
 1

Easy GPS Readings for the Basic Stamp Chip

By Randy R. Price

Kansas State University
Biological and Agricultural Engineering Department

Introduction:
 Small microcontrollers, such as the Basic Stamp II by Parallax Inc., are popular to
students, researchers, and industry designers. These chips provide an easy way for
people to build high-tech electronic systems with very little wiring or knowledge about
electronics. Still, these chips have not been used to a great extent for data-logging
because of problems reading in the GPS data. These problems range from writing the
parsing code needed to separate the GPS numbers from text strings; to the coordinates
being represented as real numbers (Basic Stamps do not contain variable space for real
numbers). For these reasons, developers have been forced to use higher order chips
(BS2p, etc.) and certain GPS units that output proprietary statements with less data. This
paper introduces a method and code to allow the Basic Stamp II to read in normal NMEA
0183 statements from a GPS at the 1 hertz rate. This code can also be used in other chips
for faster GPS reading without parsing.

Literature Review:
 GPS units have been around for the last 25 years. During this time, they have
become available to the average consumer for an affordable price. The standard output
of these units is date, time, location, speed, course, and altitude. The standard format is
given by the National Marine Electronics Association (NMEA) and is designated NMEA
0183. The code always starts with a line descriptor (such as $GPRMC) that defines the
information that will follow. Sentences are generally outputted every second with
anywhere from 1 to 10 sentences for each generation (depending upon the NMEA
version and statements selected by the GPS). Versions of the code range from 1.0 to the
most current: 3.01 (January of 2002). The $GPRMC statement is one of the most useful
statements and gives date, time, location, speed, and course heading in one sentence.
Typical GPS locations are outputted in decimal degrees combined with minutes to form a
real number with a DDMM.MMM (decimal degrees minutes.minutes) format. Decimal
degrees can range anywhere from 0 to 180. An official listing of these codes is found at
http://www.nmea.org/pub/0183/index.html.

Most GPS units output the NMEA code at the prescribed rate of 4800 baud, but
increases in hardware capabilities have allow higher speeds such as 9600, 19200, and
38400. Before these baud rates were possible, some manufacturers notice that the all the
GPS information could not be transmitted in a one second time period (depending upon
how many sentences were transmitted), so they included a subset of proprietary
commands that allowed the user to output only a certain number of sentences, or even
proprietary statements with certain pieces of information. These statements could be

 2

outputted with or without the standard NMEA code statements. Some GPS units output
the numbers in fixed width format and some do not1.
 Several authors have noted the problems reading GPS units with Basic Stamps.
These problems range from non-fixed width sentences to the amount of data transferred
and baud rate of the GPS. Jon Williams (2003) states the following about creating a GPS
data-logging program for an airplane. “Ken wanted to track his (RC) plane's flight path
and speed, and asked me to come up with a method of doing it. The solution was to strap
a small GPS receiver (Garmin® eTrex) onto the plane with a BS2p acting as a data
logger. I wrote about the methods used in our airplane data logger back in March of 2002.
The program has served us well, but Ken has been asking for better resolution in the data.
You see, the old program uses standard NMEA 0183 strings from the GPS receiver that
are spit out at 4800 baud. With the bulk of information dumped by the receiver at this
baud rate we only get updates every two seconds. For a model airplane traveling around
80 mph, this isn't great. What to do? While reviewing the eTrex manual I found that it
has a simple text (proprietary Garmin®) output method that can be set to 9600 baud. This
is a good start as it doubles the communication speed. The other nice thing about this
method is that it uses fixed-position fields. This will help make parsing data easier as we
know exactly where everything is within the string. When using the $GPMRC string,
some fields are variable-width which complicates the location of data”. Still parsing
itself can take quite a bit of processor time since the code itself must be first read in from
GPS (using the GPRMC statement), stored in a scratch pad ram, and then broken down
into individual numbers. To reduce the breadth of this paper, I am not going to list the
parsing code from above, but it can be found on the parallax website
(www.parrallax.com). I do give the memory map for the code (in a BS2p chip) in Figure
1. This memory map shows the code using approximately 76% of the BS2p’s memory
and more than 10 of the 12 word size variables. This code does not leaving much
variable space for other data-logging operations. Note, though, that this code is doing
quite a few number evaluations (such as giving the true date, time, etc.) and could be
reduced for smaller, more specialized applications. In either case, the BS2 chip could not
run the code because it does not have the scratch pad ram (SPSTR) needed for storing the
NEMA 0183 sentence.

 Objective:
 The objective of this paper is to develop a code that will allow the BS2 chip and
other small microcontrollers to read in the NMEA 0183 data from a 4800 baud GPS at
the 1 Hz rate for the purpose of data-logging.

Procedure:

Basic Stamps are very good at reading serial inputs and come with many utilities.
Several of these utilities are the WAIT and SKIP commands, and the DEC variable
modifier. The wait command allows the BS2 chip to wait on a certain NMEA 0183
output sentences (such as the “GPRMC’ statement) and the skip command allows the
chip to skip non-essential information such as a comma and letter. The DEC command

1 Fixed width sentences transmit the leading zeros which causes the numbers and data to always reside in
the same column within a sentence. This quality allows easier parsing of the sentence since the numbers
always lie in known locations.

 3

tells the chip to read in a decimal number (not a text string) and as will be discussed later,
allows the chip to output a fixed format number.

For a data-logging application, the GPS coordinate must be read into the device
and then combined with some other piece of information such as voltage or temperature.
This data is then usually outputted to some other device (such as a desktop computer or
memory card), where it is plotted or stored for later analysis. Because the numbers are
only collected and sent elsewhere (and not used in calculations) the problem and code
becomes much easier for the BS2.

In our problem, the GPS coordinates, although real, can be read in as two separate
decimal numbers and then recombined on output to resemble the original number. This
operation is possible because the Basic Stamp thinks the decimal point between the real
number is the same as a comma (the Basic Stamp treats all delimiters - space, comma,
period, etc. – exactly the same – a delimiter between numbers). Also, the Basic Stamp
word size variable can only hold a number up to 65535. The largest real part of an east-
west coordinate is 18000. Typically this number is outputted with four decimal places of
precision, so the largest fractional part of the coordinate is 9999. The Basic Stamp can
hold each of these numbers in a word size variable. Once the coordinates are read in as
integers, the numbers can then be outputted (serially) with a “.” between the two numbers
to create an original real number. Using this method, the receiving device thinks it
received a real number, even though Basic Stamp can’t theoretically hold a real number.

One problem still exists though. The leading zeros in the fractional part of the
decimal number will be truncated by the chip. For instance, the number 102.00345
becomes the two integers 120 and 345. When put back together on output (using “102” +
“.” + “345”), the output becomes 120.345, which is not the original number. Luckily, the
Basic Stamp has a way to solve this problem. GPS units always output at a certain
number of decimal precision (usually 4 units) that stay the same. Because of this fact, the
fractional number should always have this same precision. Also, the DEC formatter will
create leading zeros and when combined with the original digits of precision, will allow
output of the correct fractional number. For instance, if the original precision was 3
digits, and the fractional integer is 10, then setting the DEC formatter to DEC3 will
output 010 (keeping the same digits of precision). If the integer for the fractional part is
789, and the digit of precision is 3, then the output would be “789”. Using this method,
the correct decimal part of the fractional number can be outputted correctly, allowing the
Basic Stamp to read in the GPS coordinates and output them correctly.

A code was written for a Basic Stamp following the principles outlined above.
The first code (Table 1) was written using the DEC4 modifier in the output statement.
The second code (Table 2) was written if the DEC4 modifier wasn’t available, and IF
THEN statements were used to output the correct number (this code is good for different
processors without the DEC4 function). The code reads in time, location coordinates,
speed, and course from the “GPRMC” statement and then outputs the data to the screen2.
The “serial 16,n9600,[]” was substituted for the typical DEBUG statement so that the
output can be received by any RS-232 receiving program, such as HyperTerminal® in

2 Note that the time value is not the exact time given by the GPS since a word size variable cannot hold this
number. This number can still be used though to evaluate the elapsed seconds. Also note that the location
directions (E/W and N/S) were inserted automatically in the output statement and not read from the GPS
chip. These values do not change for most locations, but must be set correctly for your particular location.

 4

Windows® (usually found in the Accessories/Communications folder of the Start Menu).
The HyperTerminal® program can be useful for capturing data into a text file for later
plotting in the Excel® spreadsheet or some other program3.

The code was testing on a BS2 chip (rev. C) using a Garmin® 15-H OEM GPS.
This GPS engine is similar to the engines used in standard handheld GPS units. The GPS
RS-232 output was read into pin 0 of the BS2 chip by using a 15k ohm resistor in series
with input line to reduce the standard +/- 12 volts of the RS-232 line driver down to +5
volts (to prevent damage to the BS2 chip).

For most data-logging purposes, the program must return to the GPS statement
before the next GPS output occurs and still read some other parameters, such as voltage
from an A/D (analog to digital) chip or a temperature sensor. This property will allow
the chip to be used for data-logging purposes other than just location recording. For this
reason, readings were taken to see how much time was left by the code to run other
statements. This time was determined by using a PAUSE statement between the input
and output statements, and adding time to the pause statement, until the chip could no
longer read the next consecutive GPS statement.

Results
 The results for the tests are shown in Table 3 and 4. These outputs show time,
location, speed, and course of the GPS as captured by the BS2 chip in different locations.
In all trials, the time showed consecutively recorded seconds, indicating that the BS2 chip
read the GPS output at the 1 Hertz frequency. In table 3, the first eight rows were for a
stationary GPS unit and the next eight rows were for a steady walk in a south direction.
In Table 4, the results show the GPS readings approximately ¼ mile south-west of the
data from Table 3, where the fractional part of the latitude is less than 0.1, showing that
the leading zeros were inserted correctly in the output.

The amount of memory and variable space used by the code is shown in Figures 2
and 3. These results indicate that the code used either 7% (DEC4 version) or 16% (non
DEC4 version) of the EEPROM space and 8 of the 12 word size variables. Also, testing
with the code determined that the time between readings was 0.780 seconds for the DEC4
code and 0.750 second for the non-DEC4 code. These times leave sufficient duration to
read other devices such as voltages from an A/D chips or temperature readings from a
sensor.

Conclusion:
 A code was developed to read in GPS data from a NMEA 0183 statement using
the BS2 chip. This code will also work with other micro-processors. The code allowed
the chip to read in the coordinates, time, speed and course heading at the 1 hertz GPS
output rate. The code only used 7% of the BS2 chips memory and approximately 0.75
seconds were left to perform other operations, such as reading a voltage A/D chip or a
temperature sensor. The code also allows different GPS receivers to be used without
changing the code since the code is NMEA 0183 compliant.

3 Note that the typical debug window in the Basic Stamp Software Package will still work with this
statement, but may have to be started manually. I have inserted a DEBUG statement in the noGPS sub-
routine part of the program that will automatically start the Debug window for you.

 5

Table 1
Program to Read in the “GPRMC” statement from a GPS receiver with the DEC4

modifier
gps reader.bs2

' '{$STAMP BS2}
'By Randy Price - March 2002
'Program to read in GPS coordinates from the NMEA 0183 GPRMC statement

gpstime VAR Word
gpstime2 VAR Byte
N VAR Word
W VAR Word
NN VAR Word
WW VAR Word
speed1 VAR Word
speed2 VAR Nib
course1 VAR Word
course2 VAR Nib

'Baud rates:
'16572 = 4800 baud BSII Chip
'16468 = 9600 baud BSII Chip
n9600 CON 16468
n4800 CON 16572

main:

'Get next GPS RMC statement at 4800 baud pin 0
SERIN 0,n4800,2100,noGPS1,[WAIT("RMC,"),DEC gpstime, SKIP 3, DEC N, DEC NN, SKIP 3, DEC W, DEC WW, SKIP
3, DEC speed1, DEC speed2, DEC course1,DEC course2]

PAUSE 780

GOSUB output1
GOTO main

'** OUTPUT ROUTINE **
output1:

'output to terminal at 9600 baud
SEROUT 16,n9600,[DEC gpstime,",",DEC W,".",DEC4 WW,",W,",DEC N,".",DEC4 NN,",N,",DEC speed1,".",DEC
speed2,",",DEC course1,".",DEC course2,10,13]
RETURN

nogps1:
DEBUG "no gps",CR
GOTO MAIN

 6

Table 2
Program Code to Read in the “GPRMC” statement from a GPS receiver without the

DEC4 modifier
gps reader 2.bs2

‘{$STAMP BS2}
'By Randy Price - March 2002
'Program to read in GPS coordinates from the NMEA 0183 GPRMC statement

gpstime VAR Word
N VAR Word
W VAR Word
NN VAR Word
WW VAR Word
speed1 VAR Word
speed2 VAR Nib
course1 VAR Word
course2 VAR Nib

'Baud rates:
'16572 = 4800 baud BSII Chip
'16468 = 9600 baud BSII Chip
n9600 CON 16468
n4800 CON 16572

main:

'Get next GPS RMC statement at 4800 baud pin 0
SERIN 0,n4800,2100,noGPS1,[WAIT("RMC,"),DEC gpstime, SKIP 3, DEC N, DEC NN, SKIP 3, DEC W, DEC WW, SKIP 3,
DEC speed1, DEC speed2, DEC course1,DEC course2]

GOSUB output1
GOTO main

'*** OUTPUT ROUTINE ***
output1:

'output to terminal at 9600 baud
SEROUT 16,n9600,[DEC gpstime,",",DEC W]

IF WW < 10 THEN gps1
IF WW < 100 THEN gps2
IF WW < 1000 THEN gps3
SEROUT 16,n9600,[".",DEC WW]
GOTO gpsNN

gps1:
 SEROUT 16,n9600,[".000",DEC WW]
GOTO gpsNN

gps2:
 SEROUT 16,n9600,[".00",DEC WW]
GOTO gpsNN

gps3:
 SEROUT 16,n9600,[".0",DEC WW]
GOTO gpsNN

gpsNN:
 SEROUT 16,n9600,[",W,",DEC N]

IF NN < 10 THEN gps4
IF NN < 100 THEN gps5
IF NN < 1000 THEN gps6
SEROUT 16,n9600,[".",DEC NN]
GOTO gpsend

gps4:

 7

Table 3
Typical Text Output from Source Code ab

a Data was imported into the Excel® spreadsheet and formatted to fit the individual columns.
b The column headings were not part of the original file and were added in for descriptive purposes.

 SEROUT 16,n9600,[".000",DEC NN]
GOTO gpsend

gps5:
 SEROUT 16,n9600,[".00",DEC NN]
GOTO gpsend

gps6:
 SEROUT 16,n9600,[".0",DEC NN]
GOTO gpsend

gpsend:
 SEROUT 16,n9600,[",N,"]

'End Data output from GPS
SEROUT 16,n9600,[DEC speed1,".",DEC speed2,",",DEC course1,".",DEC course2,10,13]

RETURN

'************************************** GPS Not Detected Routine ***************************************
'(having the Debug statement here will cause the debug window to come automatically but not interfere with data collection in
HyperTerminal)

nogps1:
DEBUG "no gps",CR
GOTO MAIN

Time Longitude
Direction
Indicator Latitude

Direction
Indicator

Speed
(knots)

Course
(degrees)

34648 9634.9778 W 3911.3329 N 0 0
34649 9634.9779 W 3911.3329 N 0 0
34650 9634.9779 W 3911.3329 N 0 0
34651 9634.9778 W 3911.3329 N 0 0
34652 9634.9778 W 3911.3329 N 0 0
34653 9634.9779 W 3911.3328 N 0 0
34654 9634.9779 W 3911.3328 N 0 0
34655 9634.9779 W 3911.3329 N 0 0
34656 9634.9782 W 3911.3328 N 0.8 0
34657 9634.9795 W 3911.3311 N 1.6 195.1
34658 9634.9798 W 3911.3306 N 1.6 195.1
34659 9634.9794 W 3911.3301 N 1.9 177.3
34660 9634.9791 W 3911.3296 N 1.9 177.3
34661 9634.9789 W 3911.3291 N 2 176
34662 9634.9788 W 3911.3286 N 2 176
34663 9634.9789 W 3911.328 N 2 176

 8

Table 4
Typical Text Output from Source Code ab

a Data was imported into the Excel® spreadsheet and formatted to fit the individual columns.
b The column headings were not part of the original file and were added in for descriptive purposes.

Figure 1: Memory map for BS2p chip using the parsing code.

Time Longitude
Direction
Indicator Latitude

Direction
Indicator

Speed
(knots)

Course
(degrees)

53329 9635.0191 W 3911.2532 N 1.8 172.6
53330 9635.0192 W 3911.2526 N 2 178.6
53331 9635.0191 W 3911.252 N 1.9 176.4
53332 9635.0191 W 3911.2514 N 2 179.8
53334 9635.0189 W 3911.2503 N 2 173
53335 9635.0188 W 3911.2497 N 2.1 174.5
53336 9635.0188 W 3911.2492 N 2 177.1
53337 9635.0189 W 3911.2487 N 2 178.8
53338 9635.0188 W 3911.2482 N 1.9 177.4
53339 9635.0188 W 3911.2477 N 1.9 178.6
53329 9635.0191 W 3911.2532 N 1.8 172.6
53330 9635.0192 W 3911.2526 N 2 178.6
53331 9635.0191 W 3911.252 N 1.9 176.4
53332 9635.0191 W 3911.2514 N 2 179.8
53334 9635.0189 W 3911.2503 N 2 173
53335 9635.0188 W 3911.2497 N 2.1 174.5

 9

Figure 2: Memory map for a BS2 chip using the non-parsing GPS program and the DEC4

modifier.

Figure 3: Memory map for a BS2 chip using the non-parsing GPS program without the
DEC4 modifier.

 10

References:

Jon Williams, 2003, “Stamping on Down the Road”, The Nuts and Volts of BASIC

Stamps, Column #103, Volume 4, pp 175-194.

Jon Williams, 2002, “Where in the World is My Basic Stamp”, The Nuts and Volts of

BASIC Stamps, Column #83, Volume 3, pp 119-137.

