
Integrated GPS/INS/Magneto Navigation System 
Built from Parallax Components 

 
  In the spirit of Learning by Doing for the memory of some of my friends, who 
flew blind bravely with only instruments of the fifties. 
 
 
                                     ...Grau, teurer Freund, ist alle Theorie, 
                                             Und grün des Lebens goldner Baum. 
                                             Johann Wolfgang Goethe (1749-1832) 
                                              Faust, erster Teil, Studierzimmer 

 
 
  The first Inertial navigation System (INS) was designed in 1948. The 
traditional Inertial Measurement Unit (IMU) of INS uses the linear accelerometer 
to sense the linear acceleration and the gyroscope to measure angular velocity. 
It is an inherently stealthy, self contained system that is very difficult to 
jam. A precise INS does not need other information, satellite signal or any 
additional instrumentation to determine continuously the position, attitude and 
speed of the vehicle. Inertial Navigation Systems are widely used in many 
applications including civilian and military aviation, spatial and nautical 
segments, automobiles, automated vehicles and robotics. 
  This living (i.e. periodically enhanced and updated) document follows embedded 
application projects, based upon the Parallax Propeller microcontroller. First a 
construction of a gyro-free 6DOF IMU then the build of a 3-axis 
magnetometer/inclinometer using WMM2005 (or EGRF-2010) magnetic field model will 
be described. Then their integration with a GPS will be presented. 
  On the route only SPIN and PASM programming are used and no external fancy PC 
programs, except the IDE of Propeller and the Propeller Serial Terminal are 
needed. They are necessary and sufficient to assist the building and testing of 
those devices. The finished sensor units will be self-contained and independent 
devices. They will not need any more PC "assistance" to make self-tests, 
calibrations or to initiate themselves. The operation of these devices will be 
again fully autonomous. 
  No Matlab simulations of performances will be done, instead all units will be 
actually built and the real performances will be tested with real measurements. I 
take care to publish all software and technical details necessary to reproduce 
the devices with the announced results by anyone interested.   
 
Why from Parallax components? 
  Instead of using high dollar sensors from other sources, I decided to build 
only with sensor modules of Parallax that are aimed primarily for the hobby 
electronic market. These modules are well designed, robust and easy to use or to 
communicate with. This makes them an attractive choice for IMU/Magneto projects. 
However, they apply low-cost and low-accuracy sensor chips. The performance 
parameters of these sensors are appropriate for hobby electronic projects, but 
they create quite a challenge to build sophisticated IMU/Magneto units from them. 
Fortunately, the computing capabilities of the Parallax Propeller microcontroller 
made it possible to construct surprisingly precise and robust embedded devices 
from these sensors. I hope that in this way more parallaxians or propeller fans 
will be interested in the project. 
  Parallax Inc. has excellent user support for its products and a lot of 
educational material to assist the newcomers. Parallax manages active Discussion 



Forums, where talented programmers, enthusiasts and experts from many fields will 
help you. 
  Those lucky ones having more capable sensors, also may benefit from the physics 
and mathematics learned from these projects, especially from the methods to 
optimize performance. The neat big boys did not allow the young and very spoiled 
Eddy Merckx onto the road, so he had to bycicle in the knee-deep sand beside it. 
When the others first let him to ride on "their" paved road, nobody could 
overtake the kid, and the carrier of an Amateur World Champion and "The Cannibal" 
professional started. 
 
Gyro-free IMU 
  A gyro-free IMU is a specific array of accelerometers where location and 
orientation are chosen so that angular and linear motions can be decoupled and 
computed separately. Recent advantages in Micro Electro Mechanical Systems (MEMS) 
technology have made inertial and magnetic sensors more affordable. The cost of 
micro-machined accelerometers and gyroscopes are decreasing while their 
performance are being improved. Micro-machined accelerometers are now in large 
volume production, cost a few dollars and have been showing reliability. MEMS 
gyroscopes, besides their higher costs, are less robust than MEMS accelerometers, 
due to their more complicated inherent structure. The temperature sensitivity of 
the MEMS accelerometers is usually less then those of the MEMS gyroscopes. The 
advantages that accelerometer-only IMUs could cause come from the relative 
simplicity of accelerometers. In general, accelerometers are more reliable, less 
expensive and require less power than angular rate sensors. 
  The idea of making gyro-free IMU only from robust accelerometers is not new. 
Angular velocity measurement without using gyros was first mentioned by DiNapoli 
in 1965. In 1967 Shuler proposed the gyro-free strap-down scheme. He presumed a 
vehicle motion analyses requiring at least nine single-axis accelerometers. In 
theory, a  minimum of six accelerometers is required for a complete description 
of a rigid body motion. In 1994, Chen and Lee was succesfull to present the six-
accelerometer scheme. They ignored in the math, however, the effect of gravity 
and attitude so their original six-accelerometer math formalism could not apply 
on navigation. The idea was expanded to use 3-axis accelerometers in arbitrary 
arrangements and the general mathematical framework, including the effect of 
gravity and attitude, was developed soon. Nowadays, the boiled down mathematics 
and the advanced calibration methods make the gyro-free IMU designs more and more 
attractive when compared with the customary triad of mutually orthogonal 
gyroscopes, which provide direct estimates of angular velocity. 

 
 

How to obtain angular velocity and angular acceleration 
values from 3D accelerometer array data using simple matrix 
operations with Propeller/FPU 
 
 
                                   ...the merit of service is seldom attributed 
                                                to the true and exact performer. 
                                                 William Shakespeare (1564-1616) 
                                    All's Well That Ends Well, Act III, scene vi 
 
 
 
  In the followings we shall reproduce the algorithm described in  
 



K. Parsa, J. Angeles and A. K. Misra 
Rigid-body pose and twist estimation using an accelerometer array 
In Applied Mechanics, 74 (2004) pp. 223-236. 
 
without the agonizing pain of abstract tensor and matrix algebra. The method will 
be demonstrated with many numeric examples. To calculate these examples I used 
only Propeller/SPIN and the FPU_Matrix_Driver object from OBEX 
(http://obex.parallax.com/objects/317/). First the arrangement of four 3-axis 
acceleration sensors will be described, then the algorithm will be introduced and 
exercised via numeric examples. 
 
The arrangement of the sensors 
  Let us put two H48C 3D accelerometers at the opposite corners of a square plate 
as shown in Fig. 1. 
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Figure 1. The z-axis of the H48C accelerometers are pointing towards the reader. 
 
 
Let us make another square plate, equipped with two other sensors, like in Fig. 
2. 
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Figure 2. The z-axis of the H48C accelerometers are pointing towards the reader. 
 
 
Now let us mount Plate A on top of Plate B to form a regular cube as shown in 
Fig. 3. 
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Figure 3. The four H48Cs arranged at the vertices of a tetrahedron. 
 
 
The three corresponding axis of the sensors are parallel, and, by design, 
mutually orthogonal. The centroid of the pickup points is denoted by C and the 
sensors are numbered as shown. 
  The next Figure shows the actual arrangement of the sensors at an intermediate 
stage of mechanical assembly. The estimated distance between the center of each 
sensors is about 100 mm (±0.5 mm) and the measured side length of the frame cube 
is 100(±0.2)mm. The brass spacers are accurately machined ones with the length of 
67.75(±0.01)mm. The thickness of the carbon composit plates is 3(±0.02)mm. 
Vertically fitted L shaped Al profiles (not shown) to the corners will give 
further strength to the design and PCBs will be fixed onto the brass spacers 
inside.   
 



 
  

Figure 4. The four H48Cs arranged at the vertices of a tetrahedron. 
 
 
Definition of matrices 
  Now we define two [3 by 4] matrices. These are matrix R of the relative 
positions and matrix A of the relative accelerations. The position of the 
sensors is related to the centroid C. Let us take the length of the side of the 
cube as one, then the coordinates of the sensors are 
 

r1 = [-0.5, -0.5,  0.5]   
r2 = [ 0.5,  0.5,  0.5]   
r3 = [ 0.5, -0.5, -0.5]   
r4 = [-0.5,  0.5, -0.5]   

 
as you can verify this in Fig. 3. The R matrix contains the coordinates of the 
sensors in its columns 
                                
                               r1    r2    r3     r4 
 

[[ -0.5   0.5   0.5   -0.5 ] 
                R =  [ -0.5   0.5  -0.5    0.5 ]     [3 by 4] matrix 

  [  0.5   0.5  -0.5   -0.5 ]] 
 



 
The A matrix is the matrix of the relative accelerations. The acceleration 
vectors measured by the sensors are 
 

a1 = [ a1x,  a1y,  a1z]   
a2 = [ a2x,  a2y,  a2z]   
a3 = [ a3x,  a3y,  a3z]   
a4 = [ a4x,  a4y,  a4z]   

 
How to make relative acceleration values from these? Let us first calculate the 
average acceleration vector aC 
 

aC = 0.25
.[a1x+a2x+a3x+a4x, a1y+a2y+a3y+a4y, a1z+a2z+a3z+a4z] 

 
Then subtract aC from the acceleration vectors to obtain relative accelerations 
 

ar1 = [ a1x-aCx,  a1y-aCy,  a1z-aCz]   
ar2 = [ a2x-aCx,  a2y-aCy,  a2z-aCz] 
ar3 = [ a3x-aCx,  a3y-aCy,  a3z-aCz] 
ar4 = [ a4x-aCx,  a4y-aCy,  a4z-aCz] 

 
And the A matrix is 
 
                                  ar1    ar2    ar3    ar4 
 

    [[ ar1x  ar2x  ar3x  ar4x ] 
                    A =  [ ar1y  ar2y  ar3y  ar4y ]     [3 by 4] matrix 

      [ ar1z  ar2z  ar3z  ar4z ]] 
 
  By the way, aC is the linear acceleration vector measured by the sensor array. 
So half of the 6DOF IMU job done. Now, we have to calculate the angular 
acceleration and the angular velocity values. In other words we will get 9DOF 
data, won't we? Up till now the operations were reading the sensors, adding, 
subtracting dividing values, some housekeeping to arrange values in arrays. So, 
we encountered not too many complications. 
 
An offline task to be solved only once 
  Before we proceed, we have to calculate the Moore-penrose inverse P of matrix 
R. This is easy and has to be done only once for a given sensor arrangement. You 
can do it with the FPU_Matrix_Driver object. Some of the comments of the 
Matrix_SVD (Singular Value Decomposition) procedure will guide you. Or, you can 
use some simple matrix algebra as follows 
 

P = RT.(R.RT)-1 
 
Again, every step can be done with the FPU_Matrix_Driver, like for example 
 
Matrix_Transpose(@RT,@R,3,4)            'This calculates RT 
Matrix_Multiply(@RRT,@R,@RT,3,4,4,3)    'This calculates R.RT 
Matrix_Inverse(@RRTI,@RRT,3)            'This calculates inverse of (R.RT) 
Matrix_Multiply(@P,@RT,@RRTI,4,3,3,3)   'This calculates P = RT.(R.RT)-1 
 
For our sensor arrangement the result is 
 



[[-0.5 -0.5  0.5 ] 
                    P = [ 0.5  0.5  0.5 ]        [4 by 3] matrix 

 [ 0.5 -0.5 -0.5 ] 
  [-0.5  0.5 -0.5 ]] 

 
Verify that the R.P matrix product gives a [3 by 3] identity matrix. OK. We have 
P, we have to store it somewhere as we shall use it frequently. 
 
A little bit of physics shouldn't hurt   
  From rigid body kinematics, a very compact formula can be derived for the ai 
accelerations. This formula contains the acceleration aC of the centroid C, the 
angular velocity  of the body's rotation around an axis containing the centroid 
and the time derivative  of the angular velocity, the so called angular 
acceleration. Note that these are just the IMU quantities we would like to 
measure. Before I write down the formula, I emphasize again, that our sensor 
array estimates directly all these three basic kinematic vectors. In other 
words, neither we have to derivate  to obtain , or, nor we have to integrate  
to obtain . Beware of the following formula, because it is so simple that you 
can even remember it, if you are not careful enough. The formula is 
 

ai = aC +  x ri + x (x ri) 
 
where x denotes the vector product. In SPIN using the FPU_Matrix_Driver, e.g. 
for a1, it goes as 
 
Vector_CrossProduct(@wr1,@omega,@r1,3,1)     'This calculates xr1 
Vector_CrossProduct(@wwr1,@omega,@wr1,3,1)   'This calculates x(xr1) 
Vector_CrossProduct(@alphar1,@alpha,@r1,3,1) 'This calculates xr1 
Matrix_Add(@alphar1wwr1,@alphar1,@wwr1,3,1)  'This calculates xr1+x(xr1) 
Matrix_Add(@a1,@ac,@alphar1wwr1,3,1)         'This calculates a1 
 
Of course, here we use this formula only to calculate correct ai values for our 
sensor array for different types of motion of the body to numerically check the 
decoding algorithm. Now, we have prepared the tests, let's get back to the 
decoding algorithm. 
 
How to decode the angular acceleration? 
  Well, we have decoded the linear acceleration of the sensor array. That is 
simply aC. To get the angular acceleration, we have first to multiply the A 
matrix of the relative accelerations with P. The matrix A was calculated from 
the measured ai values before and P was stored somewhere. 
 

W = A.P 
 
W has a name, it is called the Angular Acceleration Tensor. But it doesn't 
matter. We got it. W is a small [3 by 3] matrix, nine nicely arranged float 
values, nothing else from now on. The angular acceleration vector is simply 
 

 = 0.5.[ W32-W23, W13-W31, W21-W12 ] 
  
where the double subscript denotes the corresponding element of the W matrix. 
For example W32 is the second element of the third row. 
 



Yes, yes, but what about the angular velocity? 
  We'll get it quickly. Angular velocity components are calculated from the 
diagonal elements of the matrix W. In preparation of the final result we 
calculate the quantity 
 

sp = 0.5.(WS11 + WS22 + WS33) 
 
and finally 
 

 = [SQRT(WS11-sp), SQRT(WS22-sp), SQRT(WS33-sp)] 
 
where SQRT denotes the square root operation. These were two additions, a 
multiplication, three subtractions and three square roots. The correct sign of 
the components can be obtained easily as described, for example, in the original 
paper. We shall discuss the sign determination later. We can see, that the nine 
numbers of the W matrix contain all information about angular acceleration and 
angular velocity. So it deserves its name. Now we continue with some practical 
considerations and than with the numerical tests.  
 
What to do if I arranged the sensors in a different way? 
  You have to compute the R matrix, then the P matrix for your arrangement. 
That's all. R, of course, has not to be singular in order to obtain a Moore-
penrose inverse. In a planar arrangement, which seems to be a practical idea to 
place the sensors, the third row of R contains only zeroes. And R is singular, 
then. In other words, all sensors should not line up, or should not lay in the 
same plane. 
 
O.K. But how long does this decoding take? 
  Well, in PASM this decoding takes 4-5 msec. In the FPU it takes less than 2 
msec. Whichever you choose, you can handle 100 Hz (10 msec period) acceleration 
data. In SPIN you can cope with 20 Hz data easily. 
 
First example: Sensor resting on a table 
  We assume that the table is horizontal and is resting on the ground. We have 
gravity of course (9.81 m/sec2), but we don't have angular rotation and angular 
acceleration of the sensor array. The  and  vectors are zero and the sensed ai 
vectors at the pickup points are as follows 
 

a1 = [ 0.0, 0.0, 9.81] 
a2 = [ 0.0, 0.0, 9.81] 
a3 = [ 0.0, 0.0, 9.81] 
a4 = [ 0.0, 0.0, 9.81] 

 
First we calculate aC 
 

aC = [ 0.0, 0.0, 9.81] 
 
Then the A matrix is 
 

     [[ 0.0  0.0  0.0  0.0 ] 
 A =  [ 0.0  0.0  0.0  0.0 ] 

       [ 0.0  0.0  0.0  0.0 ]] 
 
The W matrix is 
 



           [[ 0.0  0.0  0.0 ] 
 W = A.P =  [ 0.0  0.0  0.0 ]   

             [ 0.0  0.0  0.0 ]] 
 
So, both the measured  and  are null vectors. 
 
Why do our sensors measure a positive (upwards) 9.81 when we all know that 
gravity points downwards? 
  The proof-mass, or whatever, that measures the acceleration is pulled down by 
the gravity. The sensor feels that it is accelerating upwards, because the proof-
mass is displaced downwards inside the sensor. 
 
Sensor array accelerating but not rotating 
  Let us push the sensor array in the x direction with 1 m/sec2 linear 
acceleration. The  and  vectors are zero again , but we have a linear aC 
acceleration of the whole sensor in the x direction. According to our formula 
 

ai = aC +  x ri + x (x ri) 
 
we calculate ai values, taking into account the sensed g, of course 
 

a1 = [ 1.0, 0.0, 9.81] 
a2 = [ 1.0, 0.0, 9.81] 
a3 = [ 1.0, 0.0, 9.81] 
a4 = [ 1.0, 0.0, 9.81] 

 
The measured aC, the average of the four ai vectors, is 
 

aC = [ 1.0, 0.0, 9.81] 
 
Then the A matrix is 
 

     [[ 0.0  0.0  0.0  0.0 ] 
 A =  [ 0.0  0.0  0.0  0.0 ] 

       [ 0.0  0.0  0.0  0.0 ]] 
 
The W matrix is 
 
 

           [[ 0.0  0.0  0.0 ] 
 W = A.P =  [ 0.0  0.0  0.0 ]   

             [ 0.0  0.0  0.0 ]] 
 
So, both the measured  and  are null vectors, again. 
 
Take some increasing spin 
  Now, we accelerate the sensor array as in the previous example, but this time 
we start to rotate it with 
 

 = [ 0.0, 0.0, 0.5] 
 
[rad/sec2] angular acceleration around the z axis. According to our formula 
 

ai = aC +  x ri + x (x ri) 
 



we calculate ai values again. First let us calculate the  x ri vectors 
 

 x r1 = [  0.25, -0.25, 0.00 ] 
 x r2 = [ -0.25,  0.25, 0.00 ] 
 x r3 = [  0.25,  0.25, 0.00 ] 
 x r4 = [ -0.25, -0.25, 0.00 ] 

 
then the ai vectors 
 

 a1 = [ 1.25, -0.25, 9.81 ] 
 a2 = [ 0.75,  0.25, 9.81 ] 
 a3 = [ 1.25,  0.25, 9.81 ] 
 a4 = [ 0.75, -0.25, 9.81 ] 

 
The aC vector, the average of ai is the same as before 
 

aC = [ 1.0, 0.0, 9.81] 
 
But the A matrix of the relative accelerations is filled not only with zeroes 
now 
 

          [[  0.25 -0.25  0.25 -0.25 ] 
      A =  [ -0.25  0.25  0.25 -0.25 ] 

            [  0.00  0.00  0.00  0.00 ]] 
 
The W matrix is 
 

           [[ 0.0 -0.5  0.0 ] 
 W = A.P =  [ 0.5  0.0  0.0 ]   

             [ 0.0  0.0  0.0 ]] 
 
From this, using the formula for the decoded, measured  
 

 = 0.5.[ W32-W23, W13-W31, W21-W12 ] 
 
we obtain 

 = [ 0.0, 0.0, 0.5 ] 
 
and the decoded, measured angular velocity vector is 
 

 = [ 0.0, 0.0, 0.0 ] 
 
Well, so far, so good. 
 
Accelerating and rotating sensor array 
  Four seconds have passed and the sensor array is rotating now with 
 

 = [ 0.0, 0.0, 2.0 ] 
 
[rad/sec] angular velocity, while accelerating linearly and angularly as before 
 

aC = [ 1.0, 0.0, 9.81 ] 
 

 = [ 0.0, 0.0, 0.5  ] 



 
The constituents to the ai accelerations at the pickup points are 
 

aC = [ 1.0, 0.0, 9.81 ] 
 

 x r1 = [  0.25, -0.25, 0.00 ] 
 x r2 = [ -0.25,  0.25, 0.00 ] 
 x r3 = [  0.25,  0.25, 0.00 ] 
 x r4 = [ -0.25, -0.25, 0.00 ] 

 
x (x r1) = [  2.00,  2.00, 0.00 ] 
x (x r2) = [ -2.00, -2.00, 0.00 ] 
x (x r3) = [ -2.00,  2.00, 0.00 ] 
x (x r4) = [  2.00, -2.00, 0.00 ] 

 
These are sensed accelerations at the pickup points and according to our formula 
 

ai = aC +  x ri + x (x ri) 
 

they are added (scrambled) in the sensors 
 

 a1 = [  3.25,  1.75, 9.81 ] 
 a2 = [ -1.25, -1.75, 9.81 ] 
 a3 = [ -0.75,  2.25, 9.81 ] 
 a4 = [  2.75, -2.25, 9.81 ] 

 
Now let us see, how the algorithm unscrambles the aC,  and  vectors. aC is 
simply the average of the four ai vectors 
 

aC = [ 1.0, 0.0, 9.81 ] 
 
The A matrix of the relative accelerations is  
 

        [[  2.25 -2.25 -1.75  1.75 ] 
    A =  [  1.75 -1.75  2.25 -2.25 ] 

          [  0.00  0.00  0.00  0.00 ]] 
 
We obtain the [3 by 3] W matrix with a simple matrix multiplication 
 

          [[ -4.0 -0.5  0.0 ] 
W = A.P =  [  0.5 -4.0  0.0 ]   

            [  0.0  0.0  0.0 ]] 
 
And we unscramble the angular acceleration vector immediately, using the formula 
 

 = 0.5.[ W32-W23, W13-W31, W21-W12 ] 
 
resulting 
 

 = [ 0.0, 0.0, 0.5 ] 
 
Then we calculate the quantity 
 

sp = 0.5.(WS11 + WS22 + WS33) = -4.0 



 
And finally, from the formula 
 

 = [SQRT(WS11-sp), SQRT(WS22-sp), SQRT(WS33-sp)] 
 
we get the unscrambled  vector 
 

 = [ 0.0, 0.0, 2.0 ] 
 
Right, again. 
 
Summarizing the steps of the algorithm  
  To check and to follow the steps of the numeric examples one can use the 
Propeller/SPIN language and the FPU_Matrix_Driver. Some practice will ensure the 
user how simple it is and how easy to program the algorithm in Propeller/SPIN. 
Now I summarize briefly the main steps of the process. 
 
The four sensor readings (ai vectors) are stored in a [3 by 4] matrix, column 
wise. 
 
The average of the acceleration vectors gives the linear acceleration aC of the 
sensor array. 
 
This average vector is subtracted from each column of the matrix, and the 
resulting matrix is multiplied with a precompiled one. 
 
The [3 by 3] product matrix is used to estimate the  and the  vectors. 
 
 is obtained directly from this matrix with a simple formula. 
 
The absolute value of the components of  is calculated again with simple 
formulas. 
 
The sign of the components of the  vector is obtained from the sign of the sum 
of the 's components. 
  
  This last method is something like an integration, but the difference between 
using the sign of a value, or using the value itself, is huge. This can be make 
numerically more robust with using the previous value of  for the "integral" 
before adding the new .t increment, because  is the correct, measured value 
for that integral of . Sign uncertainty of the angular velocity will appear 
only when the size of the  components shrinks below the noise level. In other 
words when  and components will be very small, and these uncertainties will 
be random with zero mean. I am tempted to say, that the sign of the noise should 
not bother us too much. In fact, the physical cross-dependency of the measured  
and  will help us in minimizing the drift of both by software. 
  If there remains any more drift in , that would mean a rotation of the whole 
sensor array in space. However, such whole body rotations would be sensed by the 
accelerometers during an arbitrary motion by noticing the rotating gravitation 
vector. But there will be no rotation of the gravitation vector for the bias of 
. So that bias can be corrected back to close to zero. In more mathematical 
terms, the drift of  can be bounded to be less than the highest frequency 



component of the realistic whole-body movement of the vehicle. This bias 
elimination method does not work for a steady vehicle with a perfectly leveled 
6DOF IMU. This situation does not exist in the real life. Or, if so, then a 3-
axis Magnetometer/Inclinometer sensor would resolve that uncertainty, as well.      
 
 

The General MEMS Sensor model 
 
  The MEMS sensors are usually robust and reliable, but contain some 
imperfections originating from the present incapabilities of the micro machining 
technology. They are, however, robust and reliable in reproducing those 
imperfections, as well. So we can count on their systematic behavior to remove 
those imperfections in a similarly systematic manner. 
 
Static calibration of the individual H48C sensors 
  Neither all H48C sensors are created equal, nor they are perfect. So it is 
necessary to do static calibration of them before using their readings in the 
previously described measuring algorithm. The H48C sensors are calibrated to 
about 10% accuracy at the factory. They are temperature compensated by design, 
but there remains some noticable temperature dependence, that should be accounted 
for during operation. So, there is a lot of place for improvement. 
 
Physics behind static calibration of accelerometers   
  When the H48C is held steadily in relation to the Earth, for example is laying 
on a table, it senses and measures only the gravity. When we know our position 
(Lat, Lon, Alt) on the Earth, we can calculate precise approximation for the size 
of the g gravity vector there. That g vector is an extremely stable, almost ideal 
reference with no additional costs. The endpoints of the measured acceleration 
vectors are on a sphere with radius g in every pose of the resting sensor. So the 
yet unknown calibrated components ax, ay, az of the measured accelerations satisfy 
the equation 
 

(ax)
2 + (ay)

2 + (az)
2 = g2 

 
in every steady orientation of the H48C. We shall use scale factors and biases to 
transform the raw ADC counter readings into the calibrated ax, ay, az values. The 
determination of these calibration parameters will be based upon of many steady 
measurements and on the previous equation. 
 
Simple, but accurate approximation of g 
  When you want to be more precise than just to apply 9.81 [m/s2] for the size of 
g everywhere, than you can use the next mathematical form that describes the 
magnitude of gravity at the surface of the WGS84 ellipsoid 
 

gWGS84 = g0
.(1 + g1 

. SIN2(Lat))/(1 - 2 . SIN2(Lat)) 
 
where 
  
g0 = 9.7803267714 [m/s

2] is the size of gravity at the equator, 
 
g1 = 1.93185139E-3 is a gravity formula constant for the WGS84 Earth and  

2 = 6.694378E-3 is geometry constant (1st eccentricity)2 of the WGS84 ellipsoid.  
 



  If your H48C sensor is far away from see level, you can apply a simple altitude 
correction in the form  
 

g(Alt) = gWGS84 
. (1 - 2 . Alt / r) 

 
where r = 6371 [km] is the mean radius of the Earth and Alt is the altitude above 
(or below) see level. 
 
The General Sensor Model object 
  This object is available at OBEC (http://obex.parallax.com/objects/464/). It 
contains Bias Compensation, Axis Scale Factors, Axis Misalignment and Axis 
Crosstalk compensation and run-time Temperature Correction in a compact and 
simple form. This boiled down form is especially well suited for embedded 
applications with usually limited resources. First, Bias is compensated as                             
                                                                              
                           Value = Raw_Reading - Bias                              
                                                                              
for each axis, then an Ellipsoid to Sphere backtransformation is applied on the 
vector of the three values. This linear transformation is a simple [3-by-3] 
matrix [[A]], by which the vector is multiplied. In 3-axis magnetometers this 
General Sensor Model covers Hard- and Soft Iron Compensations, too.  
  Finally, temperature correction is done with a simple scalar multiplication of 
the spherified data vector, from which the distortions have been already removed. 
In summary                                                                  
                                                                              
           [Calibrated vector] = [[A]] . ([Raw Vector] - [Bias Vector])             
                                                                              
and the temperature correction factor is calculated on the fly, then         
applied as                                                                    
                                                                              
               [Calibrated vector] = Temp_Corr . [Calibrated vector]                 
                                                                              
  The mathematical background of this simplicity (y=A.(x-b)) is based on the 
observation that the many aforementioned distortion effects to be compensated, 
can be expressed one by one in matrix form. In the General Sensor Model we 
directly measure with the calibration the final product matrix of those many 
matrices. In this way we do not have to bother with the separate details of 
formalism beyond those different imperfections.                                                               
  The object contains the necessary procedure templates that you will need to 
make your own application with any 3-axis MEMS sensors. Each following step is 
well separated and commented in the code. With a minimum effort of commenting and 
decommenting, you can taylor the program for the particular task with your H48C. 
For other type of sensors, you have to use the appropriate drivers and timings.                                     
                                                                              
Step 1. Acquire steady data for calibration                                                                    
  Here you can collect acceleration data in several steady poses of the H48C 
modul. You do not have at all to strive for exact alignments, but I recommend to 
expand a sphere almost uniformly with the measured vectors. Some systematic 
method of axis and pose changes will help a lot to achieve that. I attached 
picture of the tools I used in the calibrations. In my method the sensors were 
fixed with X, Y and Z axis Up and Down into a vertically standing vise (3x2 
poses). Then the vise was pitched (0), +45, -45 and -90 degrees (6x4 poses). This 
was repeated, starting with vertical vise head, but with rotating it (0), 90, 
180, 270 degrees horizontally (24x4=96 poses). 
 



Handwriting the calibration data is boring and prone to errors 
  A full automated version of the General Sensor Model object is in preparation, 
where the collected steady calibration data is written into EEPROM, so you will 
not have to write them down. This data is automatically read by the Least-Squares 
Parameter Optimizer, and the optimized parameters are stored in EEPROM, too. The 
verification of the calibration is automatic, again. This feature will be 
implemented in the firmware of the finished sensor units, where an external 
"SELF_CALIBRATE" command will trigger the process. In this way periodic 
recalibration will be very convenient to cope with the wear and tear of the 
units, or to self-adjust the magnetometer to some changed magnetic environment.  
                              
 

 
 

Figure 5. The tools used in the calibration. 
 
                                                                 
  This liberty of the alignments during calibration is especially           
convenient in the tuning of 3-axis magnetometers. You do not have to know where 
Magnetic North is for the alignments! Again, the point is to cover the sphere 
approximately uniformly. Here, of course, you have to know the (3D!) magnitude of 
the Earth's magnetic field at your place. 
                                                                              
Temperature should be stable!                                                 
  You have to collect the static calibration data with stabilized             
electronics and at the same sensor temperature! The "same" means here        
within 1 degree of celsius or better. Disobeying this requirement may        



seriously undermine the quality of your results. The good news are that      
after the uniform temperature calibration, precise and full automatic        
temperature correction can be done during true measurements at the       
unpredictable or changing temperatures of the real application. This automatic 
temperature correction has of vital importance for MEMS sensors that are usually 
more of sensors for temperature than sensors of the measured physical effect. 
Even the so called "temperature compensated" H48C "accelerates" heavily if you 
put your fingertip on it very gently. MEMS Gyros are even worst in this respect 
because of their more temperature sensitive internal structure then those of the 
MEMS accelerometers.                  
                                                                              
Step 2. Calculation of the parameters                                   
  The General Sensor Model contains twelve steady parameters. The Bias vector 
adds three ones and the [[A]] matrix contributes with nine. These parameters are 
constant for a particular piece of sensor. To find these parameters you are 
provided with a general Least-Squares Parameter optimizer. First you have to 
enter your correct and double checked calibration data into the DAT section. Then 
you have to recompile and run the code to get the those parameters automatically.         
  The Least-Squares Parameter Optimizer does its job in two shots. It computes 
preliminary Biases and Scale factors first, then calculates the twelve general 
parameters in the second run, initiating from the previous results.                                                            
  The evident outliers from the fit (if there are some) usually identify mistyped 
or badly measured data. An error greater than five times the displayed standard 
error might indicate an outlier. Check and correct those cases, but do not remove 
valid data because of its somewhat larger residual error. Nothing is perfect, 
including your sensor, and such data carries important information, too. Many 
outliers or large residual errors probably indicate unstable temperature or poses 
during the data collection.                                                               
  In preparation for Step 3. you have to write down the final parameters and then 
enter them into the corresponding section of the code.  
                                                                              
Step 3. Verify the Calibration                           
  Hard work is over. Here you have only to see and enjoy the high accuracy of the 
General Sensor Model calibration while noticing the beneficial effect of the 
real-time temperature correction. Individual H48Cs are now performing with at 
least ±2mg accuracy (0.4%) or usually better. The temperature correction is 
calculated on the fly during normal operation. The previously homogenized scales 
and axes by the General Sensor Model makes this first-order temperature 
correction very effective. The precision at full 200 Hz bandwidth, or, in other 
words, the one standard deviation of the noisy values without digital filtering 
is about 5 mg (0.5% at 1 g) at 24 degrees of celsius.  
 
  Next the calibration method of the ready-made and fixed sensor array will be 
appended along with the release of the SPIN/PASM full working v1.0 code of the 
unit.   
 
 
 
 
cessnapilot, 26.06.2009 
 


