Catalina

Catalyst
Operating System

Reference Manual

Release 3.3

Catalyst O/S Reference Manual

Table of Contents

WHAT IS CATALYST? 4
ST ATUS ettt ettt e ettt e ettt ieiteieeeeeiri ettt ereeereeienns 4
B ATURE S 1uuiitiie ittt ettt ettt ettt ettt ettt ee et te et ete s eeeetenteen ettt teen ettt tteettetteteteetteteteneteteetietiirietieaenss 4
L N S E ettt ittt ettt ettt eee e tete ittt ettt tteseiettreeiest.iersenierestteresitessnttesesteeseitirrsieirseierssiiereiiereeiees: 5

INSTALLING CATALYST 5
OVERVIEW . ettt ettt ettt ettt ettt eeeii it 5
INSTALLING THE CATALYST BINARY RELEASE . iiieeiiieeiiiiiiieeeieeeeeeeeeeeeeeee e eeeeeeeeeeeeeeeeeeeieaenns 5

Load the Catalyst binary int0 EEPROM.............cooouiiioiioiiiieeieee ettt ettt eeeeeeeeteeteeieeeeeeeeeeeees 5
Load the Catalyst programs onto an SD CArd..............oooooeoiviiiiieoiiiiiiiiiiiieieeeeiee e eteeieeeseeeeeeeieeeeees 6
INSTALLING THE CATALYST SOURCE RELEASE . .. ieuiiien ittt ettt et et ettt et eee e tete e eeeteteeeeteteeaeeeetteeeeeiaenss 7
Catalyst DireCtOry STUCHIT o . oot 7
Building Catalyst frOM SOUFC@......cooooooooooeoeiioeiiioiiiiiiiieeeieeeieeeeeeeeeeeeeeeieeeeeeeeeeeeee et 8
Compiling Programs f0r CAtAIVST........oocoooooooiiieeiiiiiiiieiiiieiiiieeiieieiieeeeeeeeeieeeieeeeeeeeeeeeeieeeeeeeeeen 9
Compiling C programs to run under CatalySt........oouvieviieiiiiiiiiiiieiiiiieiiee i, 9
Compiling SPIN programs to run under CatalySt.........ooeuvieeiiiiiiiiiiiiiieii i, 9

USING CATALYST 11
USING THE CATALYST LOADER ettt ettt ettt ettt i e e it e et e i eeeeeeeeeeen 11
CATALYST FILE EXTENSIONS . tiiiiteeeiiieeeeeee ettt ettt ettt ettt e et e e i eeeeeiieeeeeeeiees 11
Tre SDCARD MEMORY MODE (SIMIM).teuiiiiiiieiiiieeeeeeeeeeeeeeeeeeeeeeeeeee ettt eeeeeeeeeeeeeeen, 12
CATALYST COMMANDS . ettt ettt et eee ettt et ettt ettt e et tee et eee et e eeeeeeeteeeeeeeeeeeeeeeeeieeeeseeeeeenneees 13

Copyright 2011 Ross Higson Page 2 of 29

Catalyst O/S Reference Manual

SUPERQUAD AND RAMPAGE et iieetiiiiiie ettt ettt e e e e e e e e e e i eiieeiees 27
PROGRESS MESSAGES ON MULTI-PROP PLATFORMS. ... ieeieesiee ittt ettt tre e teeeee s teeeeeeeeseetereteseeteeeteeizereeienss 27
CATALYST DEVELOPMENT 28
REPORTING BlUGS. ettt ittt ittt ettt ettt ettt ettt tee sttt et ett e eee st tes et ees e eees e teteeeseeeeeeseateenttetenteensss 28
IE YOU WANT TO HELP DEVELOP CATALYST . ittt ettt e e ee e eeeeiiieeenn, 28
OKAY, BUT WHY IS IT CALLED “CATALYST 2 ittt ettt ettt eeieeeieeennas 28
A CKNOWLEDGMENTS ittt ettt ettt ettt ettt ettt ettt ettt ettt ettt ettt et ettt et eieeeeeeeeeeeeenas 28
THE CURRENT CATALYST RELEASE .29
VVHAT'S NEW IN THIS RELEASE P ieuuttien sttt sttt et te et e et ee et es ettt e eee st es e aeee st tee e teeeeaeeeeeteransterenseeaeenaes 29
VWHAT’'S DUE IN THE NEXT RELEASE 2 euuiieiieeeeeeee ettt ettt ettt et eie e i eeieeeeieeienn, 29

Copyright 2011 Ross Higson Page 3 of 29

Catalyst O/S Reference Manual

What is Catalyst?

Catalina is an SD card-based program loader, plus a set of utility programs for the
Parallax Propeller.

When used as intended, Catalyst looks very much like a fully functional Propeller
operating system. However, strictly speaking, Catalyst is just a program loader - it is
not really a true operating system because it does no resource management -
however, it can be used to load programs that do perform various common resource
management tasks — it even comes with a few - e.g. various utilities for doing SD
card file management.

While it can be used with any Propeller programs, Catalyst is specifically intended to
facilitate loading and using programs compiled with the Catalina C compiler.

It is not currently possible to compile Catalina C programs on the Propeller, but
Catalyst comes with various other applications that can be used for self-hosted
Propeller development, including the vi text editor, and such tools as a BASIC
interpreter, a Pascal compiler and interpreter, and the Lua scripting language. It
could also be use to edit, compile and then run SPIN programs using with the Sphinx
SPIN compiler (not included — see http://www.sphinxcompiler.com/).

Status

This is a full release of Catalyst. When you start the Catalyst loader, it will report
itself as Catalyst v3.3. This version of Catalyst coincides with the release of
Catalina 3.3.

Features

» Compatible with any Propeller platform that supports Catalina and has an SD
card available (e.g. Hydra, Hybrid, TriBladeProp, RamBlade, Morpheus,
DracBlade, C3);

» Support for SPIN or Catalina LMM programs on any supported platform;

» Support for Catalina XMM programs on any supported platform with external
XMM RAM (e.g. Hybrid, TriBladeProp, RamBlade, Morpheus, DracBlade, C3);

» Support for multi-CPU platforms (e.g. TriBladeProp, Morpheus);

» Support for the SDCARD Memory Mode, which maximizes the memory
available to Catalina LMM programs on any supported platform;

* Provides familiar SD card file management (e.g. Is cp, mv, rm, mkdir, rmdir)
» Supports self-hosted Propeller development (in Pascal, Basic and Lua).

» Supports passing command line parameters to both C and SPIN programs.

Copyright 2011 Ross Higson Page 4 of 29

http://www.sphinxcompiler.com/

Catalyst O/S Reference Manual

License

All components of Catalyst are free and open source. Many of the components are
licensed under the MIT license. Others are free but are licensed under the GNU
General Public License, or other terms and conditions. All licenses are open-source,
and free for non-commercial use — however, they are subject to various copyright
and other conditions and you should consider the license terms of each component
before using any of them in a commercial application.

Installing Catalyst

Overview

Catalyst is normally released as part of Catalina, and requires no further installation -
but you must still build the appropriate binaries for your Propeller platform — see the
section Building Catalyst from source (below).

If you received this as a separate release, there are two mandatory parts to Catalyst,
and one optional part that may need to be installed:

From the binary release:

e The main Catalyst binary. This should be programmed into the EEPROM of
the propeller. There will be a different version for each platform, and is
distributed as part of the binary release for each specific propeller platform.

 The Catalyst external command and application program binaries. These
programs should be loaded onto an SD card. They are distributed as part of a
binary release for a specific propeller platform.

From the source release (optional):

» The Catalyst source code. This is distributed as part of the normal Catalina
source release. It may also be distributed separately. In either case, it should
be installed in the normal Catalina program directory (the default directory is
catalyst)

Installing the Catalyst Binary Release

Load the Catalyst binary into EEPROM

If you have downloaded a source release, you will first have to build Catalyst for your
platform. Refer to the section Building Catalyst from Source (below).

If you have downloaded a binary release specifically for your Propeller platform, then
you should be able to load Catalyst immediately. The main Catalyst binary is usually
called catalyst.binary in the source release, but is called catalyst.bin in the binary
release, to facilitate it being loaded onto an SD Card (which only supports 8.3 style
file names). However, whether it is called catalyst.binary or catalyst.bin, it should
be programmed into the EEPROM of the propeller. This can be done using the
Catalina payload program if the Propeller is connected and turned on, using a
command like:

Copyright 2011 Ross Higson Page 5 of 29

Catalyst O/S Reference Manual

payload -e catalyst.bin

Load the Catalyst programs onto an SD Card

The remaining contents of the binary release must be copied an SD card (or micro
SD card) that is then inserted into the Propeller.

This SD card must be formatted with a FAT file system. However, neither Catalyst
nor Catalina support long file names, so all .binary file names must be renamed to
be no longer than 8 characters, and all should have an extension of .bin.

Catalyst allows binary programs to be stored in a /bin directory on the SD card. If the
program to be loaded exists in the root directory of the SD card then that version is
loaded, otherwise Catalyst attempts to load the program from the bin directory (if it
exists).

When copying the .bin binary files to an SD card, binary files can be either in the
root directory, or within a bin directory. The rest of the files in the binary release
should be copied to the root directory of the SD card.

Copyright 2011 Ross Higson Page 6 of 29

Catalyst O/S Reference Manual

Installing the Catalyst Source Release

There is no installer for the Catalyst source release. If Catalyst is distributed
separately from Catalina, simply use unzip (Windows version) or gzip/tar' (Linux
version) to extract the source distribution into the folder in which Catalina is to be
installed.

Under Windows, Catalyst should be installed in C:\Program Files\Catalina\catalyst
and under Linux it should be installed in \usr\local\lib\catalina\catalyst.

Installing to a directory other then the default location is possible, but it means that
some additional options will need to be specified (or some scripts modified) when
compiling Catalyst.

Note that Catalyst 3.2 requires Catalina 3.2 — it should not be used with earlier
versions of Catalina.

Catalyst Directory Structure
When Catalyst is installed, the directory structure should be as follows:

Catalina
I
+--- catalyst
I I
. +--- bin
I
+--- core

l——— dumbo_basic
l--- jzip
: l——— doc
l——— lua-5.1.4

I

I
| +--- doc
| +--- etc
| +--- src
| +--- test
I
+--- pascal
I I
| +--- p5_c
| +--- p5_pascal
| +--- ptoc
I
+--- demo
I
+--- sst
I
+--- xvi-2.47
I
+--- doc
+--- src

! Note that when using tar, the —p tar option should be specified to preserve file permissions.

Copyright 2011 Ross Higson Page 7 of 29

Catalyst O/S Reference Manual

Building Catalyst from Source

The catalyst directory contains a build_all script that can be used to build all
platforms except MORPHEUS - for that platform there is a special build_morpheus
script. For example, some commands to build Catalyst would be:

build all HYBRID
build_all TRIBLADEPROP CPU_2 PC VT100

build morpheus

To build Catalyst under Windows you will require Catalina installed. If you also have
MinGW and MSYS installed, then you can build all the programs using the build_all
script. The windows build scripts will attempt to detect if these are installed before
proceeding (by trying to invoke the 'make' utility). Refer to the Catalina reference
manual for more details on MinGW and MSYS.

If you do not have MinGW and MSYS installed, you should still build the core
components using the build_all script, but building some of the demo programs
should then be done using Code::Blocks. There is a Code::Blocks workspace
provided specifically designed to do this. To use it, follow these steps:

1. Start Code::Blocks (use the Catalina Codeblocks menu item in the Catalina
program group in the Windows Start menu)

2. Open the Code::Blocks catalyst demos workspace file - the precise file name
will depend on where you installed Catalina, but it will be called something
similar to C:\Program Files\Catalina\codeblocks\catalyst demos.workspace.

3. Ensure that the option “Explicitly add currently compiling file's directory to
compiler search dirs” option is selected on the Other Settings tab in the
Settings->Compiler and Debugger dialog box — if this setting is not
selected, you will get build errors.

4. Ensure that your Propeller platform has been correctly specified. Note that
you can either do this separately for each project using the Project->Build
Options command, or else once for all projects in the Settings->Compiler
and Debugger command — but do not do it in both places!

5. Use the command Build->Rebuild Workspace to build all the catalyst
demos. The binaries will automatically be placed in the catalyst\bin folder,
along with the other Catalyst components previously built using the build_all
script.

6. Unfortunately, Code::Blocks generates each file with a .binary extension,
whereas Catalyst expects an 8.3 character DOS style filename, so you must
manually rename each binary generated using Code::Blocks (e.g. vi.binary
should be renamed vi.bin).

7. Follow the directions given at the beginning of this section for installing the
resulting Catalyst binaries.

See the README.TXT file in the catalyst directory for more details, and also the
README files in each of the application directories.

Copyright 2011 Ross Higson Page 8 of 29

Catalyst O/S Reference Manual

Compiling Programs for Catalyst

The main feature that Catalyst adds to existing programs is the ability to run them
from the SD card, and to accept command line parameters to be passed to them on
startup. This functionality is available both to Catalina C programs as well as SPIN
programs.

Compiling C programs to run under Catalyst

Nothing special is required to make C programs run under Catalyst. Any parameters
specified on the Catalyst command line will be available to the C program in the
normal argc and argv parameters.

An example program (demo.c) is contained in the Catalyst\demo directory. To
compile it, use a command like:

catalina demo.c -lc -D HYBRID

For programs that do not need to accept command line parameters, the NO_ARGS
option can be specified during compilation — e.g.:
catalina demo.c -1lc -D HYBRID -D NO_ARGS

Of course, in the case of the demo.c program, using this option makes the whole
program a bit pointless since printing out its arguments is all the demo program does
— but for some programs using this option can save a small amount of Hub RAM.

To compile a program to use the SDCARD Memory Mode (SMM), the executable
must have a .smm extension , so use a command like:

catalina demo.c -lc -D HYBRID -D SDCARD -o demo.smm

The advantage of the SDCARD Memory Mode is that it uses a two-phase loader,
with all the plugins and the kernel itself loaded separately from the C program. This
means that on LMM platforms, a C program can use all the available Hub RAM (at
least up to 31kb) as application code space, instead of being limited to what is left
after all the plugins and the kernel itself are included (which can be up to 16kb, or
half the available Hub RAM!). Without SMM mode, the space occupied by these is
available as data space to the C program, but not as code space.

Compiling SPIN programs to run under Catalyst

To enable SPIN programs to interpret command line parameters passed by Catalyst,
a special SPIN module is provided called Catalyst_Arguments.spin.

An example program (demo.spin) is contained in the Catalyst/demo directory. To
compile it, use any SPIN compiler to produce a binary output. For example, to use
homespun:

homespun demo.spin -b
Note that the example program must be manually modified to suit the platform on
which you intend to run it — by default it is configured to run on a HYBRID. The clock

speed, pins and perhaps the TV and video drivers will need to be manually modified
to suit other platforms (as is normal for Spin programs).

Copyright 2011 Ross Higson Page 9 of 29

Catalyst O/S Reference Manual

The Catalyst_Arguments module provides three methods:

init(buffer) buffer must point to a buffer of 1200 bytes (300 longs). This method
must be called before any of the other argument methods.

argc this function returns the number of arguments (which may be zero).

argv(i) this function returns a pointer to a zero terminated string that contains
the ith command line argument.

Copyright 2011 Ross Higson Page 10 of 29

Catalyst O/S Reference Manual

Using Catalyst

Using the Catalyst Loader

The main Catalyst binary is intended to be executed in interactive mode whenever
the propeller is reset, to allow the entry of commands. Normally, this means the main
Catalyst executable is loaded into EEPROM. However, Catalyst can also be used in
a non-interactive mode as a stand-alone loader for Catalina programs in other
Propeller operating systems - see the section titled Catalyst Auto-Execution later in
this document for more details on this option.

When executed in interactive mode, Catalyst should display a simple banner line
similar to the following:

Catalyst v3.0
>

Where this prompt appears will differ depending on the Propeller platform. For
example, on the RAMBLADE the Catalyst HMI uses a serial terminal emulator (e.g.
on a PC), whereas on the HYBRID Catalyst will a local TV display and PS/2
keyboard. On other platforms, Catalyst may use either a serial terminal, or a local TV
or VGA display and keyboard depending on the configuration parameters used when
Catalyst is compiled. See the notes on each supported platform given later in this
document.

When Catalyst is configured to use the PC serial terminal emulator HMI option, some
of the commands expect a VT100 compatible terminal emulator. The recommend
terminal emulator is putty - it is free, and versions for Windows are available from:

http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html

At this point, Catalyst commands can be entered. Catalyst contains a few simple
internal commands (e.g. dir, cat, help) described below, but most of the Catalyst
commands are external commands, loaded from the SD card.

Note that whenever the SD Card is removed and re-inserted, Catalyst must be reset.
Otherwise the SD file system access will not work correctly.

Catalyst File Extensions

Catalyst can be used to load and execute normal SPIN binaries as well as Catalina
LMM binaries. Generally, such files should be placed on the SD Card with a .bin
extension (the extension does not need to be specified when executing the
program).

However, the main reason for using Catalyst is that it also knows how to load
Catalina XMM programs, and Catalina SMM programs. Here are the rules Catalyst
applies when loading and executing a file:

1. If afile extension is specified, it is used. Otherwise the loader looks for the file
name using the following extensions (in the order shown), and it loads the first
one it finds:

Copyright 2011 Ross Higson Page 11 of 29

Catalyst O/S Reference Manual

Xxmm
.smm
dmm
.bin
Catalyst will try two places when searching for each file name:
The root directory of the SD Card;
The bin directory of the SD Card (if one exists);
2. If the file has a .xmm extension, it is loaded as an XMM file;
3. If the file has a .smm extension, it is loaded as an SMM file;

4. If the file has any other extension, then it is loaded as an LMM file if it is 32kb
or under in size, or an XMM file if it is over 32kb in size.

The SDCARD Memory Mode (SMM)

The SMM memory mode is a unique feature of Catalyst. It allows Catalina LMM
programs to make much more effective use of the Propeller’'s limited Hub RAM by
loading the program in two phases. This means all plugins/cog programs are loaded
first, then the application program is loaded separately — allowing up to 31kb to be
used for Catalina application program code. Compare this to normal programs (both
Spin and Catalina LMM programs) where up to 16kb of Hub Ram may be needed
simply to hold the programs to be loaded into the various cogs — which makes this
space unavailable for use as application program code at run time (it can still be
used as data space, but not as application code).

This means that using the SMM memory mode can almost double the amount of
code space available to Catalina LMM programs!

The SDCARD memory model is enabled by defining the SDCARD symbol on the
command line, and also by saving the program with a .smm extension (instead of
a .bin extension). For example:

catalina othello.c -lc -D SDCARD
mv othello.binary othello.smm

A more detailed description of the SMM load process is given in the file
README.SMM_Loader in the main Catalina directory.

There are some limitations when using the SMM memory model:

« SMM programs must be 31kb or less (less if they use plugins that allocate
buffer space in Hub RAM).

e SMM programs will load the SD plugin even if the program would not normally
need it. This may mean the program requires one more cog than usual.

Copyright 2011 Ross Higson Page 12 of 29

Catalyst O/S Reference Manual

Catalyst Commands

Catalyst Internal Commands

The internal commands are built into the Catalyst loader. They will work on any
Propeller platform supported by Catalina.

Note that when using a local display and keyboard, all the internal commands will
pause after each screen full of information has been displayed, and require you to
press a key to continue. This is not the case when using the PC terminal HMI, since
Catalyst assumes a terminal emulator is used which can be scrolled back to see any
information that scrolls off the screen.

DIR
Display the files in the SD card root directory. This command does not accept
any parameters, so only files in the root directory are displayed. For a more
comprehensive display, see the LS command.

CLS
Clear the screen.
For CLS to work correctly when using a PC HMI, a VT100 compatible terminal
emulator (such as putty) must be used.

CAT
Display a text file. On platforms that use a local display, the file is displayed
one page at a time. The ESC key can be used to exit at each pause.

HELP

Display some simple help about the various internal commands.

Catalyst External Commands

The external commands may be normal SPIN programs or LMM C programs. They
will work on any Propeller platform supported by Catalina. They do not require XMM
RAM, but they depend on being loaded by Catalyst so that command line arguments
can be entered.

LS
list the details of a file or the contents of a directory.
syntax:
1ls [options] [directory]
options:
-h or -7 print help
-1 long format listing
-r recursively list subdirectories

Copyright 2011 Ross Higson Page 13 of 29

Catalyst O/S Reference Manual

e.g. to list the current (top level) directory:
1s

or
ls .

To list directory a/b/c:

1s a/b/c
mv
Move one file to another, or one or more files to a directory. If there are only
two arguments, and the target does not exist, you must tell mv whether the
target is supposed to be a file or a directory.
NOTE: mv is essentially a cp followed by an rm - with the rm only performed if
the copy suceeds. This means that there must be enough free space to hold
two complete copies of the file.
syntax:
mv [options] src file [src _file ...] target file or directory
options:
-h or -? print help
-f force overwrite (if target is read-only)
-I interactive (prompt for each move)
-t target is a directory
-T target is a file
e.g:
mv a.txt b.txt c.txt my dir
mv a.txt b.txt
RM
Remove one or more files, optionally also removing directories (provided they
are empty).
syntax:
rm [options] file or directory ...
options:
-h or -7 print help
-f remove empty directories
e.g:
rm a/b.txt

rm a.txt b.txt

Copyright 2011 Ross Higson Page 14 of 29

Catalyst O/S Reference Manual

CP
Copy one file to another, or one or more files to a directory. If there are only
two arguments, and the target does not exist, you must tell cp whether the
target is supposed to be a file or a directory.
syntax:
cp [options] src_file [src_file ...] target file or_directory
options:
-h or -? print help
-f force overwrite (if target is read-only)
-I interactive (prompt for each copy)
-t target is a directory
-T target is a file
e.g:
cp a.txt b.txt c.txt my dir
cp a.txt b.txt
MKDIR
Make one or more directories, optionally making each parent directory in turn
if they do not exist.
syntax:
mkdir [options] directory ...
options:
-h or -7 print help
-p create parent directories if required
e.g:
mkdir a/b/c <- will make directory c only if a/b exists
mkdir -p a/b/c <- will make directories a, then a/b,
then a/b/c if they do not already exist
RMDIR

Remove one or more directories, optionally removing each parent directory
recursively (if they are empty).

syntax:
rmdir [options] directory ...
options:
-h or -7 print help
-p remove parent directories if empty

e.g. to remove directory c (but leave a and b intact):

Copyright 2011 Ross Higson Page 15 of 29

Catalyst O/S Reference Manual

rmdir a/b/c

To remove directory a/b/c, then a/b, then a (provided they are empty):
rmdir -p a/b/c

Copyright 2011 Ross Higson Page 16 of 29

Catalyst O/S Reference Manual

Catalyst Optional Commands

On platforms that contain multiple CPUs (such as the TRIBLADEPROP, or
MORPHEUS) it may also be convenient to have the normal Catalina multi-CPU
utilities loaded onto the Catalyst SD card.

Note that the relevant Catalina utilities are called CPU_n_Boot.spin and
CPU_n_Reset.spin, and when compiled they may be called something like
BOOTn.m (e.g. BOOT2.1) - but for Catalyst they should be renamed to simply
BOOT_n.bin or RESET_n.bin when the compiled binaries are copied to the SD card
(this is not absolutely required, but convention Catalyst uses .bin as and executable
file name extension).

BOOT _n

Reboot the specified Propeller, loading the Catalina Generic SIO Binary
Loader so that another program can be loaded.

syntax:
boot 1 (TRIBLADEPROP only)
boot_2 (MORPHEUS only)
boot 3 (TRIBLADEPROP only)

RESET n

Just reset the specified Propeller. Whatever program is loaded into EEPROM

will be run.

syntax:
reset 1 (TRIBLADEPROP only)
reset 2 (MORPHEUS only)
reset_ 3 (TRIBLADEPROP only)

Catalyst Auto-Execution

To facilitate the use of Catalyst as a loader from within other operating systems,
Catalyst will check on startup for the existence of the file AUTOEXEC.TXT in the root
directory of the SD Card. If it finds this file, it will read one command out of the file
(up to the first zero byte, line terminator or EOF) and attempt to execute it as a
Catalyst command — including parameters. If the command execution fails, Catalyst
will enter interactive mode, otherwise the specified command (which may be any
SPIN or C program executable) will be run, with the specified command line
parameters. For example, the file may contain a command such as:

vi autoexec. txt

This would start the vi editor on the AUTOEXEC.TXT file itself!

Copyright 2011 Ross Higson Page 17 of 29

Catalyst O/S Reference Manual

This facility allows other Propeller operating systems to load Catalina LMM, SMM, or
XMM programs without having to include the appropriate Catalina loader — Catalyst
already incorporates the code to load such programs, and is used strictly as a non-
interactive program loader. All the host operating system has to do is create an
appropriate AUTOEXEC.TXT file and execute Catalyst.binary — which is a normal
Propeller executable.

When compiling Catalyst, you can optionally tell it to delete the AUTOEXEC.TXT file
after it has been executed once. To do this, define the symbol AUTODELETE when
building Catalyst. For example:

build all HYBRID AUTODELETE

This might be appropriate if you mainly intended to use Catalyst as an XMM program
loader from within another operating system. It would not be appropriate if you were
using Catalyst to auto execute an XMM application in an embedded environment.

Catalyst Applications

Catalyst provides a rich set of application programs. However, all the example
applications provided require XMM RAM to run. Some will run only on platforms with
512k of XMM RAM or more installed.

This section does not describe each application in detail — it only describes how to
run the application programs from the Catalyst command line. See the individual
application program documentation for more details on the application itself.

DUMBO BASIC

Load the Dumbo BASIC interpreter. Note that Dumbo BASIC is just an
interpreter — the programs must be created externally (e.g. using the vi text
editor).

syntax:

dbasic [basic_program.bas]

e.g:

dbasic eliza.bas

If no parameter is specified, dbasic will prompt for the name of the basic file to
execute.

LUA
Load the Lua interpreter (lua), or run the Lua compiler (luac).

syntax:
lua [script.lua]
luac -o output_filename script.lua

e.g:

lua fact.lua

Copyright 2011 Ross Higson Page 18 of 29

Catalyst O/S Reference Manual

luac -o f.lua fact.lua

If no file is specified to the lua command, commands can be entered directly
on the terminal.

The Lua compiler (luac) compiles a Lua program to byte code, which speeds
up loading — but the resulting file must still be executed with lua.

NOTE: when using luac, do not omit the —o parameter, or lua will output the
binary result to the terminal.

JZIP
Load the JZIP Infocom game interpreter. The number of rows and columns to
use for the screen size can be specified on the command line, but the game
will detect the actual screen size when local devices are used, and assume
80x24 when using the PC HMI option.
syntax:
jzip [-ccols] [-lrows] [game.dat]
e.g:
jzip zorkl.dat
If no parameter is specified, jzip will prompt for the name of the game file to
execute.
PASCAL

Load the Pascal interpreter (pint), or run the Pascal compiler (pcom).

syntax:

pint [compiled program]

pcom [program_to_compile [compiled program]]
e.g.

pint startrek.p5

pcom startrek.pas startrek.p5
The output files from the compiler must be executed with the interpreter.

If no file is specified to the pcom or pint commands, the programs will prompt
for a file name.

By convention, the compiled version of the Pascal program prog.pas is
normally called prog.p5

In addition to a few sample programs, two precompiled programs are provided
— startrek.p5 and basics.p5. The first is yet another version of the classic
Start Trek game and the second is a basic interpreter. These programs are
provided compiled because they can each take several hours to compile on
the Propeller — even loading the precompiled programs can take a minute or
two.

Copyright 2011 Ross Higson Page 19 of 29

Catalyst O/S Reference Manual

SUPER STAR TREK

Vi

Play a game of Super Star Trek.
syntax:

sst

There are no parameters to this command. See the document sst.doc for
help.

Load the XVI text editor (the binary is renamed to vi for convenience). The
program accepts various options — see the xvi documentation for more
details.

syntax:
vi [options] [filename ...]

e.g

vi samplel. txt

A common option to specify is —s format=msdos or —s format=unix to
specify whether msdos or unix line termination is to be used (the default is
unis, so if you open an msdos file you may see extraneous *M characters at
the end of each line).

If more than one filename is specified, vi will open the first two in separate
windows. After that, use :n (i.e. colon n) to move to the next file.

Copyright 2011 Ross Higson Page 20 of 29

Catalyst O/S Reference Manual

Platform-specific Notes
C3

All the binaries in this release (as well as Catalyst itself) are built to use a High
resolution NTSC TV and keyboard connected to the Propeller.

Note: After each external command or demo program is run, the screen is cleared.
Catalyst will usually ask you to enter a key to continue so that you can read the
output of the command.

On the C3, the SPI Flash is used to execute the external demo programs. This
means loading programs can take several seconds, during which time there may be
no indication that the command is being processed.

Also, the C3 has only 64kb of SPI Ram available, which is not sufficient space to
execute some of the larger demo programs — notably the pcom/pint pascal
interpreter, or the jzip interpreter.

Here are some example commands you could try:

cat SAMPLE.PAS <---- list a text file

vi CATALYST.TXT <---- edit a text file

dbasic STARTREK.BAS <---- run a basic program

mkdir my dir <---- make a directory

vi my dir/my file.txt <---- edit a file in a directory

ls my dir <---- list the contents of a directory
rm my dir/my file.txt <---- remove a file from a directory
sst <---- play a game of Super Star Trek
dbasic ELIZA.BAS <---- get some psychiatric help

On the C3, it is possible to recompile Catalyst to use a VGA or PC HMI option if
desired.

DracBlade

On the DracBlade, all the Catalyst binaries are built to use a High resolution VGA
HMI plugin, which uses the display and keyboard connected to the Propeller.

Note: After each external command or demo program is run, the screen is cleared.
Catalyst will usually ask you to enter a key to continue so that you can read the
output of the command.

Here are some example commands you could try:

cat SAMPLE.PAS <---- list a text file
pcom SAMPLE.PAS SAMPLE.P5 <---- compile a pascal program
pint SAMPLE.P% <---- run the compiled program
vi CATALYST.TXT <---- edit a text file

Copyright 2011 Ross Higson Page 21 of 29

Catalyst O/S Reference Manual

dbasic STARTREK.BAS <---- run a basic program

mkdir my dir <---- make a directory

vi my dir/my file.txt <---- edit a file in a directory

1ls my dir <---- list the contents of a directory
rm my dir/my file.txt <---- remove a file from a directory
jzip ZORK3.DAT <---- play a game of Zork

sst <---- play a game of Super Star Trek
dbasic ELIZA.BAS <---- get some psychiatric help

On the DracBlade, it is possible to recompile Catalyst (or some parts of Catalyst) to
use a PC HMI option (or a low resolution VGA option). This may be required to run
some large applications (such as the Pascal compiler) since the High Resolution
VGA driver consumes a large amount of Hub RAM space, which limits the stack
space available to other programs.

Hydra

All the binaries in this release (as well as Catalyst itself) are built to use a High
resolution NTSC TV and keyboard connected to the Propeller.

Note: After each external command or demo program is run, the screen is cleared.
Catalyst will usually ask you to enter a key to continue so that you can read the
output of the command.

The Hydra cannot simultaneously use the SD Card and XMM RAM, so while
Catalyst itself runs, and the demo programs can be compiled and loaded serially
(using Payload) none of the demo programs can be loaded from SD Card using
Catalyst. However, both Catalina LMM programs and normal Spin programs can be
loaded and run with Catalyst.

Here are some example commands you could try:

cat SAMPLE.PAS <---- list a text file

vi CATALYST.TXT <---- edit a text file

mkdir my dir <---- make a directory

ls my dir <---- list the contents of a directory
rm my dir/my file.txt <---- remove a file from a directory

On the Hydra, it is NOT possible to recompile Catalyst to use a PC HMI option if the
XMM RAM is being used — the HX512 does not allow the serial port to be used at the
same time.

Hybrid
All the binaries in this release (as well as Catalyst itself) are built to use a High
resolution NTSC TV and keyboard connected to the Propeller.

Copyright 2011 Ross Higson Page 22 of 29

Catalyst O/S Reference Manual

Note: After each external command or demo program is run, the screen is cleared.
Catalyst will usually ask you to enter a key to continue so that you can read the

output of the command.

Here are some example commands you could try:

cat SAMPLE.PAS <---- list a text file

pcom SAMPLE.PAS SAMPLE.P5 <---- compile a pascal program

pint SAMPLE.P% <---- run the compiled program

vi CATALYST.TXT <---- edit a text file

dbasic STARTREK.BAS <---- run a basic program

mkdir my dir <---- make a directory

vi my dir/my file.txt <---- edit a file in a directory

ls my dir <---- list the contents of a directory
rm my dir/my file.txt <---- remove a file from a directory
jzip ZORK3.DAT <---- play a game of Zork

sst <---- play a game of Super Star Trek
dbasic ELIZA.BAS <---- get some psychiatric help

On the Hybrid, it is NOT possible to recompile Catalyst to use a PC HMI option if the
XMM RAM is being used — the HX512 does not allow the serial port to be used at the
same time.

Morpheus

On Morpheus, Catalyst is configured to use the PC HMI option, and some programs
expect a VT100 compatible PC Terminal emulator (such as putty).

On Morpheus, running the external commands often results in rubbish being
displayed on the screen at the end of each command - this is because each external
command resets the Propeller at the end. This means you may need to scroll the
putty screen up to see the output of the command. While this is a little annoying, it
does not really affect the operation of Catalyst.

What does makes thing complex on Morpheus is that Catalyst runs on CPU #1, but
the demo programs must be run on CPU #2 since they all require access to XMM
RAM. They must use Catalina proxy drivers since they need access to both the XMM
RAM and the SD Card.
The binary distribution of Catalyst also includes the normal Catalina multi-cpu utilities
for Morpheus (renamed to be a bit more user-friendly):

BOOT 2.BIN - start a boot loader program running on CPU #2
RESET 2.BIN - reset CPU #2

LOAD_2.BIN - SIO Loader (can be programmed into EEPROM on CPU #2)

Copyright 2011 Ross Higson Page 23 of 29

Catalyst O/S Reference Manual

The following explains how to run each Catalyst demo program:

vi - the client executable runs on CPU_2, using the SD card on CPU_1. This can
make editing a bit slow on large files! To run it, you need to load both the client and
the server. If you have not already done so, you also first need to load the boot
loader into CPU #2:

boot_2 <- load the boot loader into CPU #2
@ <- to select CPU #2 for next load
vi <- load the client into CPU #2 (note that this

may take a while!)

proxy <- load the server into CPU #1

There are a few things to note about loading/running this program:

1.

If you program the Generic SIO program loader (load_2.bin) into the eeprom
of CPU #2, you do not need to enter any of the boot_2 commands — loading
the SIO loader into CPU #2 is really all the boot_2 program does.

If you have a VGA display connected to CPU 2, you will see progress
messages displayed on the screen as the client program is loaded.

You may see rubbish on the screen when the client program starts up (and
before you get a chance to start the proxy server) — this occurs when the
program loader restarts the Propeller to run the loaded program. In some
cases, these rubbish characters can cause the terminal emulator program (e.g.
putty) to lock up — just restart the terminal emulator and everything should be
ok.

You cannot currently use command line parameters for programs loaded into
another CPU - e.g. you cannot pass parameters to the vi client. Instead, to edit
a particular file, once vi starts you can enter the command:

:e filename

Just because you quit a demo client program (i.e. vi) does not mean you will
return to the Catalyst prompt. This is because the proxy program is still
running. Since there is currently no way to tell the proxy program to terminate,
to return to the Catalyst prompt you must manually reset the Propeller.

If you accidentally try to run the vi client on CPU #1, you will see a series of
yyyy characters - this is the client program polling for the proxy server. You
will have to manually reset the prop.

sst -you must run the client on CPU #2, and the proxy server on CPU #1:

boot_2 <- load the boot loader into CPU #2
@ <- to select CPU #2 for next load
sst <- load the client into CPU #2
proxy <- load the server into CPU #1

Copyright 2011 Ross Higson Page 24 of 29

Catalyst O/S Reference Manual

The same provisos apply as above - i.e. you cannot enter command line arguments
to the client, and you must reboot the Propeller to return to the Catalyst prompt.

jzip - you must run the client on CPU #2, and the proxy server on CPU #1:

boot_2 <- load the boot loader into CPU #2
Q <- to select CPU #2 for next load
jzip <- load the client into CPU #2

proxy <- load the proxy server into CPU #1

The same provisos apply as above - i.e. you cannot enter command line arguments
to the client, and you must reboot the Propeller to return to the Catalyst prompt. The
program will prompt you for a game file to run.

dbasic - you must run the client on CPU #2, and the proxy server on CPU #1:

boot_2 <- load the boot loader into CPU #2
@ <- to select CPU #2 for next load
dbasic <- load the client into CPU 2

proxy <- load the proxy server into CPU #1

The same provisos apply as above - i.e. you cannot enter command line arguments
to the client, and you must reboot the Propeller to return to the Catalyst prompt. The
program will prompt you for a basic file to run.

pcom/pint - you must run the clients on CPU#2, and the proxy server on CPU #1:

boot_2 <- load the boot loader into CPU #2
@ <- to select CPU #2 for next load
pcom <- load the compiler client into CPU #2
proxy <- load the proxy server into CPU #1
or
boot_2 <- load the boot loader into CPU #2
Q <- to select CPU #2 for next load
pint <- load the interpreter client into CPU #2
Proxy <- load the proxy server into CPU #1

The same provisos apply as above - i.e. you cannot enter command line arguments
to the client, and you must reboot the Propeller to return to the Catalyst prompt. The
program will prompt you for a Pascal file to compiler or interpret.

lua -you must run the client on CPU #2, and the proxy server on CPU #1:

boot_2 <- load the boot loader into CPU #2
@ <- to select CPU #2 for next load
lua <- load the client into CPU #2
proxy <- load the server into CPU #1

Copyright 2011 Ross Higson Page 25 of 29

Catalyst O/S Reference Manual

The same provisos apply as above - i.e. you cannot enter command line arguments
to the client, and you must reboot the Propeller to return to the Catalyst prompt.
Instead of command line parameters, you must use the Lua dofile command to get
lua to execute a script (e.g. enter dofile(“hello.lua”) - see the Lua documentation,
or the README.Lua file for more details.

RamBlade

On the RamBlade, Catalyst is configured to use the PC HMI option, and some
programs expect a VT100 compatible PC Terminal emulator (such as putty).

Here are some example commands you could try:

cat SAMPLE.PAS <---- list a text file

pcom SAMPLE.PAS SAMPLE.P5 <---- compile a pascal program

pint SAMPLE.P% <---- run the compiled program

vi CATALYST.TXT <---- edit a text file

dbasic STARTREK.BAS <---- run a basic program

mkdir my dir <---- make a directory

vi my dir/my file.txt <---- edit a file in a directory

ls my dir <---- list the contents of a directory

rm my dir/my file.txt <---- remove a file from a directory

jzip ZORK3.DAT <---- play a game of Zork

sst <---- play a game of Super Star Trek

dbasic ELIZA.BAS <---- get some psychiatric help
TriBladeProp

On the TriBladeProp, Catalyst is configured to use the PC HMI option, and some
programs expect a VT100 compatible PC Terminal emulator (such as putty).

Here are some example commands you could try:

cat SAMPLE.PAS <---- list a text file

pcom SAMPLE.PAS SAMPLE.P5 <---- compile a pascal program

pint SAMPLE.P% <---- run the compiled program

vi CATALYST.TXT <---- edit a text file

dbasic STARTREK.BAS <---- run a basic program

mkdir my dir <---- make a directory

vi my dir/my file.txt <---- edit a file in a directory

ls my dir <---- list the contents of a directory
rm my dir/my file.txt <---- remove a file from a directory
jzip ZORK3.DAT <---- play a game of Zork

sst <---- play a game of Super Star Trek

Copyright 2011 Ross Higson Page 26 of 29

Catalyst O/S Reference Manual

dbasic ELIZA.BAS <---- get some psychiatric help

It would be possible to recompile Catalyst to use the local display and keyboard on
CPU #1, via a proxy driver from CPU #2 (which has access to the SD card). The
various build_morpheus scripts show this can be accomplished using proxy
devices.

SuperQuad and RamPage

The SuperQuad and RamPage are not separate platforms — refer to the notes
appropriate to the platform to which they are attached.

However, note that the SuperQuad has no XMM RAM, so only SMALL mode
programs can be created. This mode does not provide sufficient RAM space to
execute any of the larger demo programs.

Progress Messages on Multi-Prop platforms

On multi-prop platforms (such as the TriBladeProp and Morpheus), it is routine to
have to load programs into different CPUs. On platforms where the target CPU
supports a directly connected screen, Catalyst will display progress messages on
that screen (e.g. on a TV connected to the TriBladeProp CPU 1, or a VGA display
connected to the Morpheus CPU 2).

This makes it easy to tell that the program is in fact being loaded correctly - but
displaying this information can both slow down the load process slightly, and also
reduce the size of programs that can be loaded.

Therefore, this functionality can be disabled. It is enabled by defining the
DISPLAY_LOAD command line symbol when compiling the programs in the
Catlina/utilities folder.

To disable this functionality, edit the build_all script (build_all.bat under Windows)
in the Catalina/utilities folder and look for —-D DISPLAY_LOAD. Simple delete this
wherever it occurs (including the —D). Then recompile Catalyst.

Copyright 2011 Ross Higson Page 27 of 29

Catalyst O/S Reference Manual

Catalyst Development

Reporting Bugs
Please report all Catalyst bugs to ross@thevastydeep.com.

Where possible, please include a brief example that demonstrates the problem.

If you want to help develop Catalyst

Anyone who has ideas or wants to assist in the development of Catalyst should
contact Ross Higson at ross@thevastydeep.com

Okay, but why is it called “Catalyst”?

In chemistry a catalyst is a substance that facilitates a chemical reaction, but is not
itself consumed. Catalyst is intended to facilitate the use of Catalina on the Propeller,
but it does not itself consume any Propeller resources.

Acknowledgments
Kye, for his FATEngine module.

Dr_Acula, for his work on the auto-execute mode.

Copyright 2011 Ross Higson Page 28 of 29

mailto:ross@thevastydeep.com
mailto:ross@thevastydeep.com

Catalyst O/S Reference Manual

The Current Catalyst Release

What’s new in this release?
* Add SUPERQUAD and RAMPAGE support.

What’s due in the next release?
e Add wildcard support to Is, cp, mv and rm

« Add 'flush' so that we don't have to wait for a fixed duration after each
command when using the PC HMI option.

* Add a way to exit from the proxy program, so we don’t always have to reset
the propeller after each proxied command.

Copyright 2011 Ross Higson Page 29 of 29

	What is Catalyst?	
	Status
	Features	
	License

	Installing Catalyst
	Overview
	Installing the Catalyst Binary Release
	Load the Catalyst binary into EEPROM
	Load the Catalyst programs onto an SD Card

	Installing the Catalyst Source Release
	Catalyst Directory Structure
	Building Catalyst from Source
	Compiling Programs for Catalyst
	Compiling C programs to run under Catalyst
	Compiling SPIN programs to run under Catalyst

	Using Catalyst
	Using the Catalyst Loader
	Catalyst File Extensions
	The SDCARD Memory Mode (SMM)
	Catalyst Commands
	Catalyst Internal Commands
	DIR
	CLS
	CAT
	HELP

	Catalyst External Commands
	LS
	MV
	RM
	CP
	MKDIR
	RMDIR

	Catalyst Optional Commands
	BOOT_n
	RESET_n

	Catalyst Auto-Execution
	Catalyst Applications
	DUMBO BASIC
	LUA
	JZIP
	PASCAL
	SUPER STAR TREK
	VI

	Platform-specific Notes
	C3
	DracBlade
	Hydra
	Hybrid
	Morpheus
	RamBlade
	TriBladeProp
	SuperQuad and RamPage
	Progress Messages on Multi-Prop platforms

	Catalyst Development
	Reporting Bugs
	If you want to help develop Catalyst
	Okay, but why is it called “Catalyst”?
	Acknowledgments

	The Current Catalyst Release
	What’s new in this release?
	What’s due in the next release?

