
Column #40: Talk is Cheap!

The Nuts and Volts of BASIC Stamps (Volume 1) •••• Page 443

Column #40, June 1998 by Jon Williams:

Talk Is Cheap!

As far as output devices go, LEDs are okay, character LCDs are nice, and graphical
LCDs are pretty cool. But a voice? Now you’re talking — literally. With a couple of
chips, a little time with your soldering iron, and just a bit of code, you can give your
BASIC Stamp projects a voice and an unlimited English vocabulary to go along with it.

The SP0256-AL2

The heart of this project is the General Instrument SP0256-AL2 allophone speech
processor. I’m sure that somebody will question the logic of doing a project with a chip
that went out of production quite some time ago, especially when there are other devices
available. I went with the SP0256-AL2 because they’re still easy to come by (from B.G.
Micro), they’re inexpensive, they’re easy to interface, and I like the idea of the unlimited
(English) vocabulary.

Being a simple guy, I’m going to keep things simple (if you want the gory technical
details, you can read them in the GI docs). The SP0256-AL2 is a specialized processor
that contains 64 digitally-encoded speech sounds — called allophones — and the
software to convert the digital allophone data to an audible sound. By linking allophones,
we can create speech.

Column #40: Talk is Cheap!

Page 444 •••• The Nuts and Volts of BASIC Stamps (Volume 1)

Figure 40.1: The SP0256-AL2 interfaced with a BASIC Stamp 1

Selecting an allophone is a simple matter of placing its address on the SP0256-AL2 bus
and strobing (high to low) the ALD line. If the address buffer is full, the LRQ line will go
high, so we should check it before loading another allophone address.

Making The Connections

To make a straightforward connection to the SP0256-AL2, we need eight lines: six for
the allophone address, and one each for ALD and LRQ. You could, of course, connect
direct, but this chews up a lot of pins and leaves nothing left if you’re using a BS1. I cut
the pin count down to four by using a 74HC164 shift register to output the allophone
address. I selected the 74HC164 because it only needs clock and data lines; there is no
strobe like on the 75HC595. What this means, however, is that the outputs ripple with the
clock. This presents no problem for our project since the SP0256-AL2 address lines are
ignored until ALD is pulsed low.

Column #40: Talk is Cheap!

The Nuts and Volts of BASIC Stamps (Volume 1) •••• Page 445

Figure 40.2: The SP0256-AL2 amplifier circuit

Figure 40.1 shows the schematic for the circuit. You’ll notice that I used all of the
address lines on the SP0256-AL2. Technically, I could have tied A7 and A8 to ground,
but I figured it was just as easy to connect them to the 74HC164. This also makes my
circuit compatible with the SP0256, provided I connect an external speech ROM to the
appropriate pins on the SP0256.

I also elected to use an external amplifier. If you’d like to have an onboard audio amp,
Figure 40.2 shows an appropriate circuit. Just keep your wiring tight around the op-amp
to prevent it from oscillating.

Wiring up the circuit will be the most time-consuming task of this project. There are
really too many connections to try to put this on a solderless breadboard, so point-to-
point wiring (my choice) or wire-wrapping is called for. Of course, if you have the tools
and know-how to make your own PC boards, that would be even nicer. Take your time.
You certainly don’t want to screw things up by rushing through your wiring. You’ll be
rewarded for your patience.

Column #40: Talk is Cheap!

Page 446 •••• The Nuts and Volts of BASIC Stamps (Volume 1)

The Software

BASIC Stamp software really doesn’t get any easier than this, folks. After last month
(remember the graphing thermometer and all the trouble I had squeezing it into the
BS1?), this one’s a breeze. Please refer to Program Listing 40.1 for analysis.

My strategy goes like this: I store speech strings in the Stamp’s EEPROM. Each string
ends with the marker byte $FF. To say a particular string, I load its EEPROM address
into the variable called addr and call the subroutine called Speak. Nothing to it.

Speak reads the data stored at the current value of addr. If it is not $FF (the end of the
speech marker), we send it to the SP0256-AL2. But first we have to make sure that the
SP0256-AL2 address buffer is not full. If it is, we wait for the LRQ line to go low.
When the speech processor is ready, we output an allophone address via the 74HC164
(Most of you have seen this code before. If you’re new, or haven’t connected a BS1 to a
shift register, please refer to the section titled “Shifty Business For Beginners.”) With the
allophone address placed on the SP0256-AL2, we load it by pulsing the ALD line (high
to low, then back to high) with PULSOUT. The transition is high to low because we
started with a high on the ALD line (pin 2) before we used PULSOUT.

With the current allophone address loaded, we increment the pointer and try it again.
When $FF is encountered, the subroutine is terminated and RETURNs to the caller.
Of the 64 allophone addresses, 59 are audible speech sounds and five are pauses of
various lengths. It is very important to remember that your speech string must end with a
pause. Otherwise, the last allophone will continue to play.

As always, I’ve made heavy use of SYMBOLs to make the code more readable. This
includes all of the allophones. There is one allophone — OR — that collides with a
PBASIC keyword. The problem is solved with the addition of an underscore. You’ll see
“_OR” in the allophone table (Program Listing 40.2).

Talk, Talk, Talk

Once you’re all wired up, the fun begins: creating speech data. This is not quite as easy as
it might seem, because there is no direct correlation between the spelling of a given word
and the allophones used to produce it. Things get even trickier when one considers that
the same allophone can have a bit of a different sound based on its position in the word. It
won’t take too long to get the hang of concatenating allophones to create speech. What I
found is that I started listening very carefully to the way I say words. Diphthongs (vowel
sounds that glide together) are the trickiest part of the encoding.

Column #40: Talk is Cheap!

The Nuts and Volts of BASIC Stamps (Volume 1) •••• Page 447

And don’t worry, you don’t have to figure everything out from scratch.

Please see TALKER.ZIP from the CD-ROM directory. Along with the source code for
this project, you’ll find a couple of PDF documents that I located on the Internet. Both
are scans of SP0256-AL2 documentation. One is from GI, the other from Radio Shack.
The Radio Shack document contains a lot of application information — good stuff that
you’ll find extremely helpful when you start working with the SP0256-AL2. There’s
information about the chip and how it works, as well as a nice library of common words,
numbers, names of months, and the days of the week.

Applications

If you consider that we probably get most of our information through spoken words, the
applications for this technology are limitless. Here are a couple of ideas that come to
mind: a talking thermometer (I told you I had a thing for thermometers!), a talking clock,
a talking alarm system, and various devices for the blind. Heck, you could even make
your own annoying “Your door is ajar ...” alarm for the family automobile. Another
obvious application is giving your Stamp-controlled pet robot a voice.

Have fun. If there’s enough interest in this and other voice-oriented projects, we’ll put
one together with one of the newer options. The call is yours. My E-Mail address is in the
Sources section.

Shifty Business For Beginners

Since the Stamp does not use a traditional address/data bus, beginners are often troubled
with I/O expansion, especially with the BS1. Upon analysis, we’ll find that we usually
define pins as inputs or outputs, and rarely do we need to change the state of a pin mid-
program. Since this is the case, we can expand our Stamp I/O with shift registers.
This project uses the 74HC164 serial-in, parallel-out shift register. With the 74HC164,
we can turn two Stamp lines into eight. What we’ve effectively done is expanded the
Stamp’s outputs from eight to 14 (remember that two are used to control the shift
register). If you need more outputs, you can use the 74HC595 because it’s cascadable
(you can link two or more together in a chain). Be aware that the ’595 also requires a
strobe line to transfer your data to the outputs. If your circuit requires more than eight
(additional) outputs, or you don’t want the outputs to ripple (change) with the clock line,
the 74HC595 is the way to go.

Column #40: Talk is Cheap!

Page 448 •••• The Nuts and Volts of BASIC Stamps (Volume 1)

For the sake of discussion, let’s stick with the ’164. When the clock line is pulsed high,
the state of the input pin (high or low) is transferred to output A. At the same time, what
was on output A is transferred to output B, and so on down the line. The content of output
H, the last bit, is transferred into bit-oblivion — it’s gone forever. By doing eight such
transfers, we can output an eight-bit byte with two pins.

Back in August, I made the comment that it is my habit to reserve variables B0 and B1
for bit-level access. Here’s where we’ll use bit-level access.

Take a look at the FOR-NEXT loop embedded in the Speak subroutine. This loop runs
eight times; enough to shift out a byte. The first thing we do is grab Bit7 and output it to
the data pin. Bit7 is the MSB (most significant bit) of B0, the variable that holds our
shifted data (it is SYMBOLically renamed data). We grab Bit7 because we want this bit
to be present on 74HC164 output H when we’re done with eight clock pulses.

After Bit7 is output, we want to do the same thing with Bit6, then Bit5, and so on, down
to Bit0. We could do this in hard code, but that technique would be wasteful. It’s more
convenient to move Bit6 to Bit7 and repeat the same set of code. We call this a left shift
since the bit values move to their left during this process. Since we’re dealing with binary
numbers, multiplying the current value of data by two causes a left shift. It’s important to
keep in mind that the value of data will change during this subroutine. If you need to save
it for some reason, make a copy to another variable before calling Speak.

Okay, what about inputs? Not a problem. Go get a 74HC165: a parallel-input, serial
output shift register. This chip complements the ’164. With the ground we’ve just
covered, you should be able to check out the specs and put together the code, so I will not
deny you the opportunity to learn from the experience. I will, however, give you a hint. In
order to share the data line with the ’164, you’ll need to change it from an output to input
and back. For an example, take a look at last month’s project — it used this technique.

Column #40: Talk is Cheap!

The Nuts and Volts of BASIC Stamps (Volume 1) •••• Page 449

' Program Listing 40.1
' Nuts & Volts: Stamp Applications, June 1998

' ----[Title]---
'
' File...... TALKER.BAS
' Purpose... BASIC Stamp -> SP0256-AL2 Allophone Speech Processor
' Author.... Jon Williams
' E-mail.... jonwms@aol.com
' WWW....... http://members.aol.com/jonwms
' Started... 03 MAY 98
' Updated... 03 MAY 98

' ----[Program Description]---
'
' This program enables the BASIC Stamp to talk by interfacing with the GI
' SP0256-AL2 Allophone Speech Processor.
'
' A 74HC164 parallel output shift register is used to provide allophone
' address to the SP0256-AL2. Four I/O lines are used:
'
' Pin 0 (Out) Clock to 74HC164 (can be shared)
' Pin 1 (Out) Data to 74HC164 (can be shared)
' Pin 2 (Out) ALD - pulsed low causes allophone address to be loaded
' Pin 3 (In) LRQ - goes high when the SP0256-AL2 address buffer is full

' ----[Revision History]--
'
' 03 MAY 98 : Version 1

' ----[Constants]---
'
SYMBOL Clk = 0
SYMBOL Dio = Pin1
SYMBOL ALD = 2 ' Address Load
SYMBOL LRQ = Pin3 ' Load Request

' Copy and Paste "ALLOPHON.BAS" here

' ----[Variables]---
'
SYMBOL data = B0 ' allophone data
SYMBOL shift = B2 ' loop counter for shift out
SYMBOL addr = B3 ' EE address of allophone

' ----[EEPROM Data]---
'

Column #40: Talk is Cheap!

Page 450 •••• The Nuts and Volts of BASIC Stamps (Volume 1)

 ' Hello,
 EEPROM (HH1,EH,LL,AX,OW,PA4)
 ' I am the
 EEPROM (AA,AY,PA2,AE,MM,PA2,DH1,AX,PA2)
 ' BASIC Stamp
 EEPROM (BB2,EY,SS,IH,KK2,PA3,SS,SS,PA1,TT2,AE,AE,MM,PP,PA1,$FF)

' ----[Initialization]--
'
Init: Pins = %00000100 ' begin with ALD high
 Dirs = %00000111

' ----[Main Code]---
'
Main: addr = $00 ' point to start of speech
 GOSUB Speak ' speak!
 PAUSE 2000 ' wait for two seconds
 GOTO Main ' speak again...

 END

' ----[Subroutines]---
'

Speak: READ addr, data ' get allophone from EE table
 IF data = $FF THEN Done ' if $FF, we're done
Busy: IF LRQ = 1 THEN Busy ' wait if SP0256-AL2 buffer full
 FOR shift = 1 TO 8 ' shift out the allophone address
 Dio = Bit7 ' get a bit
 PULSOUT Clk, 10 ' clock it out
 data = data * 2 ' left-shift the byte
 NEXT
 PULSOUT ALD, 10 ' load the allophone
 addr = addr + 1 ' point to next allophone address
 GOTO Speak
Done: RETURN

' Program Listing 40.2
' Nuts & Volts: Stamp Applications, June 1998

' Allophone constants for "TALKER.BAS"

SYMBOL PA1 = $00 ' 10 ms pause (before BB, DD, GG and JH)
SYMBOL PA2 = $01 ' 30 ms pause (before BB, DD, GG and JH)
SYMBOL PA3 = $02 ' 50 ms pause (before PP, TT, KK and CH)
 ' (and between words)

Column #40: Talk is Cheap!

The Nuts and Volts of BASIC Stamps (Volume 1) •••• Page 451

SYMBOL PA4 = $03 ' 100 ms pause (between clauses and sentences)
SYMBOL PA5 = $04 ' 200 ms pause (between clauses and sentences)

 ' sample word

SYMBOL OY = $05 ' bOY
SYMBOL AY = $06 ' skY
SYMBOL EH = $07 ' End
SYMBOL KK3 = $08 ' Comb
SYMBOL PP = $09 ' Pow
SYMBOL JH = $0A ' doDGe
SYMBOL NN1 = $0B ' thiN
SYMBOL IH = $0C ' sIt
SYMBOL TT2 = $0D ' To
SYMBOL RR1 = $0E ' Rural
SYMBOL AX = $0F ' sUcceed

SYMBOL MM = $10 ' Milk
SYMBOL TT1 = $11 ' parT
SYMBOL DH1 = $12 ' THey
SYMBOL IY = $13 ' sEE
SYMBOL EY = $14 ' bEIge
SYMBOL DD1 = $15 ' coulD
SYMBOL UW1 = $16 ' tO
SYMBOL AO = $17 ' AUght
SYMBOL AA = $18 ' hOt
SYMBOL YY2 = $19 ' Yes
SYMBOL AE = $1A ' hAt
SYMBOL HH1 = $1B ' He
SYMBOL BB1 = $1C ' Business
SYMBOL TH = $1D ' THin
SYMBOL UH = $1E ' bOOk
SYMBOL UW2 = $1F ' fOOd

SYMBOL AW = $20 ' OUt
SYMBOL DD2 = $21 ' Do
SYMBOL GG3 = $22 ' wiG
SYMBOL VV = $23 ' Vest
SYMBOL GG1 = $24 ' Got
SYMBOL SH = $25 ' SHip
SYMBOL ZH = $26 ' aZure
SYMBOL RR2 = $27 ' bRain
SYMBOL FF = $28 ' Food
SYMBOL KK2 = $29 ' sKy
SYMBOL KK1 = $2A ' Can't
SYMBOL ZZ = $2B ' Zoo
SYMBOL NG = $2C ' aNchor
SYMBOL LL = $2D ' Lake
SYMBOL WW = $2E ' Wool
SYMBOL XR = $2F ' repaiR

Column #40: Talk is Cheap!

Page 452 •••• The Nuts and Volts of BASIC Stamps (Volume 1)

SYMBOL WH = $30 ' WHig
SYMBOL YY1 = $31 ' Yes
SYMBOL CH = $32 ' CHurCH
SYMBOL ER1 = $33 ' fIR
SYMBOL ER2 = $34 ' fIR
SYMBOL OW = $35 ' bEAU
SYMBOL DH2 = $36 ' THey
SYMBOL SS = $37 ' veSt
SYMBOL NN2 = $38 ' No
SYMBOL HH2 = $39 ' Hoe
SYMBOL _OR = $3A ' stORe (note leading underscore)
SYMBOL AR = $3B ' alARm
SYMBOL YR = $3C ' cleaR
SYMBOL GG2 = $3D ' Guest
SYMBOL EL = $3E ' saddLE
SYMBOL BB2 = $3F ' Business

' end of Allophone table

