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Column #26, April 1997 by Scott Edwards: 
 

Stamp Gives the Green Light 
To Efficient Programming 
 
 
 
 
THE ELECTRONICS Q&A column here in N&V is an amazing resource. Q&A editor T. J. 
Byers will go to any length to find the answers to his readers’ questions. Recently, he 
came to me.  
 
A reader had come into possession of a real stoplight, and wanted to know how to build a 
circuit that would realistically sequence the red, yellow and green lights. T.J. half 
kiddingly suggested a player-piano arrangement of motors, cams and switches, and 
referred the question to me for a Stampified solution. 
 
So this month we’ll learn how to sequence a traffic light, with special emphasis on 
storing and retrieving data with Lookup tables. We’ll also have a peek at new Stamp 
peripherals that store data, keep time, and control motors. 
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Playing Traffic Cop 
 
It hardly seems necessary to discuss what a traffic signal does, since we spend way too 
much of our time looking at examples—usually lit up red in our direction for an 
interminable time. 
 

Figure 26.1: Stoplight sequence 
 

 
 
But it’s my habit to describe a problem by making sketches and jotting notes and 
calculations before I set out to write a program.  In this case, I drew a pairs of traffic 
signals at a hypothetical intersection. One light would control a north-south street, the 
other east-west. 
 
I identified six states for the lights in a normal traffic sequence, as shown in Figure 26.1. 
For the sake of simplicity, I decided that this intersection would be the timer-controlled 
variety, not demand-controlled by the presence or absence of traffic. After all, the reader 
probably wants his light to sequence continuously, without the need for somebody to 
pull up in a Chevy. 
 
The lights remain in each of the six states for varying amounts of time, ranging from less 
than a second for both-red, through 2 seconds for yellow, to 8 seconds for red/green. I 
picked the times arbitrarily. I made a note to make sure that the program allowed any 
timing parameter to be changed easily. 
 
Figure 26.2 shows how I rigged a simulated stoplight with red, yellow and green LEDs. 
Note that you may have to fiddle with the series resistor values in order to get more-or-
less equal brightness from the three different colors of LEDs. Each color of LED has a 
different forward voltage and efficiency. 
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Figure 26.2: Hookup for program listings 26.1 and 26.2 

 
 
Equipped with my two models—a mental model of stoplight operation and a physical 
model of the lights themselves—I was ready to program. 
 
Looking at my sketch (Figure 26.1), I determined that the job boiled down to retrieving 
two pieces of information from a lookup table; the patterns of the six lights and the length 
of time they should remain in that pattern. PBASIC includes a Lookup instruction that 
allows you to fetch data from a table based on its position or index.An obvious approach 
would be to prepare two lookup tables, one with bit patterns and the other with times. 
 
However, I wanted to illustrate a couple of PBASIC capabilities that many users forget: 
(1) Lookup-table entries can be up to 16 bits long, and (2) The STAMP2 host program can 
perform compile-time math that can make a program more readable without taking up 
additional program memory. 
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Listings 26.1 and 26.2 are the result. The programs are thoroughly commented, so I won’t 
repeat that stuff here. Suffice to say that these are very compact programs with plenty of 
room left over for your customization. 
 
' Program Listing 26.1. Stoplight control for BS1 
' Program: STOPLITE.BAS (Sequence a stoplight from a lookup table.) 
' This program generates proper green-yellow-red sequencing for a 
' pair of traffic signals controlling an intersection. I refer 
' to one street as "EW" (east-west) and the other as "NS" (north- 
' south). Pins are connected to LEDs as follows: 
'  pin5  EW/red   pin2  NS/red 
'  pin4  EW/yellow  pin1  NS/yellow 
'  pin3  EW/green  pin0  NS/green 
' ====Constants=== 
' The program uses six 16-bit constants to represent the states 
' of the lights (lower 6 bits) and the length of time to leave 
' the lights in those states (upper 10 bits). The usual way 
' to create such constants is to define the bit patterns 
' and the times separately, then have the compiler add or 
' logically OR them together. Unfortunately, the simple STAMP 
' host program doesn't have this feature, so we'll have to do 
' it by hand. Here's how the constants are organized: 
'   Duration (ms) Pattern of lights 
'      \     / 
'      |=========|====| 
SYMBOL NSgo  = %0010000000100001  ' NS green/EW red, 8192 ms. 
SYMBOL NSyel  = %0000100000100010  ' NS yellow/EW red, 2048 ms. 
SYMBOL allRed  = %0000001000100100  ' NS red/EW red, 512 ms. 
SYMBOL EWgo  = %0010000000001100  ' NS red/EW green, 8192 ms. 
SYMBOL EWyel  = %0000100000010100  ' NS red/EW yellow, 2048 ms. 
' ===Variables=== 
SYMBOL seq = b11    ' Current state (0-5) of sequence. 
SYMBOL lkup = w4    ' Number from lookup table. 
' ===Program=== 
dirs = %00111111    ' Set lower six pins to output. 
again:      ' Endless loop. 
for seq = 0 to 5   ' For each of six stored patterns/times.. 
  lookup seq,(NSgo,NSyel,allRed,EWgo,EWyel,allRed),lkup ' Get bits. 
  pins = lkup & %00111111  ' Copy lower 6 bits to pins. 
  lkup = lkup & %1111111111000000 ' Strip off lower 6 bits. 
  pause lkup    ' Set delay to upper 10 bits. 
next     ' ..and get the next entry from the table. 
goto again    ' Repeat endlessly. 
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' Program Listing 26.2. Stoplight control for BS2 
' Program: STOPLITE.BS2 (Sequence a stoplight from a lookup table.) 
' This program generates proper green-yellow-red sequencing for a 
' pair of traffic signals controlling an intersection. I refer 
' to one street as "EW" (east-west) and the other as "NS" (north- 
' south). Pins are connected to LEDs as follows: 
'  P5  EW/red   P2  NS/red 
'  P4  EW/yellow  P1  NS/yellow 
'  P3  EW/green  P0  NS/green 
' ====Constants=== 
' The program uses six 16-bit constants to represent the states 
' of the lights (lower 6 bits) and the length of time to leave 
' the lights in those states (upper 10 bits). Here's how the 
' constants are organized: 
'   Duration (ms) Pattern of lights 
'        \     / 
'    |=========|====| 
' The BS2 host software permits compile-time math (math done on 
' the PC before downloading to the Stamp), which we'll use to 
' combine two sets of constants--one representing light patterns 
' and another times. This allows you to change the timing of 
' the lights (or the bit patterns, if you wired the lights 
' differently) without worrying about how the bits are packed 
' into their 16-bit packages. 
 
NSgrn   con %00100001   ' Make NS green, EW red. 
NSyel   con %00100010   ' Make NS yellow, EW red. 
allRed   con %00100100   ' Make both lights red. 
EWgrn   con %00001100   ' Make EW green, NS red. 
EWyel   con %00010100   ' Make EW yellow, NS red. 
NsgoTime  con 8192   ' Set NS green duration  
YelTime  con 2048   ' Set duration of any yellow. 
EWgoTime  con 8192   ' Set EW green duration. 
redOverlap  con 512   ' Set red/red overlap time. 
 
' The bit-pattern and timing constants are combined as follows: 
' The time is logically ANDed with %1111111111000000, which 
' clears the lower 6 bits to 0s while leaving the upper 10 
' bits intact. The result is logically ORed with the 6-bit 
' light pattern, which copies the 1s of the pattern into the 
' lower 6 bits. If this ANDing and ORing is unfamiliar, check 
' out Stamp Applications #14, April 1996 for a quick lesson 
' in Boolean logic. (See the N&V web site or contact the 
' magazine for back issues.) 
 
top10   con %1111111111000000  ' Mask off lower 6 bits. 
btm6   con %0000000000111111  ' Mask off upper 10 bits. 
NSgo   con NSgoTime & top10 | NSgrn  ' 16-bit time/bit pat. 
NSwarn   con yelTime & top10 | NSyel   ' " 
allStop  con RedOverlap & top10 | allRed  ' " 
EWgo   con EWgoTime & top10 | EWgrn   ' " 
EWwarn   con yelTime & top10 | EWyel   ' " 
' ===Variables=== 
seq  var  nib  ' Current state (0-5) of stoplight sequence. 
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lkup  var  word  ' Number from lookup table. 
' ===Program=== 
DIRS = %00111111  ' Set lower six pins to output. 
again:    ' Endless loop. 
for seq = 0 to 5  ' For each of six stored patterns/times.. 
  lookup seq,[NSgo,NSwarn,allStop,EWgo,EWwarn,allStop],lkup ' Get bits. 
  OUTS = lkup & btm6  ' Copy lower 6 bits to pins. 
  pause lkup & top10  ' Set delay to upper 10 bits. 
next    ' ..and get the next entry from the table. 
goto again   ' Repeat endlessly. 


