
Multimode Debugging - 1

A Propeller Multimode Debugging Tool

SRLM

25 May 2009

SRLM_productions@yahoo.com

Introduction
The Parallax Propeller is a multicore microcontroller with potential to be used in a wide

variety of applications. The Propeller has eight identical cores, called cogs, along with a central

coordinator called the hub. The Propeller is programmed in a high level language pseudo-object

oriented language called Spin and in low level called Propeller Assembly, or PASM. The

microcontroller has 32 I/O, a clock speed of up to 80MHz (with provisions for overclocking to

96MHz), and relatively few hardware features. The most notable hardware features are circuits

for video generation (both AV and VGA formats). There are no serial communication circuits,

no ADCs, and no interrupts. These functions are instead done in software, utilizing the unique

multi-cored design.

The Propeller relies on the

programmer to dedicate individual cogs, and

to select the correct library code for the

application requirements. There are no

provisions for compile-time optimization or

division of code. Instead, the system is

entirely deterministic: the programmer is in

charge of what happens when.

This paper presents one of the

problems that comes up with robotics

development, and proposes a solution for

platforms that utilize the Propeller. This

solution is then field tested and proven to be

beneficial.

One of the constant problems that robotics developers face is a lack of information when

the robot is being tested and is not connected via a serial cable. Since most debugging data flows

through this cable many times the roboticist is left at ends to determine the cause of failure when

the robot eventually crashes. A better solution would be to send data wirelessly through a radio

modem. Unfortunately, to do so would require that the researcher always have a receiver

available, and this is not always the case.

Presented here is a solution to this dilemma: using the power of the Propeller, a

debugging solution is proposed and implemented that utilizes three methods of sending the data

to the user: via a serial cable, via a wireless link, and via an onboard LCD the robot itself. These

three devices are seamlessly integrated into a single function call eliminating the hassle of

changing code based on the required output destination.

A robotic platform tethered by a serial cable.

Multimode Debugging - 2

A description of the use
The software presented here is a multimode wrapper (terminal, wireless, and LCD)

around the four port serial driver available in [1]. It is completely compatible with the full

version of the driver, but for this wrapper the driver has been edited down to save hub RAM.

To begin using this software all that is needed is to start the wrapper (by calling the start

function with the appropriate parameters). From there, it follows the basic format familiar to

most serial drivers.

For example, to send a single byte the user can type something similar to as follows:
CON

a = 97 'The ASCII value for the letter a

OBJ

debug : "DebugMultimode"

PUB Main

...

debug.tx(a) 'Will output the ASCII letter a

To output a whole string, the user can code something like this:
OBJ

debug : "DebugMultimode"

PUB Main

...

debug.str(string("Hello World!"))

In addition to strings and bytes, the wrapper allows the user to output a decimal number

(unpadded). Also available are functions that allow the user to output binary and hexadecimal

numbers to the specified number of digits:

CON

a = 97

OBJ

debug : "DebugMultimode"

PUB Main

...

debug.bin(a, 8)

debug.dec(a)

debug.hex(a, 2)

A description of the wrapper operation
The wrapper has several key features that should be considered. First, the LCD screen

specified in the argument to the start function has a limited number of display characters (unlike

the effective screen of a terminal or wireless link), so the user should be careful of what is

output. The LCD screen can handle only a finite number of characters and update speed is

relatively slow, so debug data must be chosen carefully.

The LCD operation is special relative to the operation of the terminal link and wireless

link. The wrapper has special code to handle wrap-around on the LCD screen when characters

overflow the last row. For example, on a 4x20 LCD screen (4 rows, 20 columns) if the user

Multimode Debugging - 3

debugs 81 characters then the first 80 are erased from the screen, and the last character is output

in the first location (row 0, column 0). Secondly, a CR input to the wrapper must come from

either a call to the cr function or the tx function. If the CR is embedded in a string then the

LCD will not display data properly; the entire wrapper must be stopped and restarted.

The wrapper always transmits on all three channels, and is not selective. This allows the

user to not have to worry about what data appears where: by using this wrapper, they simply

make the call once in their program, and the data is sent out on all possible channels. This avoids

placing the burden on the user of deciding where to send debug information: the data is sent out

to all channels.

The final consideration to consider is the wireless link hardware. The best radio modem

would have a large buffer for both transmitting and receiving. This allows large amounts of data

to be communicated efficiently. Care should be taken to minimize the amount of data if there is

no buffer.

Finally, the full wrapper and driver consume roughly 800 longs of space and use a single

cog.

A full test setup
This section describes the steps required to test a full setup.

Requirements:

Propeller A (slave): 4x20 LCD, RF transceiver, terminal connection

Propeller B(master): RF transceiver, keyboard, tv

The serial LCD displaying received data on the

slave device.

The master Propeller, components from left to

right: Propeller professional development board

with mounted Propeller and wireless transceiver;

tv screen displaying received data; keyboard.

Load the appropriate programs (included in the zipped code file) into the correct

Propeller after making sure that pin definitions match. Turn on both, with the slave connected to

a computer terminal via a prop-plug. You should see what you type appearing at each location:

tv, terminal, and LCD. If successful, this indicates that the slave Propeller has received the data

Multimode Debugging - 4

from the wireless link, retransmitted it on all three channels, and that the master has received the

character over the wireless link.

Conclusion
 The Propeller is a capable multi-cored microcontroller

whose unique architecture provides new possibilities over an

interrupt based system. By using a cog as a debugging function, the

multimode wrapper overcomes one of the challenges of developing

mobile robotics: the debug data must go to different destinations

depending on what type of test is being done. If the robot is tethered

by a USB cable, then it is useful to have a terminal on the computer

to receive data. If the robot is maneuvering on a course and being

followed by a researcher it is useful to have the debug data appear on

the robot itself. If the researcher is at their computer while the robot

maneuvers, it is useful to have the debug data sent wirelessly to a

base station. The multimode wrapper takes care of all these cases,

and allows the programmer to use a single debug statement in their

code that is then branched to all three sources.

Resources
[1] T. Moore, Author, Multiple Serial Port Driver:

Version 1.1. [Online] Parallax: 2008. Available:

http://obex.parallax.com/objects/340/ [Accessed: 25

May 2009]

The robot no longer tethered by a cable

