
How to obtain angular velocity and angular acceleration 
values directly from 3D accelerometer array data using 

simple matrix operations in Propeller/SPIN 
 
 
 
                                   ...the merit of service is seldom attributed 
                                                to the true and exact performer. 
                                                 William Shakespeare (1564-1616) 
                                    All's Well That Ends Well, Act III, scene vi 
 
 
 
In the followings we shall reproduce the algorithm described in  
 
K. Parsa, J. Angeles and A. K. Misra 
Rigid-body pose and twist estimation using an accelerometer array 
In Applied Mechanics, 74 (2004) pp. 223-236. 
 
without the agonizing pain of abstract tensor and matrix algebra. The method will 
be demonstrated with many numeric examples. To calculate these examples I used 
only Propeller/SPIN and the FPU_Matrix_Driver.SPIN object from OBEX 
(http://obex.parallax.com/objects/317/). First the arrangement of four 3-axis 
acceleration sensors will be described, then the algorithm will be introduced and 
exercised via numeric examples. 
 
The arrangement of the sensors 
Let us put two H48C 3D accelerometers at the opposite corners of a square plate 
as shown in Fig. 1. 
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Figure 1. The z-axis of the H48C accelerometers are pointing towards the reader. 
 
 
Let us make another square plate, equipped with two other sensors, like in Fig. 
2. 
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Figure 2. The z-axis of the H48C accelerometers are pointing towards the reader. 
 
 
Now let us mount Plate A on top of Plate B to form a regular cube as shown in 
Fig. 3. 
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Figure 3. The four H48Cs arranged at the vertices of a tetrahedron. 
 
 
The three corresponding axis of the sensors are parallel, and, by design, 
mutually orthogonal. The centroid of the pickup points is denoted by C and the 
sensors are numbered as shown. 
 



Definition of matrices 
Let us define two [3 by 4] matrices. These are matrix R of the relative 
positions and matrix A of the relative accelerations. The position of the 
sensors is related to the centroid C. Let us take the length of the side of the 
cube as one, then the coordinates of the sensors are 
 

r1 = [-0.5, -0.5,  0.5]   
r2 = [ 0.5,  0.5,  0.5]   
r3 = [ 0.5, -0.5, -0.5]   
r4 = [-0.5,  0.5, -0.5]   

 
as you can verify this in Fig. 3. The R matrix contains the coordinates of the 
sensors in its columns 
                                
                               r1    r2    r3     r4 
 

[[ -0.5   0.5   0.5   -0.5 ] 
                R =  [ -0.5   0.5  -0.5    0.5 ]     [3 by 4] matrix 

  [  0.5   0.5  -0.5   -0.5 ]] 
 
 
The A matrix is the matrix of the relative accelerations. The acceleration 
vectors measured by the sensors are 
 

a1 = [ a1x,  a1y,  a1z]   
a2 = [ a2x,  a2y,  a2z]   
a3 = [ a3x,  a3y,  a3z]   
a4 = [ a4x,  a4y,  a4z]   

 
How to make relative acceleration values from these? Let us first calculate the 
average acceleration vector aC 
 

aC = 0.25
.[a1x+a2x+a3x+a4x, a1y+a2y+a3y+a4y, a1z+a2z+a3z+a4z] 

 
Then subtract aC from the acceleration vectors to obtain relative accelerations 
 

ar1 = [ a1x-aCx,  a1y-aCy,  a1z-aCz]   
ar2 = [ a2x-aCx,  a2y-aCy,  a2z-aCz] 
ar3 = [ a3x-aCx,  a3y-aCy,  a3z-aCz] 
ar4 = [ a4x-aCx,  a4y-aCy,  a4z-aCz] 

 
And the A matrix is 
                                  ar1    ar2    ar3    ar4 
 

    [[ ar1x  ar2x  ar3x  ar4x ] 
                    A =  [ ar1y  ar2y  ar3y  ar4y ]     [3 by 4] matrix 

      [ ar1z  ar2z  ar3z  ar4z ]] 
 
By the way, aC is the linear acceleration vector measured by the sensor array. So 
half of the 6DOF IMU job done. Now, we have to calculate the angular acceleration 
and the angular velocity values. In other words we will get 9DOF data, won't we? 
Up till now the operations were reading the sensors, adding, subtracting dividing 
values, some housekeeping to arrange values in arrays. So, we encountered not too 
many complications. 
 



An offline task to be solved only once 
Before we proceed, we have to calculate the Moore-penrose inverse P of matrix R. 
This is easy and has to be done only once for a given sensor arrangement. You can 
do it with the FPU_Matrix_Driver object. Some of the comments of the Matrix_SVD 
(Singular Value Decomposition) procedure will guide you. Or, you can use some 
simple matrix algebra as follows 

P = RT.(R.RT)-1 
 
Again, every step can be done with the FPU_Matrix_Driver, like for example 
 
Matrix_Transpose(@RT,@R,3,4)            'This calculates RT 
Matrix_Multiply(@RRT,@R,@RT,3,4,4,3)    'This calculates R.RT 
Matrix_Inverse(@RRTI,@RRT,3)            'This calculates inverse of (R.RT) 
Matrix_Multiply(@P,@RT,@RRTI,4,3,3,3)   'This calculates P = RT.(R.RT)-1 
 
For our sensor arrangement the result is 
 

[[-0.5 -0.5  0.5 ] 
                    P = [ 0.5  0.5  0.5 ]        [4 by 3] matrix 

 [ 0.5 -0.5 -0.5 ] 
  [-0.5  0.5 -0.5 ]] 

 
Verify that the R.P matrix product gives a [3 by 3] identity matrix. O.K. We have 
P, we have to store it somewhere as we shall use it frequently. 
 
A little bit of physics shouldn't hurt   
From rigid body kinematics, a very compact formula can be derived for the ai 
accelerations. This formula contains the acceleration aC of the centroid C, the 
angular velocity  of the body's rotation around an axis containing the centroid 
and the time derivative  of the angular velocity, the so called angular 
acceleration. Note that these are just the IMU quantities we would like to 
measure. Before I write down the formula, I emphasize again, that our sensor 
array estimates directly all these three basic kinematic vectors. In other 
words, neither we have to derivate  to obtain , or, nor we have to integrate  
to obtain . Beware of the following formula, because it is so simple that you 
can even remember it, if you are not careful enough. The formula is 
 

ai = aC +  x ri + x (x ri) 
 
where x denotes the vector product. In SPIN using the FPU_Matrix_Driver, e.g. 
for a1, it goes as 
 
Vector_CrossProduct(@wr1,@omega,@r1,3,1)     'This calculates xr1 
Vector_CrossProduct(@wwr1,@omega,@wr1,3,1)   'This calculates x(xr1) 
Vector_CrossProduct(@alphar1,@alpha,@r1,3,1) 'This calculates xr1 
Matrix_Add(@alphar1wwr1,@alphar1,@wwr1,3,1)  'This calculates xr1+x(xr1) 
Matrix_Add(@a1,@ac,@alphar1wwr1,3,1)         'This calculates a1 
 
Of course, here we use this formula only to calculate correct ai values for our 
sensor array for different types of motion of the body to numerically check the 
decoding algorithm. Now, we have prepared the tests, let's get back to the 
decoding algorithm. 



How to decode the angular acceleration? 
Well, we have decoded the linear acceleration of the sensor array. That is simply 
aC. To get the angular acceleration, we have first to multiply the A matrix of 
the relative accelerations with P. The matrix A was calculated from the measured 
ai values before and P was stored somewhere. 
 

W = A.P 
 
W has a name, it is called the angular acceleration tensor. But it doesn't 
matter. We got it. W is a small [3 by 3] matrix, nine nicely arranged float 
values, nothing else from now on. The angular acceleration vector is simply 
 

 = 0.5.[ W32-W23, W13-W31, W21-W12 ] 
  
where the double subscript of W denotes the corresponding element of the W 
matrix. For example W32 is the second element of the third row. 
 
Yes, yes, but what about the angular velocity? 
We'll get it quickly. Angular velocity components are calculated from the 
diagonal elements of the matrix W. In preparation of the final result we 
calculate the quantity 
 

sp = 0.5.(WS11 + WS22 + WS33) 
 
and finally 
 

 = [SQR(WS11-sp), SQR(WS22-sp), SQR(WS33-sp)] 
 
Where SQR denotes the square root operation. These were two additions, a 
multiplication, three subtractions and three square roots. The correct sign of 
the components can be obtained easily as described, for example, in the original 
paper. We shall discuss the sign determination later. We can see, that the nine 
numbers of the W matrix contain all information about angular acceleration and 
angular velocity. So it deserves its name. Now we continue with some practical 
considerations and than with the numerical tests.  
 
What to do if I arranged the sensors in a different way? 
You have to compute the R matrix, then the P matrix for your arrangement. That's 
all. R, of course, has not to be singular in order to obtain a Moore-penrose 
inverse. In a planar arrangement, which seems to be a practical idea to place the 
sensors, the third row of R contains only zeroes. And R is singular, then. In 
other words, all sensors should not line up, or should not lay in the same plane. 
 
O.K. But how long does this decoding take? 
Well, in PASM this decoding takes 4-5 msec. In the FPU it takes less than 2 msec. 
Whichever you choose, you can handle 100 Hz (10 msec period) acceleration data. 
In SPIN you can cope with 20 Hz data easily. 
 
First example: Sensor resting on a table 
Let us assume that the table is horizontal and is resting on the ground. We have 
gravity of course (9.81 m/sec2), but we don't have angular rotation and angular 
acceleration of the sensor array. The  and  vectors are zero and the sensed ai 
vectors are as follows 
 



a1 = [ 0.0, 0.0, 9.81] 
a2 = [ 0.0, 0.0, 9.81] 
a3 = [ 0.0, 0.0, 9.81] 
a4 = [ 0.0, 0.0, 9.81] 

 
First we calculate aC 
 

aC = [ 0.0, 0.0, 9.81] 
 
Then the A matrix is 
 

     [[ 0.0  0.0  0.0  0.0 ] 
 A =  [ 0.0  0.0  0.0  0.0 ] 
       [ 0.0  0.0  0.0  0.0 ]] 

 
The W matrix is 
 

           [[ 0.0  0.0  0.0 ] 
 W = A.P =  [ 0.0  0.0  0.0 ]   

             [ 0.0  0.0  0.0 ]] 
 
So, both the measured  and  are null vectors. 
 
Why do our sensors measure a positive (upwards) 9.81 when we all know that 
gravity points downwards? 
The proof-mass, or whatever, that measures the acceleration is pulled down by the 
gravity. The sensor feels that it is accelerating upwards, because the proof-mass 
is displaced downwards inside the sensor. 
 
Sensor array accelerating but not rotating 
Let us push the sensor array in the x direction with 1 m/sec2 linear 
acceleration. The  and  vectors are zero again , but we have a linear aC 
acceleration of the whole sensor in the x direction. According to our formula 
 

ai = aC +  x ri + x (x ri) 
 
we calculate ai values, taking into account the sensed g, of course 
 

a1 = [ 1.0, 0.0, 9.81] 
a2 = [ 1.0, 0.0, 9.81] 
a3 = [ 1.0, 0.0, 9.81] 
a4 = [ 1.0, 0.0, 9.81] 

 
The measured aC, the average of the four ai vectors, is 
 

aC = [ 1.0, 0.0, 9.81] 
 
Then the A matrix is 
 

     [[ 0.0  0.0  0.0  0.0 ] 
 A =  [ 0.0  0.0  0.0  0.0 ] 
       [ 0.0  0.0  0.0  0.0 ]] 

 
The W matrix is 
 



 
           [[ 0.0  0.0  0.0 ] 
 W = A.P =  [ 0.0  0.0  0.0 ]   

             [ 0.0  0.0  0.0 ]] 
 
So, both the measured  and  are null vectors, again. 
 
Let us take some increasing spin 
Now, we accelerate the sensor array as in the previous example, but this time we 
start to rotate it with 
 

 = [ 0.0, 0.0, 0.5] 
 
[rad/sec2] angular acceleration around the z axis. According to our formula 
 

ai = aC +  x ri + x (x ri) 
 
we calculate ai values again. First let us calculate the  x ri vectors 
 

 x r1 = [  0.25, -0.25, 0.00 ] 
 x r2 = [ -0.25,  0.25, 0.00 ] 
 x r3 = [  0.25,  0.25, 0.00 ] 
 x r4 = [ -0.25, -0.25, 0.00 ] 

 
then the ai vectors 
 

 a1 = [ 1.25, -0.25, 9.81 ] 
 a2 = [ 0.75,  0.25, 9.81 ] 
 a3 = [ 1.25,  0.25, 9.81 ] 
 a4 = [ 0.75, -0.25, 9.81 ] 

 
The aC vector, the average of ai is the same as before 
 

aC = [ 1.0, 0.0, 9.81] 
 
But the A matrix of the relative accelerations is filled not only with zeroes 
now 
 

          [[  0.25 -0.25  0.25 -0.25 ] 
      A =  [ -0.25  0.25  0.25 -0.25 ] 

            [  0.00  0.00  0.00  0.00 ]] 
 
The W matrix is 
 

           [[ 0.0 -0.5  0.0 ] 
 W = A.P =  [ 0.5  0.0  0.0 ]   

             [ 0.0  0.0  0.0 ]] 
 
From this, using the formula for the decoded, measured  
 

 = 0.5.[ W32-W23, W13-W31, W21-W12 ] 
 
we obtain 

 = [ 0.0, 0.0, 0.5 ] 



 
and the decoded, measured angular velocity vector is 
 

 = [ 0.0, 0.0, 0.0 ] 
 
Well, so far, so good. 
 
Accelerating and rotating sensor array 
Four seconds have passed and the sensor array is rotating now with 
 

 = [ 0.0, 0.0, 2.0 ] 
 
[rad/sec] angular velocity, while accelerating linearly and angularly as before 
 

aC = [ 1.0, 0.0, 9.81 ] 
 

 = [ 0.0, 0.0, 0.5  ] 
 
The constituents to the ai accelerations at the pickup points are 
 

aC = [ 1.0, 0.0, 9.81 ] 
 

 x r1 = [  0.25, -0.25, 0.00 ] 
 x r2 = [ -0.25,  0.25, 0.00 ] 
 x r3 = [  0.25,  0.25, 0.00 ] 
 x r4 = [ -0.25, -0.25, 0.00 ] 

 
x (x r1) = [  2.00,  2.00, 0.00 ] 
x (x r2) = [ -2.00, -2.00, 0.00 ] 
x (x r3) = [ -2.00,  2.00, 0.00 ] 
x (x r4) = [  2.00, -2.00, 0.00 ] 

 
These are sensed accelerations at the pickup points and according to our formula 
 

ai = aC +  x ri + x (x ri) 
 

they are added (scrambled) in the sensors 
 

 a1 = [  3.25,  1.75, 9.81 ] 
 a2 = [ -1.25, -1.75, 9.81 ] 
 a3 = [ -0.75,  2.25, 9.81 ] 
 a4 = [  2.75, -2.25, 9.81 ] 

 
Now let us see, how the algorithm unscrambles the aC,  and  vectors. The aC is 
simply the average of the four ai vectors 
 

aC = [ 1.0, 0.0, 9.81 ] 
 
The A matrix of the relative accelerations is  
 

        [[  2.25 -2.25 -1.75  1.75 ] 
    A =  [  1.75 -1.75  2.25 -2.25 ] 
          [  0.00  0.00  0.00  0.00 ]] 

 



We obtain the [3 by 3] W matrix with a simple matrix multiplication 
 

          [[ -4.0 -0.5  0.0 ] 
W = A.P =  [  0.5 -4.0  0.0 ]   

            [  0.0  0.0  0.0 ]] 
 
And we unscramble the angular acceleration vector immediately, using the formula 
 

 = 0.5.[ W32-W23, W13-W31, W21-W12 ] 
 
resulting 
 

 = [ 0.0, 0.0, 0.5 ] 
 
Then we calculate the quantity 
 

sp = 0.5.(WS11 + WS22 + WS33) = -4.0 
 
And finally, from the formula 
 

 = [SQR(WS11-sp), SQR(WS22-sp), SQR(WS33-sp)] 
 
we get the unscrambled  vector 
 

 = [ 0.0, 0.0, 2.0 ] 
 
Right, again. 
 
Summarizing the steps of the algorithm  
To check and to follow the steps of the numeric examples one can use the 
Propeller/SPIN language and the FPU_Matrix_Driver. Some practice will ensure the 
user how simple it is and how easy to program the algorithm in Propeller/SPIN. 
Now I summarize briefly the main steps of the process. 
 
The four sensor readings (ai vectors) are stored in a [3 by 4] matrix, column 
wise. 
 
The average of the acceleration vectors gives the linear acceleration aC of the 
sensor array. 
 
This average vector is subtracted from each column of the matrix, and the 
resulting matrix is multiplied with a precomputed one. 
 
The [3 by 3] product matrix is used to estimate the  and the  vectors. 
 
 is obtained directly from this matrix with a simple formula. 
 
 is obtained directly again with simple formulas. 
 
One can obtain the sign of the components of the  vector, for example, for x 
easily as 
  

Sign_of_x = SIGN[(x_Now - x_Previous)
.x_Now] 

 



based upon the fact that the components of  are measured with sign and they are 
directly related to the change of the consecutive components of .  
 
Another, and numerically more robust way to get the sign of the components of the 
 vector is to store the sum of the  components. The sign of the stored sums 
will yield the sign of the measured  components at any moment. Yes, I know that 
this is something like an integration. But the difference between using the sign 
of a value, or using the value itself, is huge. The combination of the two 
methods of sign determination is especially robust and stable and that will be 
used in the final assembly. Sign uncertainty will appear only when the size of 
the  components shrink below the noise level, in other words when  components 
will be very small, and these uncertainties will be random with zero drift. 
 
Static calibration of the individual sensors 
Not all H48C sensors are created equal, so it is necessary to perform static 
calibration of them before using their readings in the previously described 
measuring algorithm. The H48C sensors are temperature compensated at the factory 
but there remains some temperature dependence, as well, that should be accounted 
for in the calibration procedure. There will be additional static and dynamic 
self-calibrations en-route of the craft that carries the sensor array. These en-
route calibrations will compensate most of the remaining temperature dependence 
and mounting orientation inaccuracies of the 6DOF sensor array. These procedures 
enhance the precision of the device by several order of magnitudes and they will 
be done automatically by the Propeller of the sensor array.  These en-route 
calibrations will be described later. 
 
Physics behind static calibration  
When the H48C is held steadily in relation to the Earth, for example is laying on 
a table, it senses and measures only the gravity. When we know our position (Lat, 
Lon, Alt) on the Earth, we can calculate precise approximation for the size of 
the g gravity vector there. That g vector is an extremely stable, almost ideal 
reference with no additional costs. The endpoints of the measured acceleration 
vectors are on a sphere with radius g in every pose of the resting sensor. So the 
yet unknown calibrated components ax, ay, az of the measured accelerations with 
the steady sensor satisfy the equation 
 

(ax)
2 + (ay)

2 + (az)
2 = g2 

 
in every orientation of the H48C. We shall use scale factors and biases to 
transform the raw ADC counter readings into the calibrated ax, ay, az values. The 
determination of these factors and biases will be based upon of twelve steady 
measurements and on the previous equation. 
 
A simple but accurate approximation of g 
When you want to be more precise than just to apply 9.81 [m/s2] for the size of g 
everywhere, than you can use the next mathematical form that describes the 
magnitude of gravity at the surface of the WGS84 ellipsoid 
 

gWGS84 = g0
.(1 + g1 

. SIN2(Lat))/(1 - 2 . SIN2(Lat)) 
 
where g0 = 9.7803267714 [m/s

2] is the size of gravity at the equator,  
g1 = 1.93185139E-3 is a gravity formula constant for the WGS84 Earth and  
2 = 6.694378E-3 is geometry constant (first eccentricity squared) of the WGS84 
ellipsoid. If your H48C sensor is far away from see level, you can apply a simple 
altitude correction in the form  



 
g(Alt) = gWGS84 

. (1 - 2 . Alt / r) 
 
where r = 6371 [km] is the mean radius of the Earth. 
 
Scale factors and biases 
Individual cnti sensor readings for each of the axis are transformed to the 
calibrated ai accelerations according to the formula 
 

ai = fi
.cnti + bi 

 
where fi is the scale factor for axis i (= x, y, z) and bi is the offset bias for 
that axis. The overall temperature dependence of the measured acceleration values 
are treated for each axis with the same cure fo as 
 

ai = fo
.(fi

.cnti + bi) 
 
Transforming all of these into the equation of a origin centered sphere 
 

(fo)
2 .((fx

.cntx + bx)
2 + (fy

.cnty + by)
2 + (fz

.cntz + bz)
2) = g2 

 
and we can count seven calibration constants, fo, fx, bx, fy, by, fz, bz, there. 
Let us take fo as one but we have then to collect the static calibration data 
precisely at the same temperature. fo will be obtained later using en-route 
measured accelerations. This calibration can happen several times during a 
mission. We have now left six parameters to determine, so we have to use at least 
six equations with different acceleration counts corresponding to a minimum of 
six different orientations. 
 
Obtaining static calibration data 
A Propeller application H48C_AcquireSteady is supplied to assist data collection 
for the static calibration. This program reads H48C 3-axis data at 5 Hz rate and 
applies a low-pass digital filter to suppress noise. We have to make six 
measurements with large +/- cntx, +/- cnty and +/- cntz readings by orienting each 
of the sensor's axis parallel and antiparallel with the plumb-bob gravity. We may 
leave some small readings left in the other directions, but the sensor should be 
kept firmly and steadily in position during each measurement. To enjoy the 
benefits of a least-squares optimizer I recommend to make six other measurements 
with 'mixed' components. After the readings stabilized within +/-1 counts, we 
have to record the data for all the three acceleration components. A typical 
dataset looks like as 
 

 i        cntx    cnty   cntz      Pattern 
------------------------------------------ 
Pos.1      -48     -36   1456     0   0   + 
Pos.2      -16       5  -1281     0   0   - 

 
Pos.3      -18    1353     -7     0   +   0 
Pos.4       16   -1399    -22     0   -   0 

 
Pos.5     1348      44     83     +   0   0 
Pos.6    -1415     -18     89     -   0   0 

 
Pos.7      693    -955    794     +   -   + 
Pos.8     -774    -938   -645     -   -   - 

 



Pos.9     -717    -970    837   -   -   + 
Pos.10     503    -737   -961   +   -   - 

 
Pos.11    -852     672   -766   -   +   - 
Pos.12     997     575    783   +   +   + 
------------------------------------------ 

 
where I started the data collection with the +-z axis of a H48C sensor. 
 
Finding out the scale and bias parameters  
The previous data is entered into the program H48C_LeastSquare. This program is 
a least-squares parameter optimizer for the twelve  
 

(fx
.cntxi + bx)

2 + (fy
.cntyi + by)

2 + (fz
.cntzi + bz)

2 = g2 
 
equations, where each equation contains the corresponding cntxi, cntyi, cntzi 
counts from the ith rows of the previous table and all of them contain the same 
six unknown parameters fx, bx, fy, by, fz and bz. After convergence the program 
yields the following calibration constants for the given H48C sensor 
 

fx = 7.0922E-3 
bx = 2.4358E-1 

 
fy = 7.1001E-3 
by = 1.9121E-2 

 
fz = 7.1628E-3 
bz =-6.3008E-2 

 
from the tabulated calibration dataset. These scales and biases are to be 
recorded on the datasheet of the given H48C sensor and are entered into a 
verification application. 
 
Verification of the static calibration 
With the H48C_VerifyCalib program one can verify in practice the static 
calibration. This program is supplied with the calibration factors and it 
measures the static acceleration at low rate with using the same low-pass digital 
filter as in the raw data collection. But this time. the program calculates the 
calibrated ax, ay, az accelerations and calculates the magnitude of the 
measured/calibrated static values 
 

SQR[(ax)
2 + (ay)

2 + (az)
2] = Magn 

 
This magnitude should be in the close vicinity of the reference g value. With 
that given sensor I obtained 9.81 +/- 0.05 [m/s2] g readings in many (>24) very 
different static orientations. So, the original 10% (according to datasheet, 
actually 13%) accuracy of the sensor was improved to 1%.  In the sensor array the 
static calibration factors and biases for each of the individual H48C sensors are 
to be determined individually and to be stored in the FPU to get aC and A matrix 
very quickly from the raw sensor readings. 
 
Sensing a state for en-route static calibration 
When the magnitude of the high-pass component of the measured aC acceleration of 
the sensor array remains below a certain low level for several seconds meanwhile 
the low-pass component has an approximate 9.81 magnitude, then the craft is 
travelling probably with constant velocity vector. Some sort of Fuzzy Logic can 



find this out. This vehicle state, with strong low-pass filtering of the 
acceleration, can be used for en-route static calibration of the sensor array to 
compensate for temperature variations and/or to adapt to the magnitude of local 
gravity which might not be accounted exactly by the applied mathematical model of 
the  overall gravity. 
   
 
 
cessnapilot, 25.03.2009 
 


