
Column #26: Stamp Gives the Green Light to Efficient Programming

The Nuts and Volts of BASIC Stamps (Volume 1) •••• Page 265

Column #26, April 1997 by Scott Edwards:

Stamp Gives the Green Light
To Efficient Programming

THE ELECTRONICS Q&A column here in N&V is an amazing resource. Q&A editor T. J.
Byers will go to any length to find the answers to his readers’ questions. Recently, he
came to me.

A reader had come into possession of a real stoplight, and wanted to know how to build a
circuit that would realistically sequence the red, yellow and green lights. T.J. half
kiddingly suggested a player-piano arrangement of motors, cams and switches, and
referred the question to me for a Stampified solution.

So this month we’ll learn how to sequence a traffic light, with special emphasis on
storing and retrieving data with Lookup tables. We’ll also have a peek at new Stamp
peripherals that store data, keep time, and control motors.

Column #26: Stamp Gives the Green Light to Efficient Programming

Page 266 •••• The Nuts and Volts of BASIC Stamps (Volume 1)

Playing Traffic Cop

It hardly seems necessary to discuss what a traffic signal does, since we spend way too
much of our time looking at examples—usually lit up red in our direction for an
interminable time.

Figure 26.1: Stoplight sequence

But it’s my habit to describe a problem by making sketches and jotting notes and
calculations before I set out to write a program. In this case, I drew a pairs of traffic
signals at a hypothetical intersection. One light would control a north-south street, the
other east-west.

I identified six states for the lights in a normal traffic sequence, as shown in Figure 26.1.
For the sake of simplicity, I decided that this intersection would be the timer-controlled
variety, not demand-controlled by the presence or absence of traffic. After all, the reader
probably wants his light to sequence continuously, without the need for somebody to
pull up in a Chevy.

The lights remain in each of the six states for varying amounts of time, ranging from less
than a second for both-red, through 2 seconds for yellow, to 8 seconds for red/green. I
picked the times arbitrarily. I made a note to make sure that the program allowed any
timing parameter to be changed easily.

Figure 26.2 shows how I rigged a simulated stoplight with red, yellow and green LEDs.
Note that you may have to fiddle with the series resistor values in order to get more-or-
less equal brightness from the three different colors of LEDs. Each color of LED has a
different forward voltage and efficiency.

Column #26: Stamp Gives the Green Light to Efficient Programming

The Nuts and Volts of BASIC Stamps (Volume 1) •••• Page 267

Figure 26.2: Hookup for program listings 26.1 and 26.2

Equipped with my two models—a mental model of stoplight operation and a physical
model of the lights themselves—I was ready to program.

Looking at my sketch (Figure 26.1), I determined that the job boiled down to retrieving
two pieces of information from a lookup table; the patterns of the six lights and the length
of time they should remain in that pattern. PBASIC includes a Lookup instruction that
allows you to fetch data from a table based on its position or index.An obvious approach
would be to prepare two lookup tables, one with bit patterns and the other with times.

However, I wanted to illustrate a couple of PBASIC capabilities that many users forget:
(1) Lookup-table entries can be up to 16 bits long, and (2) The STAMP2 host program can
perform compile-time math that can make a program more readable without taking up
additional program memory.

Column #26: Stamp Gives the Green Light to Efficient Programming

Page 268 •••• The Nuts and Volts of BASIC Stamps (Volume 1)

Listings 26.1 and 26.2 are the result. The programs are thoroughly commented, so I won’t
repeat that stuff here. Suffice to say that these are very compact programs with plenty of
room left over for your customization.

' Program Listing 26.1. Stoplight control for BS1
' Program: STOPLITE.BAS (Sequence a stoplight from a lookup table.)
' This program generates proper green-yellow-red sequencing for a
' pair of traffic signals controlling an intersection. I refer
' to one street as "EW" (east-west) and the other as "NS" (north-
' south). Pins are connected to LEDs as follows:
' pin5 EW/red pin2 NS/red
' pin4 EW/yellow pin1 NS/yellow
' pin3 EW/green pin0 NS/green
' ====Constants===
' The program uses six 16-bit constants to represent the states
' of the lights (lower 6 bits) and the length of time to leave
' the lights in those states (upper 10 bits). The usual way
' to create such constants is to define the bit patterns
' and the times separately, then have the compiler add or
' logically OR them together. Unfortunately, the simple STAMP
' host program doesn't have this feature, so we'll have to do
' it by hand. Here's how the constants are organized:
' Duration (ms) Pattern of lights
' \ /
' |=========|====|
SYMBOL NSgo = %0010000000100001 ' NS green/EW red, 8192 ms.
SYMBOL NSyel = %0000100000100010 ' NS yellow/EW red, 2048 ms.
SYMBOL allRed = %0000001000100100 ' NS red/EW red, 512 ms.
SYMBOL EWgo = %0010000000001100 ' NS red/EW green, 8192 ms.
SYMBOL EWyel = %0000100000010100 ' NS red/EW yellow, 2048 ms.
' ===Variables===
SYMBOL seq = b11 ' Current state (0-5) of sequence.
SYMBOL lkup = w4 ' Number from lookup table.
' ===Program===
dirs = %00111111 ' Set lower six pins to output.
again: ' Endless loop.
for seq = 0 to 5 ' For each of six stored patterns/times..
 lookup seq,(NSgo,NSyel,allRed,EWgo,EWyel,allRed),lkup ' Get bits.
 pins = lkup & %00111111 ' Copy lower 6 bits to pins.
 lkup = lkup & %1111111111000000 ' Strip off lower 6 bits.
 pause lkup ' Set delay to upper 10 bits.
next ' ..and get the next entry from the table.
goto again ' Repeat endlessly.

Column #26: Stamp Gives the Green Light to Efficient Programming

The Nuts and Volts of BASIC Stamps (Volume 1) •••• Page 269

' Program Listing 26.2. Stoplight control for BS2
' Program: STOPLITE.BS2 (Sequence a stoplight from a lookup table.)
' This program generates proper green-yellow-red sequencing for a
' pair of traffic signals controlling an intersection. I refer
' to one street as "EW" (east-west) and the other as "NS" (north-
' south). Pins are connected to LEDs as follows:
' P5 EW/red P2 NS/red
' P4 EW/yellow P1 NS/yellow
' P3 EW/green P0 NS/green
' ====Constants===
' The program uses six 16-bit constants to represent the states
' of the lights (lower 6 bits) and the length of time to leave
' the lights in those states (upper 10 bits). Here's how the
' constants are organized:
' Duration (ms) Pattern of lights
' \ /
' |=========|====|
' The BS2 host software permits compile-time math (math done on
' the PC before downloading to the Stamp), which we'll use to
' combine two sets of constants--one representing light patterns
' and another times. This allows you to change the timing of
' the lights (or the bit patterns, if you wired the lights
' differently) without worrying about how the bits are packed
' into their 16-bit packages.

NSgrn con %00100001 ' Make NS green, EW red.
NSyel con %00100010 ' Make NS yellow, EW red.
allRed con %00100100 ' Make both lights red.
EWgrn con %00001100 ' Make EW green, NS red.
EWyel con %00010100 ' Make EW yellow, NS red.
NsgoTime con 8192 ' Set NS green duration
YelTime con 2048 ' Set duration of any yellow.
EWgoTime con 8192 ' Set EW green duration.
redOverlap con 512 ' Set red/red overlap time.

' The bit-pattern and timing constants are combined as follows:
' The time is logically ANDed with %1111111111000000, which
' clears the lower 6 bits to 0s while leaving the upper 10
' bits intact. The result is logically ORed with the 6-bit
' light pattern, which copies the 1s of the pattern into the
' lower 6 bits. If this ANDing and ORing is unfamiliar, check
' out Stamp Applications #14, April 1996 for a quick lesson
' in Boolean logic. (See the N&V web site or contact the
' magazine for back issues.)

top10 con %1111111111000000 ' Mask off lower 6 bits.
btm6 con %0000000000111111 ' Mask off upper 10 bits.
NSgo con NSgoTime & top10 | NSgrn ' 16-bit time/bit pat.
NSwarn con yelTime & top10 | NSyel ' "
allStop con RedOverlap & top10 | allRed ' "
EWgo con EWgoTime & top10 | EWgrn ' "
EWwarn con yelTime & top10 | EWyel ' "
' ===Variables===
seq var nib ' Current state (0-5) of stoplight sequence.

Column #26: Stamp Gives the Green Light to Efficient Programming

Page 270 •••• The Nuts and Volts of BASIC Stamps (Volume 1)

lkup var word ' Number from lookup table.
' ===Program===
DIRS = %00111111 ' Set lower six pins to output.
again: ' Endless loop.
for seq = 0 to 5 ' For each of six stored patterns/times..
 lookup seq,[NSgo,NSwarn,allStop,EWgo,EWwarn,allStop],lkup ' Get bits.
 OUTS = lkup & btm6 ' Copy lower 6 bits to pins.
 pause lkup & top10 ' Set delay to upper 10 bits.
next ' ..and get the next entry from the table.
goto again ' Repeat endlessly.

