concern of the program-
mer using them.

While this type of class library
is well suited to its intended use,
small code size isn’t its best fea-
ture, and its narrow focus makes
it essentially useless outside its
target application area. An em-
bedded system needs a more
general purpose class library that
can help with a variety of pro-
gramming problems. (Indeed, the
same could be said of any system
whose implementation isn’t domi-
nated by the needs addressed by
a framework.) The characteristics
of a class library suitable for em-
bedded systems are as follows.

It should include classes such
as strings and container classes
like lists, vectors, hash tables,
maps and sets, and more. Such
a class library can dramatically
shrink and improve code that in
C manipulates char* s and arrays.

Classes in the library should
be independent. This implies

Listing 17

A C++ ROMable corruptable dictionary.
// A ROMable dictionary in C++,
// but with poor encapsulation
#include
using namespace std;
class Dict
{
public:
 const char* fromEnglish(
 const char* english) const;
 const char* toEnglish(
 const char* foreign) const;
// PLEASE don’t access anything in the class
// below this comment.
// PLEASE don’t create your own instances
//
 of this class.
 enum { DictSize = 3 };
 struct
 {
 const char* english;
 const char* foreign;
 } table[DictSize];
};
const static Dict germanDict =
{
 {
 {“yes”, “ja”},
 {“no”, “nein”},
 {NULL, NULL}
 }
};
const static Dict frenchDict =
{
 {
 {“yes”, “oui”},
 {“no”, “non”},
 {NULL, NULL}
 }
};
//...
void main()
{
 cout
<
<
 germanDict.fromEnglish(“yes”);
}

� eetindia.com | February 1998 | EE Times-India

http://www.eetindia.co.in

limited use of inheritance. This
characteristic is in contrast with
a framework in which most
classes are in an inheritance hier-
archy. Independence allows the
programmer to treat the library
like an a la carte menu, while a
framework is more like a dietary
regime.

Several general purpose class

libraries exist, though none has
been used as much as MFC. They
include the draft Standard C++
Library, gnu’s libg++, and Rogue
Wave Tools.h++. None are tai-
lored to embedded systems, but
all are better models of a class
library for embedded systems
than a framework library. Class
libraries specifically designed for

embedded systems are starting
to emerge, most notably a revi-
sion of the Standard C++ Library
for embedded systems.
Compilers and Tools for
Embedded Systems
Most C cross compiler vendors
for 32-bit targets now offer C++
compilers as well. The older com-
pilers among them are based on
AT&T’s cfront. Cfront was the origi-
nal C++ compiler and it produces
C code output, which is then fed
to a C compiler. Naturally, cfront
was an easy option for estab-
lished C compiler vendors who
were looking for a C++ offering.
But cfront has a poor reputation
in terms of efficiency and optimi-
sations, and it is understandable
that a compiler whose mission it
was to prototype the language
should suffer from these limita-
tions. Unfortunately for the ac-
ceptance of C++, opinions have
been formed on the basis of
experience with this compiler,
which compared badly with ma-
ture, optimising C compilers.

The Free Software
Foundation’s g++, which is well
established as a native compiler
that generates excellent machine
code on several platforms, has
been used successfully as a cross
compiler.

Several compiler vendors now
offer improved C++ compilers
in a package with source-level
debugging and other necessities

of modern embedded systems
development. Unfortunately, we
are not yet at the stage where a
C++ cross compiler from an es-
tablished vendor can be assumed
to produce good code quality and
be supported by a good robust
tool set, so it is necessary to be
cautious about tool investments.

Reality Check
Having minutely examining the
costs of C++ features, it is only
fair to see how C stands up to the
same degree of scrutiny. Consider
the C code in Listing 19. One line
contains a floating-point value,
which will pull in parts of the
floating-point library and have a
disproportionate effect on code
size, if floating point isn’t needed.
The next line will have a similar
effect, if printf had been avoided
elsewhere. The next line calls
strlen(s) strlen(s) times, rather
than once, which has a serious
impact on run time.

But who would argue that
these abuses are reasons not
to use C in embedded systems?
Similarly, it is wrong to brand
C++ as unsuitable for embed-
ded systems because it can be
misused.

Bigger than a bread box?
There is no need for a system
implemented in C++ to be larger
than a C implementation. Most
C++ features have no impact on
code size or on speed. Some C++
features have a minimal impact in
these areas, and they have been
discussed out of proportion to
their significance. Using C++ ef-
fectively in embedded systems re-
quires that you be aware of what
is going on at the machine code
level, just as in C. Armed with that
knowledge, the embedded sys-
tems programmer can gain great
benefits from using C++, while
instinctively avoiding the pitfalls
that intimidate the novice.

Email Send inquiry

Listing 18

A clean C++ ROMable dictionary.
#include
using namespace std;
class Dict
{
public:
 typedef enum
 {
 german,
 french
 } Language;
 Dict(Language lang);
 const char* fromEnglish(
 const char* english) const;
 const char* toEnglish(
 const char* foreign) const;
private:
 class DictTable
 {
 public:
 const char* fromEnglish(
 const char* english) const;
 const char* toEnglish(
 const char* foreign) const;
 enum { DictSize = 3 };
 struct
 {
 const char* english;
 const char* foreign;
 } table[DictSize];
 };
 const static DictTable
 DictTables[];
 Language myLanguage;
};
const Dict::DictTable Dict::DictTables[]=
{
 {
 {“yes”, “ja”},
 {“no”, “nein”},
 {NULL, NULL}
 },
 {
 {“yes”, “oui”},
 {“no”, “non”},
 {NULL, NULL}
 }
};
//...
void main()
{
 Dict germanDict (Dict::german);
 cout
<
<
 germanDict.fromEnglish(“yes”);
}

Listing 19

C reality check.
/* Reality check - */
/* some things to avoid
in C */
#include
#include
void main()
{
 char s[] = “Hello
world”;
 unsigned i;
 int var =1.0;
 printf(s);
 for (i=0; i
<
 strlen(s); i++)
 /*... */
}

� eetindia.com | February 1998 | EE Times-India

ftp://ftp.embedded.com/pub/2002/09banks
http://www.eetindia.co.in/inquiry/send_inquiry.php3?article_id=8800505781&type=TA&title=C%2B%2B+in+embedded+systems%3A+Myth+and+reality&cat_id=1800001
http://www.eetindia.co.in

