
How to obtain angular velocity and angular acceleration
values directly from 3D accelerometer array data using

simple matrix operations in Propeller/SPIN

 ...the merit of service is seldom attributed
 to the true and exact performer.
 William Shakespeare (1564-1616)
 All's Well That Ends Well, Act III, scene vi

In the followings we shall reproduce the algorithm described in

K. Parsa, J. Angeles and A. K. Misra
Rigid-body pose and twist estimation using an accelerometer array
In Applied Mechanics, 74 (2004) pp. 223-236.

without the agonizing pain of abstract tensor and matrix algebra. The method will
be demonstrated with many numeric examples. To calculate these examples I used
only Propeller/SPIN and the FPU_Matrix_Driver.SPIN object from OBEX
(http://obex.parallax.com/objects/317/). First the arrangement of four 3-axis
acceleration sensors will be described, then the algorithm will be introduced and
exercised via numeric examples.

The arrangement of the sensors
Let us put two H48C 3D accelerometers at the opposite corners of a square plate
as shown in Fig. 1.

x

yz

x

yz

Plate A

Figure 1. The z-axis of the H48C accelerometers are pointing towards the reader.

Let us make another square plate, equipped with two other sensors, like in Fig.
2.

x

yz

x

yz

Plate B

Figure 2. The z-axis of the H48C accelerometers are pointing towards the reader.

Now let us mount Plate A on top of Plate B to form a regular cube as shown in
Fig. 3.

Plate A

Plate B

C

x

y

z1

2

3

4

Figure 3. The four H48Cs arranged at the vertices of a tetrahedron.

The three corresponding axis of the sensors are parallel, and, by design,
mutually orthogonal. The centroid of the pickup points is denoted by C and the
sensors are numbered as shown.

Definition of matrices
Let us define two [3 by 4] matrices. These are matrix R of the relative
positions and matrix A of the relative accelerations. The position of the
sensors is related to the centroid C. Let us take the length of the side of the
cube as one, then the coordinates of the sensors are

r1 = [-0.5, -0.5, 0.5]
r2 = [0.5, 0.5, 0.5]
r3 = [0.5, -0.5, -0.5]
r4 = [-0.5, 0.5, -0.5]

as you can verify this in Fig. 3. The R matrix contains the coordinates of the
sensors in its columns

 r1 r2 r3 r4

[[-0.5 0.5 0.5 -0.5]
 R = [-0.5 0.5 -0.5 0.5] [3 by 4] matrix

 [0.5 0.5 -0.5 -0.5]]

The A matrix is the matrix of the relative accelerations. The acceleration
vectors measured by the sensors are

a1 = [a1x, a1y, a1z]
a2 = [a2x, a2y, a2z]
a3 = [a3x, a3y, a3z]
a4 = [a4x, a4y, a4z]

How to make relative acceleration values from these? Let us first calculate the
average acceleration vector aC

aC = 0.25
.[a1x+a2x+a3x+a4x, a1y+a2y+a3y+a4y, a1z+a2z+a3z+a4z]

Then subtract aC from the acceleration vectors to obtain relative accelerations

ar1 = [a1x-aCx, a1y-aCy, a1z-aCz]
ar2 = [a2x-aCx, a2y-aCy, a2z-aCz]
ar3 = [a3x-aCx, a3y-aCy, a3z-aCz]
ar4 = [a4x-aCx, a4y-aCy, a4z-aCz]

And the A matrix is
 ar1 ar2 ar3 ar4

 [[ar1x ar2x ar3x ar4x]
 A = [ar1y ar2y ar3y ar4y] [3 by 4] matrix

 [ar1z ar2z ar3z ar4z]]

By the way, aC is the linear acceleration vector measured by the sensor array. So
half of the 6DOF IMU job done. Now, we have to calculate the angular acceleration
and the angular velocity values. In other words we will get 9DOF data, won't we?
Up till now the operations were reading the sensors, adding, subtracting dividing
values, some housekeeping to arrange values in arrays. So, we encountered not too
many complications.

An offline task to be solved only once
Before we proceed, we have to calculate the Moore-penrose inverse P of matrix R.
This is easy and has to be done only once for a given sensor arrangement. You can
do it with the FPU_Matrix_Driver object. Some of the comments of the Matrix_SVD
(Singular Value Decomposition) procedure will guide you. Or, you can use some
simple matrix algebra as follows

P = RT.(R.RT)-1

Again, every step can be done with the FPU_Matrix_Driver, like for example

Matrix_Transpose(@RT,@R,3,4) 'This calculates RT
Matrix_Multiply(@RRT,@R,@RT,3,4,4,3) 'This calculates R.RT
Matrix_Inverse(@RRTI,@RRT,3) 'This calculates inverse of (R.RT)
Matrix_Multiply(@P,@RT,@RRTI,4,3,3,3) 'This calculates P = RT.(R.RT)-1

For our sensor arrangement the result is

[[-0.5 -0.5 0.5]
 P = [0.5 0.5 0.5] [4 by 3] matrix

 [0.5 -0.5 -0.5]
 [-0.5 0.5 -0.5]]

Verify that the R.P matrix product gives a [3 by 3] identity matrix. O.K. We have
P, we have to store it somewhere as we shall use it frequently.

A little bit of physics shouldn't hurt
From rigid body kinematics, a very compact formula can be derived for the ai
accelerations. This formula contains the acceleration aC of the centroid C, the
angular velocity  of the body's rotation around an axis containing the centroid
and the time derivative  of the angular velocity, the so called angular
acceleration. Note that these are just the IMU quantities we would like to
measure. Before I write down the formula, I emphasize again, that our sensor
array estimates directly all these three basic kinematic vectors. In other
words, neither we have to derivate  to obtain , or, nor we have to integrate 
to obtain . Beware of the following formula, because it is so simple that you
can even remember it, if you are not careful enough. The formula is

ai = aC +  x ri + x (x ri)

where x denotes the vector product. In SPIN using the FPU_Matrix_Driver, e.g.
for a1, it goes as

Vector_CrossProduct(@wr1,@omega,@r1,3,1) 'This calculates xr1
Vector_CrossProduct(@wwr1,@omega,@wr1,3,1) 'This calculates x(xr1)
Vector_CrossProduct(@alphar1,@alpha,@r1,3,1) 'This calculates xr1
Matrix_Add(@alphar1wwr1,@alphar1,@wwr1,3,1) 'This calculates xr1+x(xr1)
Matrix_Add(@a1,@ac,@alphar1wwr1,3,1) 'This calculates a1

Of course, here we use this formula only to calculate correct ai values for our
sensor array for different types of motion of the body to numerically check the
decoding algorithm. Now, we have prepared the tests, let's get back to the
decoding algorithm.

How to decode the angular acceleration?
Well, we have decoded the linear acceleration of the sensor array. That is simply
aC. To get the angular acceleration, we have first to multiply the A matrix of
the relative accelerations with P. The matrix A was calculated from the measured
ai values before and P was stored somewhere.

W = A.P

W has a name, it is called the angular acceleration tensor. But it doesn't
matter. We got it. W is a small [3 by 3] matrix, nine nicely arranged float
values, nothing else from now on. The angular acceleration vector is simply

 = 0.5.[W32-W23, W13-W31, W21-W12]

where the double subscript of W denotes the corresponding element of the W
matrix. For example W32 is the second element of the third row.

Yes, yes, but what about the angular velocity?
We'll get it quickly. Angular velocity components are calculated from the
diagonal elements of the matrix W. In preparation of the final result we
calculate the quantity

sp = 0.5.(WS11 + WS22 + WS33)

and finally

 = [SQR(WS11-sp), SQR(WS22-sp), SQR(WS33-sp)]

Where SQR denotes the square root operation. These were two additions, a
multiplication, three subtractions and three square roots. The correct sign of
the components can be obtained easily as described, for example, in the original
paper. We shall discuss the sign determination later. We can see, that the nine
numbers of the W matrix contain all information about angular acceleration and
angular velocity. So it deserves its name. Now we continue with some practical
considerations and than with the numerical tests.

What to do if I arranged the sensors in a different way?
You have to compute the R matrix, then the P matrix for your arrangement. That's
all. R, of course, has not to be singular in order to obtain a Moore-penrose
inverse. In a planar arrangement, which seems to be a practical idea to place the
sensors, the third row of R contains only zeroes. And R is singular, then. In
other words, all sensors should not line up, or should not lay in the same plane.

O.K. But how long does this decoding take?
Well, in PASM this decoding takes 4-5 msec. In the FPU it takes less than 2 msec.
Whichever you choose, you can handle 100 Hz (10 msec period) acceleration data.
In SPIN you can cope with 20 Hz data easily.

First example: Sensor resting on a table
Let us assume that the table is horizontal and is resting on the ground. We have
gravity of course (9.81 m/sec2), but we don't have angular rotation and angular
acceleration of the sensor array. The  and  vectors are zero and the sensed ai
vectors are as follows

a1 = [0.0, 0.0, 9.81]
a2 = [0.0, 0.0, 9.81]
a3 = [0.0, 0.0, 9.81]
a4 = [0.0, 0.0, 9.81]

First we calculate aC

aC = [0.0, 0.0, 9.81]

Then the A matrix is

 [[0.0 0.0 0.0 0.0]
 A = [0.0 0.0 0.0 0.0]
 [0.0 0.0 0.0 0.0]]

The W matrix is

 [[0.0 0.0 0.0]
 W = A.P = [0.0 0.0 0.0]

 [0.0 0.0 0.0]]

So, both the measured  and  are null vectors.

Why do our sensors measure a positive (upwards) 9.81 when we all know that
gravity points downwards?
The proof-mass, or whatever, that measures the acceleration is pulled down by the
gravity. The sensor feels that it is accelerating upwards, because the proof-mass
is displaced downwards inside the sensor.

Sensor array accelerating but not rotating
Let us push the sensor array in the x direction with 1 m/sec2 linear
acceleration. The  and  vectors are zero again , but we have a linear aC
acceleration of the whole sensor in the x direction. According to our formula

ai = aC +  x ri + x (x ri)

we calculate ai values, taking into account the sensed g, of course

a1 = [1.0, 0.0, 9.81]
a2 = [1.0, 0.0, 9.81]
a3 = [1.0, 0.0, 9.81]
a4 = [1.0, 0.0, 9.81]

The measured aC, the average of the four ai vectors, is

aC = [1.0, 0.0, 9.81]

Then the A matrix is

 [[0.0 0.0 0.0 0.0]
 A = [0.0 0.0 0.0 0.0]
 [0.0 0.0 0.0 0.0]]

The W matrix is

 [[0.0 0.0 0.0]
 W = A.P = [0.0 0.0 0.0]

 [0.0 0.0 0.0]]

So, both the measured  and  are null vectors, again.

Let us take some increasing spin
Now, we accelerate the sensor array as in the previous example, but this time we
start to rotate it with

 = [0.0, 0.0, 0.5]

[rad/sec2] angular acceleration around the z axis. According to our formula

ai = aC +  x ri + x (x ri)

we calculate ai values again. First let us calculate the  x ri vectors

 x r1 = [0.25, -0.25, 0.00]
 x r2 = [-0.25, 0.25, 0.00]
 x r3 = [0.25, 0.25, 0.00]
 x r4 = [-0.25, -0.25, 0.00]

then the ai vectors

 a1 = [1.25, -0.25, 9.81]
 a2 = [0.75, 0.25, 9.81]
 a3 = [1.25, 0.25, 9.81]
 a4 = [0.75, -0.25, 9.81]

The aC vector, the average of ai is the same as before

aC = [1.0, 0.0, 9.81]

But the A matrix of the relative accelerations is filled not only with zeroes
now

 [[0.25 -0.25 0.25 -0.25]
 A = [-0.25 0.25 0.25 -0.25]

 [0.00 0.00 0.00 0.00]]

The W matrix is

 [[0.0 -0.5 0.0]
 W = A.P = [0.5 0.0 0.0]

 [0.0 0.0 0.0]]

From this, using the formula for the decoded, measured 

 = 0.5.[W32-W23, W13-W31, W21-W12]

we obtain

 = [0.0, 0.0, 0.5]

and the decoded, measured angular velocity vector is

 = [0.0, 0.0, 0.0]

Well, so far, so good.

Accelerating and rotating sensor array
Four seconds have passed and the sensor array is rotating now with

 = [0.0, 0.0, 2.0]

[rad/sec] angular velocity, while accelerating linearly and angularly as before

aC = [1.0, 0.0, 9.81]

 = [0.0, 0.0, 0.5]

The constituents to the ai accelerations at the pickup points are

aC = [1.0, 0.0, 9.81]

 x r1 = [0.25, -0.25, 0.00]
 x r2 = [-0.25, 0.25, 0.00]
 x r3 = [0.25, 0.25, 0.00]
 x r4 = [-0.25, -0.25, 0.00]

x (x r1) = [2.00, 2.00, 0.00]
x (x r2) = [-2.00, -2.00, 0.00]
x (x r3) = [-2.00, 2.00, 0.00]
x (x r4) = [2.00, -2.00, 0.00]

These are sensed accelerations at the pickup points and according to our formula

ai = aC +  x ri + x (x ri)

they are added (scrambled) in the sensors

 a1 = [3.25, 1.75, 9.81]
 a2 = [-1.25, -1.75, 9.81]
 a3 = [-0.75, 2.25, 9.81]
 a4 = [2.75, -2.25, 9.81]

Now let us see, how the algorithm unscrambles the aC,  and  vectors. The aC is
simply the average of the four ai vectors

aC = [1.0, 0.0, 9.81]

The A matrix of the relative accelerations is

 [[2.25 -2.25 -1.75 1.75]
 A = [1.75 -1.75 2.25 -2.25]
 [0.00 0.00 0.00 0.00]]

We obtain the [3 by 3] W matrix with a simple matrix multiplication

 [[-4.0 -0.5 0.0]
W = A.P = [0.5 -4.0 0.0]

 [0.0 0.0 0.0]]

And we unscramble the angular acceleration vector immediately, using the formula

 = 0.5.[W32-W23, W13-W31, W21-W12]

resulting

 = [0.0, 0.0, 0.5]

Then we calculate the quantity

sp = 0.5.(WS11 + WS22 + WS33) = -4.0

And finally, from the formula

 = [SQR(WS11-sp), SQR(WS22-sp), SQR(WS33-sp)]

we get the unscrambled  vector

 = [0.0, 0.0, 2.0]

Right, again.

Summarizing the steps of the algorithm
To check and to follow the steps of the numeric examples one can use the
Propeller/SPIN language and the FPU_Matrix_Driver. Some practice will ensure the
user how simple it is and how easy to program the algorithm in Propeller/SPIN.
Now I summarize briefly the main steps of the process.

The four sensor readings (ai vectors) are stored in a [3 by 4] matrix, column
wise.

The average of the acceleration vectors gives the linear acceleration aC of the
sensor array.

This average vector is subtracted from each column of the matrix, and the
resulting matrix is multiplied with a precomputed one.

The [3 by 3] product matrix is used to estimate the  and the  vectors.

 is obtained directly from this matrix with a simple formula.

 is obtained directly again with simple formulas.

One can obtain the sign of the components of the  vector, for example, for x
easily as

Sign_of_x = SIGN[(x_Now - x_Previous)
.x_Now]

based upon the fact that the components of  are measured with sign and they are
directly related to the change of the consecutive components of .

Another, and numerically more robust way to get the sign of the components of the
 vector is to store the sum of the  components. The sign of the stored sums
will yield the sign of the measured  components at any moment. Yes, I know that
this is something like an integration. But the difference between using the sign
of a value, or using the value itself, is huge. The combination of the two
methods of sign determination is especially robust and stable and that will be
used in the final assembly. Sign uncertainty will appear only when the size of
the  components shrink below the noise level, in other words when  components
will be very small, and these uncertainties will be random with zero drift.

Static calibration of the individual sensors
Not all H48C sensors are created equal, so it is necessary to perform static
calibration of them before using their readings in the previously described
measuring algorithm. The H48C sensors are temperature compensated at the factory
but there remains some temperature dependence, as well, that should be accounted
for in the calibration procedure. There will be additional static and dynamic
self-calibrations en-route of the craft that carries the sensor array. These en-
route calibrations will compensate most of the remaining temperature dependence
and mounting orientation inaccuracies of the 6DOF sensor array. These procedures
enhance the precision of the device by several order of magnitudes and they will
be done automatically by the Propeller of the sensor array. These en-route
calibrations will be described later.

Physics behind static calibration
When the H48C is held steadily in relation to the Earth, for example is laying on
a table, it senses and measures only the gravity. When we know our position (Lat,
Lon, Alt) on the Earth, we can calculate precise approximation for the size of
the g gravity vector there. That g vector is an extremely stable, almost ideal
reference with no additional costs. The endpoints of the measured acceleration
vectors are on a sphere with radius g in every pose of the resting sensor. So the
yet unknown calibrated components ax, ay, az of the measured accelerations with
the steady sensor satisfy the equation

(ax)
2 + (ay)

2 + (az)
2 = g2

in every orientation of the H48C. We shall use scale factors and biases to
transform the raw ADC counter readings into the calibrated ax, ay, az values. The
determination of these factors and biases will be based upon of twelve steady
measurements and on the previous equation.

A simple but accurate approximation of g
When you want to be more precise than just to apply 9.81 [m/s2] for the size of g
everywhere, than you can use the next mathematical form that describes the
magnitude of gravity at the surface of the WGS84 ellipsoid

gWGS84 = g0
.(1 + g1

. SIN2(Lat))/(1 - 2 . SIN2(Lat))

where g0 = 9.7803267714 [m/s

2] is the size of gravity at the equator,
g1 = 1.93185139E-3 is a gravity formula constant for the WGS84 Earth and
2 = 6.694378E-3 is geometry constant (first eccentricity squared) of the WGS84
ellipsoid. If your H48C sensor is far away from see level, you can apply a simple
altitude correction in the form

g(Alt) = gWGS84

. (1 - 2 . Alt / r)

where r = 6371 [km] is the mean radius of the Earth.

Scale factors and biases
Individual cnti sensor readings for each of the axis are transformed to the
calibrated ai accelerations according to the formula

ai = fi
.cnti + bi

where fi is the scale factor for axis i (= x, y, z) and bi is the offset bias for
that axis. The overall temperature dependence of the measured acceleration values
are treated for each axis with the same cure fo as

ai = fo
.(fi

.cnti + bi)

Transforming all of these into the equation of a origin centered sphere

(fo)
2 .((fx

.cntx + bx)
2 + (fy

.cnty + by)
2 + (fz

.cntz + bz)
2) = g2

and we can count seven calibration constants, fo, fx, bx, fy, by, fz, bz, there.
Let us take fo as one but we have then to collect the static calibration data
precisely at the same temperature. fo will be obtained later using en-route
measured accelerations. This calibration can happen several times during a
mission. We have now left six parameters to determine, so we have to use at least
six equations with different acceleration counts corresponding to a minimum of
six different orientations.

Obtaining static calibration data
A Propeller application H48C_AcquireSteady is supplied to assist data collection
for the static calibration. This program reads H48C 3-axis data at 5 Hz rate and
applies a low-pass digital filter to suppress noise. We have to make six
measurements with large +/- cntx, +/- cnty and +/- cntz readings by orienting each
of the sensor's axis parallel and antiparallel with the plumb-bob gravity. We may
leave some small readings left in the other directions, but the sensor should be
kept firmly and steadily in position during each measurement. To enjoy the
benefits of a least-squares optimizer I recommend to make six other measurements
with 'mixed' components. After the readings stabilized within +/-1 counts, we
have to record the data for all the three acceleration components. A typical
dataset looks like as

 i cntx cnty cntz Pattern
--
Pos.1 -48 -36 1456 0 0 +
Pos.2 -16 5 -1281 0 0 -

Pos.3 -18 1353 -7 0 + 0
Pos.4 16 -1399 -22 0 - 0

Pos.5 1348 44 83 + 0 0
Pos.6 -1415 -18 89 - 0 0

Pos.7 693 -955 794 + - +
Pos.8 -774 -938 -645 - - -

Pos.9 -717 -970 837 - - +
Pos.10 503 -737 -961 + - -

Pos.11 -852 672 -766 - + -
Pos.12 997 575 783 + + +
--

where I started the data collection with the +-z axis of a H48C sensor.

Finding out the scale and bias parameters
The previous data is entered into the program H48C_LeastSquare. This program is
a least-squares parameter optimizer for the twelve

(fx
.cntxi + bx)

2 + (fy
.cntyi + by)

2 + (fz
.cntzi + bz)

2 = g2

equations, where each equation contains the corresponding cntxi, cntyi, cntzi
counts from the ith rows of the previous table and all of them contain the same
six unknown parameters fx, bx, fy, by, fz and bz. After convergence the program
yields the following calibration constants for the given H48C sensor

fx = 7.0922E-3
bx = 2.4358E-1

fy = 7.1001E-3
by = 1.9121E-2

fz = 7.1628E-3
bz =-6.3008E-2

from the tabulated calibration dataset. These scales and biases are to be
recorded on the datasheet of the given H48C sensor and are entered into a
verification application.

Verification of the static calibration
With the H48C_VerifyCalib program one can verify in practice the static
calibration. This program is supplied with the calibration factors and it
measures the static acceleration at low rate with using the same low-pass digital
filter as in the raw data collection. But this time. the program calculates the
calibrated ax, ay, az accelerations and calculates the magnitude of the
measured/calibrated static values

SQR[(ax)
2 + (ay)

2 + (az)
2] = Magn

This magnitude should be in the close vicinity of the reference g value. With
that given sensor I obtained 9.81 +/- 0.05 [m/s2] g readings in many (>24) very
different static orientations. So, the original 10% (according to datasheet,
actually 13%) accuracy of the sensor was improved to 1%. In the sensor array the
static calibration factors and biases for each of the individual H48C sensors are
to be determined individually and to be stored in the FPU to get aC and A matrix
very quickly from the raw sensor readings.

Sensing a state for en-route static calibration
When the magnitude of the high-pass component of the measured aC acceleration of
the sensor array remains below a certain low level for several seconds meanwhile
the low-pass component has an approximate 9.81 magnitude, then the craft is
travelling probably with constant velocity vector. Some sort of Fuzzy Logic can

find this out. This vehicle state, with strong low-pass filtering of the
acceleration, can be used for en-route static calibration of the sensor array to
compensate for temperature variations and/or to adapt to the magnitude of local
gravity which might not be accounted exactly by the applied mathematical model of
the overall gravity.

cessnapilot, 25.03.2009

