
INS/GPS/Magneto Navigation System and Air Data 
Sensor Built from Parallax Components 

 
 

There is a powerful agent, obedient, rapid, easy, which conforms to every use, 
and reigns supreme on board my vessel. Everything is done by means of it. It 
lights, warms it, and is the soul of my mechanical apparatus. This agent is 

electricity. 
 

Jules Verne (1828-1905) 
20,000 Leagues Under The Sea 

 

 
  The first Inertial navigation System (INS) was designed in 1948. The 
traditional Inertial Measurement Unit (IMU) of INS uses the linear accelerometer 
to sense the linear acceleration and the gyroscope to measure angular velocity. 
It is an inherently stealthy, self contained system that is very difficult to 
jam. A precise INS does not need other information, satellite signal or any 
additional instrumentation to determine continuously the position, attitude and 
speed of the vehicle. Inertial Navigation Systems are widely used in many 
applications including civilian and military aviation, spatial and nautical 
segments, automobiles, automated vehicles and robotics. 
  This living (i.e. periodically enhanced and updated) document follows embedded 
application projects, based upon the Parallax Propeller microcontroller. First a 
construction of a high accurate gyro-free 6DOF IMU with 200 Hz data rate will be 
presented. This will be followed by a somewhat less accurate and slower but 
simpler 6DOF IMU with one 3D accelerometer and three 1-axis gyroscopes. This IMU 
has a lower data rate (max. 88 Hz). Then the build of a 3-axis 
Magnetometer/Inclinometer using WMM2005 (or EGRF-2010) magnetic field model will 
be described. Then their integration with a GPS unit will be presented by actual 
example and thoroughly discussed. Finally the construction of a Pitot-Static Air 
Data Sensor with built in temperature and humidity correction will come. 
  On the route only SPIN and PASM programming are used and no external fancy PC 
programs, except the IDE of Propeller and the Propeller Serial Terminal are 
needed. They are necessary and sufficient to assist the building and testing of 
those devices. The finished sensor units will be self-contained and independent 
ones. They will not need any more PC "assistance" to make self-tests, 
calibrations or to initiate themselves. The operation of these devices will be 
again fully autonomous on the field. 
  No Matlab simulations of performances will be done, instead all units will be 
actually built and the real performances will be tested with real measurements. 
I take care to publish all software and technical details necessary to reproduce 
the units with the announced results by anyone interested.   
 
Why from Parallax components? 
  Instead of always using high dollar sensors from other sources, I decided to 
build some self contained, high performance measuring units only with sensor 
modules from Parallax that are aimed primarily for the hobby electronic market. 
These sensor modules are well designed, robust and easy to use or to communicate 
with. This makes them an attractive choice for economic IMU/Magneto projects, 
especially in education. However, that modules contain low-cost and low-accuracy 
sensor chips. The performance parameters of these sensors are appropriate for 
hobby electronic projects, but they create quite a challenge to build 
sophisticated IMU/Magneto/Air units from them. However, the computing 



capabilities of the Propeller microcontroller with its eight parallely running 
COGs make it possible to construct surprisingly precise and robust embedded 
devices with these sensors. Beside proving the possibility of constructing cheap 
instruments inferior to none of the several thousand dollar ones, I hope that in 
this way more parallaxians or propeller fans will be interested in the projects. 
  Parallax Inc. has excellent user support for its products and a lot of 
educational material to assist the newcomers. Parallax manages active Discussion 
Forums, where talented programmers, enthusiasts and experts from many fields 
will help you. 
  Those lucky ones having more capable sensors also may benefit from the physics 
and mathematics exercised and learned from these projects, especially from the 
methods to optimize performance. 
  Please note that this document is strictly based on my experiences, 
observations and opinions of the sensors and should not be taken as gospel. If 
you’re curious about the devices built, I suggest researching them on your own 
and comparing my work to your results and to what other people are saying about 
it. 
 

 
Gyro-free IMU 
 
  A gyro-free IMU is a specific array of accelerometers where location and 
orientation are chosen so that angular and linear motions can be decoupled and 
computed separately. Recent advantages in Micro Electro Mechanical Systems 
(MEMS) technology have made inertial and magnetic sensors more affordable. The 
cost of micro-machined accelerometers and gyroscopes are decreasing while their 
performance is being improved. Micro-machined accelerometers are now in large 
volume production, cost a few dollars and have been showing reliability. MEMS 
gyroscopes, besides their higher costs, are less robust than MEMS 
accelerometers, due to their more complicated inherent structure. The 
temperature sensitivity of the MEMS accelerometers is usually less then those of 
the MEMS gyroscopes. The advantages that accelerometer-only IMUs could cause 
come from the relative simplicity of accelerometers. In general, accelerometers 
are more reliable, less expensive and require less power than angular rate 
sensors. 
  The idea of making gyro-free IMU only from robust accelerometers is not new. 
Angular velocity measurement without using gyros was first mentioned by DiNapoli 
in 1965. In 1967 Shuler proposed the gyro-free strap-down scheme. He presumed 
vehicle motion analyses requiring at least nine single-axis accelerometers. In 
theory and in fact, a minimum of six accelerometers is required for a complete 
description of a rigid body motion. In 1994, Chen and Lee were successful to 
present the first six-accelerometer scheme. They ignored in the math, however, 
the effect of gravity and attitude so their original six-accelerometer math 
formalism could not apply on navigation. The idea was expanded to use 3-axis 
accelerometers in arbitrary arrangements and the general mathematical framework, 
including the effect of gravity and attitude, was developed soon. Nowadays, the 
boiled down mathematics and the advanced calibration methods make the gyro-free 
IMU designs more and more attractive when compared with the customary triad of 
mutually orthogonal gyroscopes, which, however provide convenient direct 
estimates of angular velocity in much smaller volume. 

 
 



How to obtain angular velocity and angular acceleration 
values from 3D accelerometer array data using simple matrix 
operations with Propeller/FPU 
 
 
                                   ...the merit of service is seldom attributed 
                                                to the true and exact performer. 
 
                                                 William Shakespeare (1564-1616) 
                                    All's Well That Ends Well, Act III, scene VI 
 
 
  In the followings we shall reproduce the algorithm described in K. Parsa, J. 
Angeles and A. K. Misra. Rigid-body pose and twist estimation using an 
accelerometer array, In Applied Mechanics, 74 (2004) pp. 223-236. without the 
agonizing pain of abstract tensor and matrix algebra. The method will be 
demonstrated with numeric examples. To calculate these examples I used only 
Propeller/SPIN and the FPU_Matrix_Driver object from OBEX 
(http://obex.parallax.com/objects/317/). In this section the arrangement of four 
3-axis acceleration sensors will be described, and then the algorithm will be 
introduced and exercised via numeric examples. 
 
The arrangement of the sensors 
  Let us put two H48C 3D accelerometers at the opposite corners of a square 
plate as shown in Fig. 1. 
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Figure 1. The z-axis of the H48C accelerometers are pointing towards the reader. 
 
 
Let us make another square plate, equipped with two other sensors, like in Fig. 
2. 
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Figure 2. The z-axis of the H48C accelerometers is pointing towards the reader. 

 
 
Now let us mount Plate A on top of Plate B to form a regular cube as shown in 
Fig. 3. 
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Figure 3. The four H48Cs arranged at the vertices of a tetrahedron. 
 
 
The three corresponding axis of the sensors are parallel, and, by design, 
mutually orthogonal. The centroid of the pickup points is denoted by C and the 
sensors are numbered as shown. 



  The next Figure shows the actual arrangement of the sensors at an intermediate 
stage of mechanical assembly. The estimated distance between the center of each 
sensors is about 100 mm (±0.5 mm) and the measured side length of the frame cube 
is 100(±0.2) mm. The brass spacers are accurately machined ones with the length 
of 67.75(±0.01) mm. The thickness of the carbon composite plates is 3(±0.02) mm. 
Vertically fitted L shaped Al profiles (not shown) to the corners will give 
further strength to the design and PCBs will be fixed onto the brass spacers 
inside.   
 

 
  

Figure 4. The four H48Cs arranged at the vertices of a tetrahedron. 
 
 
Definition of matrices 
  Now we define two [3 by 4] matrices. These are matrix R of the relative 
positions and matrix A of the relative accelerations. The position of the 
sensors is related to the centroid C. Let us take the length of the side of the 
cube as one, and then the coordinates of the sensors are 
 

r1 = [-0.5, -0.5,  0.5]   
r2 = [ 0.5,  0.5,  0.5]   
r3 = [ 0.5, -0.5, -0.5]   
r4 = [-0.5,  0.5, -0.5]   

 



as you can verify this in Fig. 3. The R matrix contains the coordinates of the 
sensors in its columns 
                                
                               r1    r2    r3     r4 
 

[[ -0.5   0.5   0.5   -0.5 ] 
                R =  [ -0.5   0.5  -0.5    0.5 ]     [3 by 4] matrix 

  [  0.5   0.5  -0.5   -0.5 ]] 
 
 
The A matrix is the matrix of the relative accelerations. The acceleration 
vectors measured by the sensors are 
 

a1 = [ a1x,  a1y,  a1z]   
a2 = [ a2x,  a2y,  a2z]   
a3 = [ a3x,  a3y,  a3z]   
a4 = [ a4x,  a4y,  a4z]   

 
How to make relative acceleration values from these? Let us first calculate the 
average acceleration vector aC 
 

aC = 0.25
.[a1x+a2x+a3x+a4x, a1y+a2y+a3y+a4y, a1z+a2z+a3z+a4z] 

 
Then subtract aC from the acceleration vectors to obtain relative accelerations 
 

ar1 = [ a1x-aCx,  a1y-aCy,  a1z-aCz]   
ar2 = [ a2x-aCx,  a2y-aCy,  a2z-aCz] 
ar3 = [ a3x-aCx,  a3y-aCy,  a3z-aCz] 
ar4 = [ a4x-aCx,  a4y-aCy,  a4z-aCz] 

 
And the A matrix is 
 
                                  ar1    ar2    ar3    ar4 
 

    [[ ar1x  ar2x  ar3x  ar4x ] 
                    A =  [ ar1y  ar2y  ar3y  ar4y ]     [3 by 4] matrix 

      [ ar1z  ar2z  ar3z  ar4z ]] 
 
  By the way, aC is the linear acceleration vector measured by the sensor array. 
So half of the 6DOF IMU job done. Now, we have to calculate the angular 
acceleration and the angular velocity values. In other words we will get 9DOF 
data, won't we? Up till now the operations were reading the sensors, adding, 
subtracting dividing values, some housekeeping to arrange values in arrays. So, 
we encountered not too many complications. 
 
An offline task to be solved only once 
  Before we proceed, we have to calculate the Moore-Penrose inverse P of matrix 
R. This is easy and has to be done only once for a given sensor arrangement. You 
can do it with the FPU_Matrix_Driver object. Some of the comments of the 
Matrix_SVD (Singular Value Decomposition) procedure will guide you. Or, you can 
use some simple matrix algebra as follows 
 

P = RT.(R.RT)-1 
 
Again, every step can be done with the FPU_Matrix_Driver, like for example 
 



Matrix_Transpose(@RT,@R,3,4)            'This calculates RT 
Matrix_Multiply(@RRT,@R,@RT,3,4,4,3)    'This calculates R.RT 
Matrix_Inverse(@RRTI,@RRT,3)            'This calculates inverse of (R.RT) 
Matrix_Multiply(@P,@RT,@RRTI,4,3,3,3)   'This calculates P = RT.(R.RT)-1 
 
For our sensor arrangement the result is 
 

[[-0.5 -0.5  0.5 ] 
                    P = [ 0.5  0.5  0.5 ]        [4 by 3] matrix 

 [ 0.5 -0.5 -0.5 ] 
  [-0.5  0.5 -0.5 ]] 

 
Verify that the R.P matrix product gives a [3 by 3] identity matrix. OK. We have 
P, we have to store it somewhere as we shall use it frequently. 
 
A little bit of physics shouldn't hurt   
  From rigid body kinematics, a very compact formula can be derived for the ai 
accelerations. This formula contains the acceleration aC of the centroid C, the 
angular velocity  of the body's rotation around an axis containing the centroid 
and the time derivative  of the angular velocity, the so called angular 
acceleration. Note that these are just the IMU quantities we would like to 
measure. Before I write down the formula, I emphasize again, that our sensor 
array estimates directly all these three basic kinematic vectors. In other 
words, neither we have to derivate  to obtain , nor we have to integrate  to 
obtain . Beware of the following formula, because it is so simple that you can 
even remember it, if you are not careful enough. The formula is 
 

ai = aC +  x ri + x (x ri) 
 
where x denotes the vector product. In SPIN using the FPU_Matrix_Driver, e.g. 
for a1, it goes as 
 
Vector_CrossProduct(@wr1,@omega,@r1,3,1)     'This calculates xr1 
Vector_CrossProduct(@wwr1,@omega,@wr1,3,1)   'This calculates x(xr1) 
Vector_CrossProduct(@alphar1,@alpha,@r1,3,1) 'This calculates xr1 
Matrix_Add(@alphar1wwr1,@alphar1,@wwr1,3,1)  'This calculates xr1+x(xr1) 
Matrix_Add(@a1,@ac,@alphar1wwr1,3,1)         'This calculates a1 
 
Of course, here we use this formula only to calculate correct ai values for our 
sensor array for different types of motion of the body to numerically check the 
decoding algorithm. Now, we have prepared the tests; let's get back to the 
decoding algorithm. 
 
How to decode the angular acceleration? 
  Well, we have decoded the linear acceleration of the sensor array. That is 
simply aC. To get the angular acceleration, we have first to multiply the A 
matrix of the relative accelerations with P. The matrix A was calculated from 
the measured ai values before and P was stored somewhere. 
 

W = A.P 
 
W has a name; it is called the Angular Acceleration Tensor. But it doesn't 
matter. We got it. W is a small [3 by 3] matrix, nine nicely arranged float 
values, nothing mystical from now on. The angular acceleration vector is simply 



 
 = 0.5.[ W32-W23, W13-W31, W21-W12 ] 

  
where the double subscript denotes the corresponding element of the W matrix. 
For example W32 is the second element of the third row. 
 
What about the angular velocity? 
  We'll get it quickly. Angular velocity components are calculated from the 
diagonal elements of the matrix W. In preparation of the final result we 
calculate the quantity 
 

sp = 0.5.(WS11 + WS22 + WS33) 
 
and finally 
 

 = [SQRT(WS11-sp), SQRT(WS22-sp), SQRT(WS33-sp)] 
 
where SQRT denotes the square root operation. These were two additions, a 
multiplication, three subtractions and three square roots. The correct sign of 
the components can be obtained easily as described, for example, in the original 
paper. We shall discuss the sign determination later. We can see that the nine 
numbers of the W matrix contain all information about angular acceleration and 
angular velocity. So it deserves its name. Now we continue with some practical 
considerations and than with the numerical tests.  
 
What to do if I arranged the sensors in a different way? 
  You have to compute the R matrix, then the P matrix for your arrangement. 
That's all. R, of course, has not to be singular in order to obtain a Moore-
Penrose inverse. In a planar arrangement, which seems to be a practical idea to 
place the sensors, the third row of R contains only zeroes. And R is singular, 
then. In other words, all sensors should not line up, or should not lie in the 
same plane. 
 
How long does this decoding take? 
  Well, in PASM this decoding takes 4-5 msec. In the FPU it takes less than 4 
msec with tensor calibration correction of the individual sensors’ data, as well 
as with the tensor calibration correction of the 3 outcome vectors. Whichever 
software solution you choose, you can handle 200 Hz (5 msec period) acceleration 
data.  
 
First example: Sensor resting on a table 
  We assume that the table is horizontal and is resting on the ground. We have 
gravity of course (9.81 m/sec2), but we don't have angular rotation and angular 
acceleration of the sensor array. As, for the sake of simplicity, we disregard 
here the minuscule angular velocity (about 70 rad/sec) coming from the Earth's 
rotation. The  and  vectors are zero and the sensed ai vectors at the pickup 
points are as follows 
 

a1 = [ 0.0, 0.0, 9.81] 
a2 = [ 0.0, 0.0, 9.81] 
a3 = [ 0.0, 0.0, 9.81] 
a4 = [ 0.0, 0.0, 9.81] 

 
First we calculate aC 
 



aC = [ 0.0, 0.0, 9.81] 
 
Then the A matrix is 
 

     [[ 0.0  0.0  0.0  0.0 ] 
 A =  [ 0.0  0.0  0.0  0.0 ] 

       [ 0.0  0.0  0.0  0.0 ]] 
 
The W matrix is 
 

           [[ 0.0  0.0  0.0 ] 
 W = A.P =  [ 0.0  0.0  0.0 ]   

             [ 0.0  0.0  0.0 ]] 
 
So, both the measured  and  are null vectors. 
 
Why do our sensors measure a positive (upwards) 9.81 when we all know that 
gravity points downwards? 
  The proof-mass, or whatever that measures the acceleration, is pulled down by 
the gravity. The sensor feels that it is accelerating upwards, because the 
proof-mass is displaced downwards inside the sensor. 
 
Sensor array accelerating but not rotating 
  Let us push the sensor array in the x direction with 1 m/sec2 linear 
acceleration. The  and  vectors are zero again, but we have a linear aC 
acceleration of the whole sensor in the x direction. According to our formula 
 

ai = aC +  x ri + x (x ri) 
 
we calculate ai values, taking into account the sensed g, of course 
 

a1 = [ 1.0, 0.0, 9.81] 
a2 = [ 1.0, 0.0, 9.81] 
a3 = [ 1.0, 0.0, 9.81] 
a4 = [ 1.0, 0.0, 9.81] 

 
The measured aC, the average of the four ai vectors, is 
 

aC = [ 1.0, 0.0, 9.81] 
 
Then the A matrix is 
 

     [[ 0.0  0.0  0.0  0.0 ] 
 A =  [ 0.0  0.0  0.0  0.0 ] 

       [ 0.0  0.0  0.0  0.0 ]] 
 
The W matrix is 
 
 

           [[ 0.0  0.0  0.0 ] 
 W = A.P =  [ 0.0  0.0  0.0 ]   

             [ 0.0  0.0  0.0 ]] 
 
So, both the measured  and  are null vectors, again. 
 



Take some increasing spin 
  Now, we accelerate the sensor array as in the previous example, but this time 
we start to rotate it with 
 

 = [ 0.0, 0.0, 0.5] 
 
[rad/sec2] angular acceleration around the z axis. According to our formula 
 

ai = aC +  x ri + x (x ri) 
 
we calculate ai values again. First let us calculate the  x ri vectors 
 

 x r1 = [  0.25, -0.25, 0.00 ] 
 x r2 = [ -0.25,  0.25, 0.00 ] 
 x r3 = [  0.25,  0.25, 0.00 ] 
 x r4 = [ -0.25, -0.25, 0.00 ] 

 
then the ai vectors 
 

 a1 = [ 1.25, -0.25, 9.81 ] 
 a2 = [ 0.75,  0.25, 9.81 ] 
 a3 = [ 1.25,  0.25, 9.81 ] 
 a4 = [ 0.75, -0.25, 9.81 ] 

 
The aC vector, the average of ai is the same as before 
 

aC = [ 1.0, 0.0, 9.81] 
 
But the A matrix of the relative accelerations is filled not only with zeroes 
now 
 

          [[  0.25 -0.25  0.25 -0.25 ] 
      A =  [ -0.25  0.25  0.25 -0.25 ] 

            [  0.00  0.00  0.00  0.00 ]] 
 
The W matrix is 
 

           [[ 0.0 -0.5  0.0 ] 
 W = A.P =  [ 0.5  0.0  0.0 ]   

             [ 0.0  0.0  0.0 ]] 
 
From this, using the formula for the decoded, measured  
 

 = 0.5.[ W32-W23, W13-W31, W21-W12 ] 
 
we obtain 

 = [ 0.0, 0.0, 0.5 ] 
 
and the decoded, measured angular velocity vector is 
 

 = [ 0.0, 0.0, 0.0 ] 
 
Well, so far, so good. 
 



Accelerating and rotating sensor array 
  Four seconds have passed and the sensor array is rotating now with 
 

 = [ 0.0, 0.0, 2.0 ] 
 
[rad/sec] angular velocity, while accelerating linearly and angularly as before 
 

aC = [ 1.0, 0.0, 9.81 ] 
 

 = [ 0.0, 0.0, 0.5  ] 
 
The constituents to the ai accelerations at the pickup points are 
 

aC = [ 1.0, 0.0, 9.81 ] 
 

 x r1 = [  0.25, -0.25, 0.00 ] 
 x r2 = [ -0.25,  0.25, 0.00 ] 
 x r3 = [  0.25,  0.25, 0.00 ] 
 x r4 = [ -0.25, -0.25, 0.00 ] 

 
x (x r1) = [  2.00,  2.00, 0.00 ] 
x (x r2) = [ -2.00, -2.00, 0.00 ] 
x (x r3) = [ -2.00,  2.00, 0.00 ] 
x (x r4) = [  2.00, -2.00, 0.00 ] 

 
These are sensed accelerations at the pickup points and according to our formula 
 

ai = aC +  x ri + x (x ri) 
 

they are added (scrambled) in the sensors 
 

 a1 = [  3.25,  1.75, 9.81 ] 
 a2 = [ -1.25, -1.75, 9.81 ] 
 a3 = [ -0.75,  2.25, 9.81 ] 
 a4 = [  2.75, -2.25, 9.81 ] 

 
Now let us see, how the algorithm unscrambles the aC,  and  vectors. aC is 
simply the average of the four ai vectors 
 

aC = [ 1.0, 0.0, 9.81 ] 
 
The A matrix of the relative accelerations is  
 

        [[  2.25 -2.25 -1.75  1.75 ] 
    A =  [  1.75 -1.75  2.25 -2.25 ] 

          [  0.00  0.00  0.00  0.00 ]] 
 
We obtain the [3 by 3] W matrix with a simple matrix multiplication 
 

          [[ -4.0 -0.5  0.0 ] 
W = A.P =  [  0.5 -4.0  0.0 ]   

            [  0.0  0.0  0.0 ]] 
 
And we unscramble the angular acceleration vector immediately, using the formula 



 
 = 0.5.[ W32-W23, W13-W31, W21-W12 ] 

 
resulting 
 

 = [ 0.0, 0.0, 0.5 ] 
 
Then we calculate the quantity 
 

sp = 0.5.(WS11 + WS22 + WS33) = -4.0 
 
And finally, from the formula 
 

 = [SQRT(WS11-sp), SQRT(WS22-sp), SQRT(WS33-sp)] 
 
we get the unscrambled  vector 
 

 = [ 0.0, 0.0, 2.0 ] 
 
Right, again. 
 
Summarizing the steps of the algorithm  
  To check and to follow the steps of the numeric examples one can use the 
Propeller/SPIN language and the FPU_Matrix_Driver. Some practice will ensure the 
user how simple it is and how easy to program the algorithm in Propeller/SPIN. 
Now I summarize briefly the main steps of the process. 
 
The four sensor readings (ai vectors) are stored in a [3 by 4] matrix, column 
wise. 
 
The average of the acceleration vectors gives the linear acceleration aC of the 
sensor array. 
 
This average vector is subtracted from each column of the matrix, and the 
resulting matrix is multiplied with a precompiled one. 
 
The [3 by 3] product matrix is used to estimate the  and the  vectors. 
 
 is obtained directly from this matrix with a simple formula. 
 
The absolute value of the components of  is calculated again with simple 
formulas. 
 
The sign of a component of the  vector is obtained from the sign of the sum of 
the corresponding component of . 
  
  This last method is something like integration, but the difference between 
using the sign of a value, and using the value itself, is huge. This can be make 
numerically more robust with using the previous value of  for the "integral" 
before adding the new .t increment, because  is the correct, measured value 
for that integral of . Sign uncertainty of the angular velocity will appear 
only when the size of the  components shrinks below the noise level. In other 
words when  and components will be very small, and these uncertainties will 



be random with zero mean. I am tempted to say, that the sign of the noise should 
not bother us too much. In fact, the physical cross-dependency of the measured  
and  will help us in minimizing the drift of both by software. 
  If there remains any more drift in  that would mean a rotation of the whole 
sensor array in space. However, such whole body rotations would be sensed by the 
accelerometers during an arbitrary motion by noticing the rotating gravitation 
vector. But there will be no rotation of the gravitation vector for the bias of 
. So that bias can be corrected back to close to zero. In more mathematical 
terms, the drift of  can be bounded to be less than the highest frequency 
component of the realistic whole-body movement of the vehicle. This bias 
elimination method does not work for a steady vehicle with a perfectly leveled 
6DOF IMU, where a drift in the heading will not be reflected by the measured 
constant gravity vector. This situation does not exist in the real life. Or, if 
so, then a 3-axis Magnetometer/Inclinometer sensor would resolve that 
uncertainty, as well.      
 
 

The General MEMS Sensor model 
 

...Grau, teurer Freund, ist alle Theorie, 
                                             Und grün des Lebens goldner Baum. 

 
                                             Johann Wolfgang Goethe (1749-1832) 
                                             Faust, erster Teil, Studierzimmer 

 
 
  The MEMS sensors are usually robust and reliable, but contain some 
imperfections originating from the present incapabilities of the micro machining 
technology. They are, however, robust, stable and reliable in reproducing those 
imperfections accurately, as well. So we can count on their systematic behavior 
to remove those imperfections by math in a similarly systematic and accurate 
manner. 
 
Static calibration of the individual H48C sensors 
  Neither all H48C sensors are created equal, nor are they perfect. So it is 
necessary to do static calibration of them before using their readings in the 
previously described measuring algorithm. The H48C sensors are calibrated to 
about 10% accuracy at the factory. They are temperature compensated by design, 
but there remains some noticeable temperature dependence, that should be 
accounted for during operation. So, there is a lot of place for improvement. 
 
Physics behind static calibration of accelerometers   
  When the H48C is held steadily in relation to the Earth, for example when it 
is lying on a table, it senses and measures only the gravity as acceleration. 
When we know our position (Lat, Lon, Alt) on the Earth, we can calculate precise 
approximation for the size of the g gravity vector there. That g vector is an 
extremely stable, almost ideal reference with no additional costs. The endpoints 
of the measured acceleration vectors are on a sphere with radius g in every pose 
of the resting sensor. So the yet unknown calibrated components ax, ay, az of the 
measured accelerations satisfy the equation 
 

(ax)
2 + (ay)

2 + (az)
2 = g2 

 



in every steady orientation of the H48C. We shall use scale factors and biases 
to transform the raw ADC counter readings into the calibrated ax, ay, az values. 
The determination of these calibration parameters will be based upon of many 
steady measurements and on the previous equation. 
 

 
 

Figure 5. The Parallax H48C Sensor Module. Pin spacing 0.1". 
 
 
 
 
Simple, but accurate approximation of g 
  When you want to be more precise than just to apply 9.81 [m/s2] for the size of 
g everywhere, than you can use the next mathematical form that describes the 
magnitude of gravity at the surface of the WGS84 ellipsoid 
 

gWGS84 = g0
.(1 + g1 

. SIN2(Lat))/SQRT(1 - 2 . SIN2(Lat)) 
 
where 
  
g0 = 9.7803267714 [m/s

2] is the size of gravity at the equator, 
 
g1 = 1.93185139E-3 is a gravity formula constant for the WGS84 Earth and  

2 = 6.694378E-3 is geometry constant (1st eccentricity)2 of the WGS84 ellipsoid.  
 
  If your H48C sensor is far away from see level, you can apply a simple 
altitude correction in the form  
 

g(Alt) = gWGS84 
. (1 - 2 . Alt / r) 

 



where r = 6371 [km] is the mean radius of the Earth and Alt is the altitude 
above (or below) see level. 
 
The General Sensor Model application 
  This application is available at OBEX (http://obex.parallax.com/objects/464/). 
It uses Bias Compensation, Axis Scale Factors, Axis Misalignment and Axis 
Crosstalk compensation and run-time Temperature Correction in a compact and 
simple form. This boiled down form is especially well suited for embedded 
applications with usually limited resources. First, Bias is compensated as                             
                                                                              
                           Value = Raw_Reading - Bias                              
                                                                              
for each axis, then an Ellipsoid to Sphere back transformation is applied on the 
vector of the three values. This linear transformation is made by a simple [3-
by-3] matrix [[A]], by which the vector is multiplied. For the case of 3-axis 
magnetometers this General Sensor Model covers Hard- and Soft Iron 
Compensations, too.  
  Finally, temperature compensation can be done with a simple scalar 
multiplication of the spherified data vector, from which the distortions have 
been already removed. In summary                                                                 
                                                                              
           [Calibrated vector] = [[A]] . ([Raw Vector] - [Bias Vector])             
                                                                              
and the temperature compensation factor is calculated on the fly, then         
applied as                                                                    
                                                                              
               [Calibrated vector] = Temp_Corr . [Calibrated vector]                 
                                                                              
  The mathematical background of this simplicity (y=A.(x-b)) is based on the 
observation that the many aforementioned distortion effects to be compensated, 
can be expressed one by one in matrix form. In the General Sensor Model we 
directly measure with the calibration the final product matrix of those many 
matrices. In this way we do not have to bother with the separate details of 
formalism beyond those different imperfections.                                                               
  The application contains the necessary procedure templates that you will need 
to make your own application with any 3-axis MEMS sensors. Each following step 
is well separated and commented in the code. With a minimum effort of commenting 
and decommenting, you can tailor the program for the particular task with your 
H48C. For other type of MEMS sensors, you have to use the appropriate drivers 
and timings.                                      
                                                                              
Step 1. Acquire steady data for calibration                                                                    
  Here you can collect acceleration data in several steady poses of the H48C 
module. You do not have at all to strive for exact alignments, but I recommend 
covering a sphere almost uniformly with the tips of the measured vectors. Some 
systematic method of axis and pose changes will help a lot to achieve that. I 
attached picture of the tools I used in the calibrations. In my method the 
sensors were fixed with X, Y and Z axis Up and Down into a vertically standing 
vise (3x2 poses). Then the vise was pitched (0), +45, -45 and -90 degrees (6x4 
poses). This was repeated; starting with vertical vise head, but with rotating 
it (0), 90, 180, 270 degrees horizontally (24x4=96 poses). A full automated 
version of the General Sensor Model object is now available at OBEX, where the 
collected steady calibration data is written into EEPROM. This data is 
automatically used then by a Least-Squares Parameter Optimizer, and the 
optimized parameters are stored in EEPROM, too. The verification of the 
calibration is automatic, again. This feature should be implemented in the 



firmware of the finished sensor units, where an external "SELF_CALIBRATE" 
command will trigger the process. In this way periodic recalibration will be 
very convenient to cope with the wear and tear of the units, or to self-adjust a 
magnetometer to some changed magnetic environment.  
                              
 

 
 

Figure 5. The tools used in the calibration. 
 
                                                                 
  The aforementioned liberty of the alignments during calibration is especially           
convenient in the tuning of 3-axis magnetometers with the General Sensor Model, 
as you do not have to know where Magnetic North is during the measurements. 
Again, the point is to cover the sphere approximately uniformly. Here, you have 
to know the 3D magnitude of the Earth's magnetic field at your place, of course. 
                                                                              
Temperature should be stable!                                                 
  You have to collect the static calibration data with stabilized electronics 
and at the same sensor temperature! The "same temperature" means here 
temperatures within 1 degree of Celsius or less. Disobeying this requirement may        
seriously undermine the quality of your results. The good news are that      
after calibration at uniform, but arbitrary (in the range of 20-40 °C) 
temperature, precise and full automatic temperature correction can be done 
during true measurements at the unpredictable or changing temperatures of the 
real application. This automatic temperature correction has of vital importance 
for MEMS sensors that are usually more of sensors for temperature than sensors 



of the measured physical effect. Even the so called "temperature compensated" 
H48C "accelerates" heavily if you put your warm fingertip on it very gently. 
MEMS Gyros are even worst in this respect because of their more temperature 
sensitive internal structure then those of the MEMS accelerometers.                  
                                                                              
Step 2. Calculation of the parameters                                   
  The General Sensor Model uses twelve parameters for a sensor or, better to 
say, for a 3D vector output. A Bias vector adds three ones and a 3x3 
transformation matrix [[A]] contributes with nine. These parameters are constant 
for a particular piece of sensor. To find them you are provided with a general 
Least-Squares Parameter optimizer. First you have to measure calibration data. 
Then you have to run the appropriate menu code to get those parameters 
automatically with a Least-Squares Optimizer. 
  The Least-Squares Parameter Optimizer does its job in two shots. It computes 
preliminary Biases and Scale factors first, then calculates the twelve general 
parameters in the second run, initiating from the preliminary results.                                                            
  The evident outliers from the fit (if there are some) usually mean mechanical 
unstability during measurements or temperature variation during data collection. 
An error greater than five times than the displayed standard error might 
indicate an outlier. Check and correct those cases, but do not reject valid data 
because of its somewhat larger residual error. Nothing is perfect, including 
your sensor, and such data carries important information, too. Many outliers or 
large residual errors probably indicate unstable temperature or poses during the 
data collection.                                                               
                                                                                
Step 3. Verify the Calibration                           
  Hard work is over. Here you have only to see and enjoy the high accuracy of 
the General Sensor Model calibration while noticing the beneficial effect of the 
real-time temperature correction. Individual H48Cs are now performing with at 
least ±2mg accuracy (0.4%) or usually better. The temperature correction is 
calculated on the fly during normal operation. The previously homogenized scales 
and axes by the General Sensor Model make this first-order temperature 
correction very effective. The precision at full 200 Hz rate or, in other words, 
the one standard deviation of the noisy values without digital filtering is less 
than 5 mg (0.5% at 1 g) at 24 degrees of Celsius.  
 
  Next the calibration of the ready-made and fixed sensor array should be done. 
Before that we need a working 6DOF IMU algorithm to obtain the raw acceleration, 
angular acceleration and the angular velocity outputs of the 3D accelerometer 
sensor array. 
 
 

Programming the 6DOF Gyro less IMU algorithm into an FPU 
 
  The application of the General Sensor Model will provide us an accurate and 
precise 6DOF IMU sensor, but with the expense of many matrix multiplications, 
vector additions and subtractions. To fulfill the timing requirements of the 200 
Hz data rate, we use an uMFPU v3.1 floating point coprocessor, which has built 
in matrix/vector operations and user defined functions. This later feature 
effectively reduces necessary data transfer between the Propeller and the 
coprocessor. In fact, 2 uMFPUs are needed for the final gyro-less assembly, 
where the second one does the full WGS84 rotating Earth strapped down 
mechanization calculations. The total processing time of the 2 FPUs exceeds 5 ms 
(2.6 ms + 3.2 ms) , so they must work parallel to keep-up with that 200 Hz rate. 
While the 1st one decodes the accelerometer's newest data, the 2nd one 
calculates the mechanization equations from the previous 6DOF IMU outputs. 5 ms 



delay of the latitude, longitude, altitude, ECEF coordinates, NED velocity, 
pitch, roll and yaw data is the price for this pipelined solution. The 6DOF gyro 
less IMU algorithm for the 1st FPU is attached now to a post in Propeller 
Discussion Forum, with a simple PST application to test it. The  code for the  
2nd FPU has been placed on OBEX already (http://obex.parallax.com/objects/335/ 
INS Math WGS84 Earth) 
 
 

Calibration of the 6DOF Gyro-less IMU assembly as a whole  
     
  Simple modifications of the General Sensor Model application allow us to 
calibrate the whole 6DOF sensor array. 
  
Step 1. Obtaining the data                                   
The linear acceleration output was calibrated using steady poses. For the 
rotational calibrations a small battery pack with 5V regulated output supplied 
the power for the 6DOF IMU. The rotational calibrations were done in low and 
high angular velocity ranges with uniform rotations, i.e. never with angular 
acceleration. I used a CNC Sherline Rotating Table to calibrate the angular 
acceleration/velocity vector outputs in the low (1-10 deg/s) angular velocity 
range. In the higher angular velocities (up to 720 deg/s) the IMU was fixed in 
different poses onto the disconnected Sherline Rotating Table. The whole IMU 
assembly was placed and fixed in the middle of a larger horizontal disk and that 
disk was rotated steadily with an electric motor. The accurate angular 
velocities of the table were verified with a 30 frames/sec digital camera using 
marks on the disk. Collected data at the rotating poses was written into the 
upper half of the 64Kbyte boot EEPROM of the Propeller after low-pass filtering. 
 
Step 2. Calculation of the parameters                                   
  The calculation of the parameters was similar to that shown in the original 
General Sensor Model application. The main difference was that the elements of 
the Moore-Penrose inverse matrix were adjusted, too. This introduced convenient 
tolerance into the geometric accuracy of the 3D sensor assembly montage. Of 
course, the assembly should be firmly made and mounted. In the steady poses the 
size of g was taken as 9.81 [m/s2]. In the rotating poses the sensor array center 
was placed as close as possible to the axis of rotation, so the size of sensed 
6DOF acceleration was practically g again and this was verified. Since all 
rotations were uniform during data collection, the angular acceleration was 
taken to be zero by definition. Angular velocities were calibrated from 
(practically) 0 to 720 deg/s in few steps. 
 
Temperature should be stable again! 
  Like as in the calibration of the individual sensors, temperature should be 
the same for all aforementioned calibration measurement. I made the measurements 
at 24 degrees of centigrade. 
 
Temperature and gyro-drift self compensation during mission 
  Similar to the method presented in the automatic temperature compensation of 
the General Sensor Model, the whole IMU unit can be automatically temperature 
and gyro-drift compensated on the field after a certain initialisation period. 
This period takes about 2-5 minutes, preferably with a standing vehicle. Real 
time algorithm can than sense the steady pose/velocity/centripetal acceleration 
of the unit during mission. If any combination of the above listed motion states 
is detected, appropriate temperature corrections and gyro-drift eliminations are 
performed immediately. This reduces the workload of the IMU/GPS Kalman filter 
tremendously, as it can work with ECEF coordinates and NED attitude directly. 



 
 

6DOF IMU with gyro, but again with 4 sensor modules 
 
  Meanwhile Parallax came out with a single axis rate gyro module.  
 

 
Figure 6. The single-axis gyroscope module. Pin spacing 0.1" 

 
 
This makes it possible to construct a simpler 6DOF IMU based upon Parallax 
semsor components and the Propeller microcontroller. The General Sensor Model 
can be applied for the calibration of this 6DOF IMU, as well. The speed and 
overall performance of this unit is not as good as those of the accelerometer 
array, but with the real time temperature and gyro-drift correction algorithms, 
it performs like devices sold for many times more of dollars. In this simpler 
assembly one H48C 3-axis accelerometer and three LISY300 single axis rate giro 



is used. The processing of the 6DOF IMU output is the same as with the gyro-less 
IMU and the temperature and drift compensation is similar, too. When compared 
with the accelerometer array, the smaller size (mass) of the new unit allows us 
to use real temperature stabilization of the new sensor array with a DS1620.  
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