
Column #85: I2C Fun For Everyone

The Nuts and Volts of BASIC Stamps (Volume 3) • Page 149

Column #85 May 2002 by Jon Williams:

I2C Fun For Everyone

For those of you who are old enough to do it, do you remember the last time you bought a new
car? It feels great, doesn't it? Then, as you hit the open road, proud of your shiny new machine
and loving that new-car smell ... you notice that just about every second human on the planet is
driving the exact same model....

I went through that recently, but not with a car. I did it with the I2C (Inter-integrated Circuit) bus
(I've also just recently discovered how useful crock pots are ... but I'll talk about that when I
connect a BASIC Stamp to one).

Honestly, I don't know what I was thinking. I2C has been around for over 20 years and I was
certainly aware of it, I just never paid much attention. Silly me. Since I can't turn back the clock
I've spent the last couple of weeks making up for lost time and I have to say, I'm having a blast.
And with my growing interest in robotics, I2C is a fantastic way to expand the Stamp's capabilities
without chewing up a bunch of pins.

There are a couple pieces of great news concerning I2C for us Stamp users: (1) There are literally
hundreds of I2C parts available that we can connect to and, (2) The protocol is simple enough to
implement on any Stamp – I've even heard of Stampers implementing it on the BS1!

Column #85: I2C Fun For Everyone

Page 150 • The Nuts and Volts of BASIC Stamps (Volume 3)

As you know, the BS2p has built-in I2C capability with its I2COUT and I2CIN commands.
We've covered those commands in a couple past articles so this month we're going to give I2C to
the rest of the BS2 family.

I2C Basics

The I2C-bus is a two-wire, synchronous bus that uses a Master-Slave relationship between
components. The Master initiates communication with the Slave and is responsible for generating
the clock signal. If requested to do so, the Slave can send data back to the Master. This means the
data pin (SDA) is bi-directional and the clock pin (SCL) is [usually] controlled only by the Master.

The transfer of data between the Master and Slave works like this:

Master sending data
Master initiates transfer
Master addresses Slave
Master sends data to Slave
Master terminates transfer

Master receiving data
Master initiates transfer
Master addresses Slave
Master receives data from Slave
Master terminates transfer

The I2C specification actually allows for multiple Masters to exist on a common bus and provides
a method for arbitrating between them. That's a bit beyond the scope of what we need to do so
we're going to keep things simple. In our setup, the BS2 (or BS2e or BS2sx) will be the Master
and anything connected to it will be a Slave.

You'll notice in I2C schematics that the SDA and SCL lines are pulled up to Vdd (usually through
4.7K). The specification calls for device bus pins to be open drain. To put a high on either line,
the associated bus pin is made an input (floats) and the pull-up takes the line to Vdd. To make a
line low, the bus pin pulls it to Vss (ground).

This scheme is designed to protect devices on the bus from a short to ground. Since neither line is
driven high, there is no danger. We're going to cheat a bit. Instead of writing code to pull a line
low or release it (certainly possible – I did it), we're going to use SHIFTOUT and SHIFTIN to
move data back and forth. Using SHIFTOUT and SHIFTIN is faster and saves precious code
space. If you're concerned about a bus short damaging the Stamp's SDA or SCL pins during

Column #85: I2C Fun For Everyone

The Nuts and Volts of BASIC Stamps (Volume 3) • Page 151

SHIFTOUT and SHIFTIN, you can protect each of them with a 220 ohm resistor. I've been
careful with my wiring and code and haven't found this necessary.

Low Level I2C Code

At its lowest level, the I2C Master needs to do four things:

Generate a Start condition
Transmit 8-bit data to the Slave
Receive 8-bit data from Slave – with or without Acknowledge
Generate Stop condition

A Start condition is defined as a HIGH to LOW transition on the SDA line while the SCL line is
HIGH. All transmissions begin with a Start condition. A Stop condition is defined as a LOW to
HIGH transition of the SDA line while the clock line is HIGH. A Stop condition terminates a
transfer and can be used to abort it as well.

There is a brief period when the Slave can take control of the SCL line. If a Slave is not ready to
transmit or receive data, it can hold the SCL line low after the Start condition. The Master can
monitor this to wait for the Slave to be ready. At the speed of the BS2, monitoring the clock line
usually isn't necessary but I've built the clock-hold test into the I2C_Start subroutine just to be
safe.

Data is transferred eight bits at a time, sending the MSB first. After each byte, the I2C
specification calls for the receiving device to acknowledge the transmission by bringing the bus
low for the ninth clock. The exception to this is when the Master is the receiver and is receiving
the final byte from the Slave. In this case, there is no Acknowledge bit sent from Master to Slave.

Sending and receiving data from a specific slave always requires a Start condition, sending the
Slave address and finally, the Stop condition. What happens between the Slave address and the
Stop are dependent on the device and what we're doing.

What you'll need to do is get the data sheet for the I2C device you want to connect to. I have
found, without exception, that data sheets for I2C-compatible parts have very clear protocol
definitions – usually in graphic form – that makes implementing our low-level I2C routines very
simple.

Column #85: I2C Fun For Everyone

Page 152 • The Nuts and Volts of BASIC Stamps (Volume 3)

Figure 85.1: PCF8574 to BASIC Stamp 2 Schematic

Let's Make It Work

Now, I'd love to have you all believe that I'm the sharpest knife in the drawer ... but we all know
that isn't the case and I've just admitted to being a Jonny-come-lately as far as I2C is concerned.
So let me tell you that the working I2C code I'm presenting here is my version of similar code that
I have obtained from several sources. A quick web search will turn up many sites that use I2C
devices with the BS2, BS2e and BS2sx.

To demonstrate the use of I2C we'll work with two components, one very simple and the other a
little more sophisticated, but no more difficult to use. Both are useful in robotics projects.

The first is the Philips PCF8574 I/O port expander. I've used it with the BS2p and bring it up
again because of its utility and how easy it is to communicate with. The PCF8574 has eight I/O
pins that can be used either as input, outputs or in combination. The spec sheet calls for the pins –

Column #85: I2C Fun For Everyone

The Nuts and Volts of BASIC Stamps (Volume 3) • Page 153

whether inputs or outputs – to be active low. Inputs, then, should be pulled up to Vdd and taken to
Vss when active. For outputs, the device will sink current – but not very much. Only three
milliamps per pin, actually. So use low current LEDs or a buffer if you need more current from a
PCF8574 output.

The PCF8574 has no data direction register and we must always write or read the full eight bits.
When using it only for outputs or only for inputs, this isn't a problem. But when mixing I/O,
things get just a bit tricky. You see, if we write a zero to a pin that is being used as an input, the
next read cycle can read back that zero and make it look like a false input. The way to avoid this
problem is to mask any input pins (with a one) when we do a write.

Program Listing 85.1 is the program that goes along with the schematic in Figure 85.1. In this
program we will use a single PCF8574 to display a four-bit counter and read back four switch
inputs. To prevent the counter write cycle from creating false inputs, the counter (inverted for
active-low outputs) is ORed with a constant called MixDDR. In this constant, a one represents an
input pin, zero an output since inputs are pulled-up and outputs are active low.

The subroutine called Write_PCF8574 takes care of the details and, as you can see, it is very
straightforward. First, the Start condition is generated. The next step is to send the Slave address.
The upper four bits of the Slave address define the device type. Bits two, three and four are the
physical device address. With three address bits, we can have up to eight PCF8574 chips on the
same bus, giving us up to 64 bits of I/O (you'll need to make the Slave address a variable to do
this). Bit zero of the Slave address defines write (when zero) or read (when one).

I2C_TX_Byte is used to send eight bits to the Slave device and to read back the acknowledge bit.
Notice how simple this is using SHIFTOUT and SHIFTIN. There may be times when you'll
want to check the received ACK bit to make sure everything is working. The PCF8574 is a simple
device, so this won't be necessary. One other thing that I should point out is that both
SHIFTOUT and SHIFTIN take care of setting the specified data and clock pins as required, so it
doesn't matter that we enter into I2C_TX_Byte with the SCL line set as an input.

You may wonder why the data byte (masked counter) is transmitted twice. The reason is that the
PCF8574 behaves like a shift register. The first write places data into an internal holding register
and subsequent writes force the holding register to the output pins. For programs that may not be
refreshing the PCF8574 as frequently as we are here, writing twice ensures that the outputs reflect
their proper state. After the second write, we must generate a Stop condition to terminate the
transfer and free the bus.

Column #85: I2C Fun For Everyone

Page 154 • The Nuts and Volts of BASIC Stamps (Volume 3)

Figure 85.2: CMPS01 Electronic Compass

Reading data back from the PCF8574 is just as straightforward. Read_ PCF8574 generates a
Start, transmits the Slave address (this time with bit zero set to one for read), reads from the device
then generates a Stop. Remember what I mentioned earlier, that the final read, when the Master is
receiver, does not send an ACK (low) bit. Since we're only reading one byte, we'll use
I2C_RX_Byte_Nak.

Notice that this is really just as entry point for I2C_RX and sets the i2cAck variable to a one.
I2C_RX does the work by shifting in eight bits, starting with the MSB. SHIFTOUT is used to
send i2cAck. In this case it's a one, so the bus is high (NAK) during the ninth clock pulse.

Read_ PCF8574 returns data to the main code in a variable called i2cData. To make things easy,
the variable called switches is aliased to the upper four bits of i2cData (since the inputs on the
PCF8574 are P4 .. P7). A few DEBUG statements are used in the main body to update the
display. All-in-all, this one is pretty easy, and demonstrates the utility of the PCF8574.

Column #85: I2C Fun For Everyone

The Nuts and Volts of BASIC Stamps (Volume 3) • Page 155

Next up is another neat device from those cool guys across the pond at Devantech. This one is the
CMPS01 compass module (available from Acroname). The CMPS01 is an electronic compass
that will give us readings in Brads (0 to 255) or in tenths of Degrees (0.0 to 359.9). To make it
compatible with other I2C devices, the engineers at Devantech designed the CMPS01 to behave
like a typical memory device.

This program (Program Listing 85.2), like the PCF8574, is very easy so I'm not going to cover it
line-by-line. I just want to go over a couple of the high-level subroutines because they
demonstrate techniques that will be used in many other I2C devices.

The first subroutine to look at is called Write_Word. This routine writes a 16-bit variable to the
CMPS01, starting at the locations specified by i2cReg. Notice that after the high byte is written,
the low byte is written without worry of the register number. The reason is that the register
number is automatically incremented after each write. This allows us to send a stream of
contiguous bytes to the device. For the CMPS01, we only need to send two bytes, but for other
devices (like an RTC), it might convenient to write several bytes without having to set the address
for each.

Now we'll look at the routines for reading from the CMPSO1. To read from a location we will
actually begin what looks like a write cycle. We need to do this to set the register address. Once
the register address is sent, another Start condition is generated. This is what actually sets the
register number and then allows us to do the read from it. As with writes, the register number is
incremented with each read cycle. This allows us to read a 16-bit variable (as in Read_Word) by
specifying the address of the of high byte.

I really like the CMPS01 and have it designed into a little robot I'm working on to collect empty
soda cans as part of the Dallas Personal Robotics Group's Roborama contest.

Mixing And Matching ... Sort Of

As you've seen, it's pretty simple to write code for I2C devices with the core subroutines developed
in our demo programs. One thing that I haven't yet discussed is the use of a variable for the SDA
pin. The reason is this: You will find devices that have no internal addresses (PCF8574), some
with less than 256 locations so they use a single address byte (CMPS01) and some with enough
locations to require two address bytes (24LC32 EEPROM).

I made the SDA line a variable because it is possible that a particular application will require more
than one SDA line to prevent devices from stepping on each other. I spent a frustrating day
swapping out RTC chips that I thought were bad only to find that an EEPROM was stepping on
the RTC's transmissions. The SCL line can be shared with all devices since we can only talk to

Column #85: I2C Fun For Everyone

Page 156 • The Nuts and Volts of BASIC Stamps (Volume 3)

one device at a time. If your own project uses just one device, or devices are compatible, you can
simplify the code a bit by using the SDA constant in the low-level I2C routines. Otherwise, set
the value of i2cSDA to the bus pin you want to use, then call the routines.

You'll find the code and schematic for that RTC (PCF8583) in the ZIP file that goes along with
this article. There's also code for a couple of EEPROMs and the PCF8591 four-channel A2D.

BS2p Update

For those of you using I2C with the BS2p, an upgrade will be available shortly. The upgrade does
two things: (1) It extends the clock-hold timeout period for so that intelligent devices (like the
Devantech compass) have time to do their internal processing, and (2) With the Version 1.33
compiler, you no longer have to specify an internal address byte for devices that don't need them
(like the PCF8574 and PCF8591).

See the Parallax web site for details on getting your BS2p module upgraded.

Next Month...

Believe it or night, I'm actually thinking ahead for a change. So, what's up? Well, next month
we'll spear our embedded control problems with the new Javelin Stamp. Can you say Object
Oriented Programming in a BS2-sized module? If you haven't heard the news yet, this new
module from Parallax is physically and electrically identical to the BS2sx and has these features:

• Programs in (a subset of) Sun's Java language
• Has 32K of flat program space
• Has 32K of RAM (space not used by program is available for variables)
• Can run up to six background processes (virtual peripherals) concurrent with main

program

The background processes are particularly exciting. With the Javelin you can receive or send
serial data, control servos or motors with PWM, measure an analog voltage or even spit one out,
have precise timer functions – all without affecting the foreground program.

To be fair, the Javelin is a very sophisticated beast but once you get used to it, it's a heck of a lot of
fun. If you want to get a jump on next month's article, be sure to visit the Javelin web site and
download the documentation.

Until then, have fun with I2C devices and Happy Stamping.

Column #85: I2C Fun For Everyone

The Nuts and Volts of BASIC Stamps (Volume 3) • Page 157

' ==
'
' Program Listing 85.1
' File...... PCF8574.BS2
' Purpose... PCF8574 control via I2C
' Author.... Jon Williams
' E-mail.... jonwms@aol.com
' Started... 20 MAR 2002
' Updated... 29 MAR 2002
'
' {$STAMP BS2}
'
' ==

' --
' Program Description
' --
'
' This program demonstrates essential I2C routines and communication with the
' Philips PCF8574 port expander. The expander is a quasi-bidirectional device;
' you can write to outputs or read from inputs no data direction register.
'
' Inputs and outputs are active low. When writing to the device, a "1"
' should be written to any pin that is used an input.

' --
' Revision History
' --

' --
' I/O Definitions
' --
'
SDA CON 8 ' I2C serial data line
SCL CON 9 ' I2C serial clock line

' --
' Constants
' --

DevType CON %0100 << 4 ' device type
DevAddr CON %000 << 1 ' address = %000 -> %111
Wr8574 CON DevType | DevAddr | 0 ' write to PCF8574
Rd8574 CON DevType | DevAddr | 1 ' read from PCF8574

ACK CON 0 ' acknowledge bit
NAK CON 1 ' no ack bit

MixDDR CON %11110000 ' 1 = input for mixed I/O

Yes CON 0
No CON 1

Column #85: I2C Fun For Everyone

Page 158 • The Nuts and Volts of BASIC Stamps (Volume 3)

CrsrXY CON 2 ' DEBUG Position Control

' --
' Variables
' --

i2cSDA VAR Nib ' I2C serial data pin
i2cData VAR Byte ' data to/from I2C device
i2cWork VAR Byte ' work byte for I2C TX code
i2cAck VAR Bit ' ACK bit from device

counter VAR Nib
switches VAR i2cData.HighNib ' from PCF8574

' --
' EEPROM Data
' --

' --
' Initialization
' --

Initialize:
 PAUSE 250 ' let DEBUG open
 DEBUG CLS, "PCF8574 Demo"
 DEBUG CrsrXY, 0, 2, "Counter: ", BIN4 counter
 DEBUG CrsrXY, 0, 3, "Switches: ", BIN4 switches

 i2cSDA = SDA ' define SDA pin
 i2cData = %11111111 ' clear outputs
 GOSUB Write_PCF8574
 IF (i2cAck = ACK) THEN Main ' device is present

 DEBUG CLS, "Error: No ACK from PCF8574"
 END

' --
' Program Code
' --

Main:
 FOR counter = 0 TO 15
 DEBUG CrsrXY, 10, 2, BIN4 counter ' display counter on screen
 i2cData = MixDDR | ~counter ' mask inputs
 GOSUB Write_PCF8574 ' display counter on LEDs
 GOSUB Read_PCF8574 ' get data from PCF8574
 DEBUG CrsrXY, 10, 3, BIN4 switches ' display switch inputs
 PAUSE 100
 NEXT
 GOTO Main

 END

Column #85: I2C Fun For Everyone

The Nuts and Volts of BASIC Stamps (Volume 3) • Page 159

' --
' Subroutines
' --

' Data to be sent is passed in i2cData

Write_PCF8574:
 GOSUB I2C_Start ' send Start
 i2cWork = Wr8574 ' send address
 GOSUB I2C_TX_Byte
 i2cWork = i2cData
 GOSUB I2C_TX_Byte ' send i2cData to device
 GOSUB I2C_TX_Byte ' force to pins
 GOSUB I2C_Stop ' send Stop
 RETURN

' Data received is returned in i2cData

Read_PCF8574:
 GOSUB I2C_Start ' send Start
 i2cWork = Rd8574 ' send address
 GOSUB I2C_TX_Byte
 GOSUB I2C_RX_Byte_Nak ' get byte from device
 i2cData = i2cWork
 GOSUB I2C_Stop ' send Stop
 RETURN

' --
' Low Level I2C Subroutines
' --

' --- Start ---

I2C_Start: ' I2C start bit sequence
 INPUT i2cSDA
 INPUT SCL
 LOW i2cSDA ' SDA -> low while SCL high

Clock_Hold:
 IF (Ins.LowBit(SCL) = 0) THEN Clock_Hold ' device ready?
 RETURN

' --- Transmit ---

I2C_TX_Byte:
 SHIFTOUT i2cSDA,SCL,MSBFIRST,[i2cWork\8] ' send byte to device
 SHIFTIN i2cSDA,SCL,MSBPRE,[i2cAck\1] ' get acknowledge bit
 RETURN

' --- Receive ---

I2C_RX_Byte_Nak:
 i2cAck = NAK ' no ACK = high

Column #85: I2C Fun For Everyone

Page 160 • The Nuts and Volts of BASIC Stamps (Volume 3)

 GOTO I2C_RX

I2C_RX_Byte:
 i2cAck = ACK ' ACK = low

I2C_RX:
 SHIFTIN i2cSDA,SCL,MSBPRE,[i2cWork\8] ' get byte from device
 SHIFTOUT i2cSDA,SCL,LSBFIRST,[i2cAck\1] ' send ack or nak
 RETURN

' --- Stop ---

I2C_Stop: ' I2C stop bit sequence
 LOW i2cSDA
 INPUT SCL
 INPUT i2cSDA ' SDA --> high while SCL high
 RETURN

Column #85: I2C Fun For Everyone

The Nuts and Volts of BASIC Stamps (Volume 3) • Page 161

' ==
'
' File...... CMPS01.BS2
' Purpose... Daventech CMPS01 Electronic Compass Demo
' Author.... Jon Williams
' E-mail.... jonwms@aol.com
' Started... 10 MAR 2002
' Updated... 29 MAR 2002
'
' {$STAMP BS2}
'
' ==

' --
' Program Description
' --
'
' This program demonstrates essential I2C routines and communication with the
' Daventech CMPS01 electronic compass. The Daventech compass behaves very
' like a typical I2C memory device and the routines to read from and write to
' it are identical to those used with EEPROMs.

' --
' Revision History
' --

' --
' I/O Definitions
' --

SDA CON 8 ' I2C serial data line
SCL CON 9 ' I2C serial clock line

' --
' Constants
' --

WrCMPS01 CON $C0 ' write to compass
RdCMPS01 CON $C1 ' read from compass

Ack CON 0 ' acknowledge bit
Nak CON 1 ' no ack bit

' Compass registers
'
CMPS01_Rev CON 0

Column #85: I2C Fun For Everyone

Page 162 • The Nuts and Volts of BASIC Stamps (Volume 3)

CMPS01_Brads CON 1 ' bearing, 0 - 255
CMPS01_DegHi CON 2 ' degrees, high byte
CMPS01_DegLo CON 3 ' degrees, low byte
CMPS01_S1THi CON 4 ' sensor 1 test, high
CMPS01_S1TLo CON 5 ' sensor 1 test, low
CMPS01_S2THi CON 6 ' sensor 2 test, high
CMPS01_S2TLo CON 7 ' sensor 2 test, low
CMPS01_S1CHi CON 8 ' sensor 1 cal, high
CMPS01_S1CLo CON 9 ' sensor 1 cal, low
CMPS01_S2CHi CON 10 ' sensor 2 cal, high
CMPS01_S2CLo CON 11 ' sensor 2 cal, low
CMPS01_X1 CON 12 ' not used
CMPS01_X2 CON 13 ' not used
CMPS01_CalDone CON 14 ' calibration done flag
CMPS01_CalCmd CON 15 ' calibration cmd register

CrsrXY CON 2 ' DEBUG Position Control

' --
' Variables
' --

i2cSDA VAR Nib ' I2C serial data pin
i2cData VAR Word ' data to/from device
i2cReg VAR Byte ' register address
i2cWork VAR Byte ' work byte for TX routine
i2cAck VAR Bit ' Ack bit from device

temp VAR Word ' for rj printing
digits VAR Nib
width VAR Nib

' --
' EEPROM Data
' --

' --
' Initialization
' --

Init:
 PAUSE 250
 DEBUG CLS
 DEBUG CrsrXY, 0, 0, "Devantech CMPS01 Compass Demo"
 DEBUG CrsrXY, 0, 1, "-----------------------------"

 i2cSDA = SDA ' define SDA pin
 i2cReg = CMPS01_Rev ' compass revision number

Column #85: I2C Fun For Everyone

The Nuts and Volts of BASIC Stamps (Volume 3) • Page 163

 GOSUB Read_Byte
 DEBUG CrsrXY, 0, 3, "Rev Num... "
 temp = i2cData
 width = 3
 GOSUB RJ_Print

 DEBUG CrsrXY, 0, 5, "Brads..... "
 DEBUG CrsrXY, 0, 6, "Degrees... "

' --
' Program Code
' --

Main:
 i2cReg = CMPS01_Brads ' get brads, 0 - 255
 GOSUB Read_Byte
 DEBUG CrsrXY, 11, 5
 temp = i2cData
 GOSUB RJ_Print

 i2cReg = CMPS01_DegHi ' get degrees, 0.0 - 359.9
 GOSUB Read_Word
 DEBUG CrsrXY, 11, 6
 temp = i2cData / 10
 GOSUB RJ_Print
 DEBUG ".", DEC1 i2cData, " "

 PAUSE 250
 GOTO Main
 END

' --
' Subroutines
' --

RJ_Print: ' right justify
 digits = width
 LOOKDOWN temp, <[0,10,100,1000,65535], digits
 DEBUG REP " "\(width - digits), DEC temp
 RETURN

' --
' Compass Access Subroutines
' --

' Writes low byte of i2cData to i2cReg

Write_Byte:

Column #85: I2C Fun For Everyone

Page 164 • The Nuts and Volts of BASIC Stamps (Volume 3)

 GOSUB I2C_Start
 i2cWork = WrCMPS01
 GOSUB I2C_TX_Byte ' send device address
 i2cWork = i2cReg
 GOSUB I2C_TX_Byte ' send register number
 i2cWork = i2cData.LowByte
 GOSUB I2C_TX_Byte ' send the data
 GOSUB I2C_Stop
 RETURN

' Writes i2cData to i2cReg

Write_Word:
 GOSUB I2C_Start
 i2cWork = WrCMPS01
 GOSUB I2C_TX_Byte ' send device address
 i2cWork = i2cReg
 GOSUB I2C_TX_Byte ' send register number
 i2cWork = i2cData.HighByte
 GOSUB I2C_TX_Byte ' send the data - high byte
 i2cWork = i2cData.LowByte
 GOSUB I2C_TX_Byte ' send the data - low byte
 GOSUB I2C_Stop
 RETURN

' Read i2cData (8 bits) from i2cReg

Read_Byte:
 GOSUB I2C_Start
 i2cWork = WrCMPS01
 GOSUB I2C_TX_Byte ' send compass address
 i2cWork = i2cReg
 GOSUB I2C_TX_Byte ' send register number
 GOSUB I2C_Start ' repeat start (sets register)
 i2cWork = RdCMPS01
 GOSUB I2C_TX_Byte ' send read command
 GOSUB I2C_RX_Byte_Nak
 GOSUB I2C_Stop
 i2cData = i2cWork ' return the data
 RETURN

' Read i2cData (16 bits) from i2cReg

Read_Word:
 GOSUB I2C_Start
 i2cWork = WrCMPS01
 GOSUB I2C_TX_Byte ' send compass address
 i2cWork = i2cReg

Column #85: I2C Fun For Everyone

The Nuts and Volts of BASIC Stamps (Volume 3) • Page 165

 GOSUB I2C_TX_Byte ' send register number
 GOSUB I2C_Start ' repeat start (sets register)
 i2cWork = RdCMPS01
 GOSUB I2C_TX_Byte ' send read command
 GOSUB I2C_RX_Byte
 i2cData.HighByte = i2cWork ' read high byte of data
 GOSUB I2C_RX_Byte_Nak
 GOSUB I2C_Stop
 i2cData.LowByte = i2cWork ' read low byte of data
 RETURN

' --
' Low Level I2C Subroutines
' --

' --- Start ---

I2C_Start: ' I2C start bit sequence
 INPUT i2cSDA
 INPUT SCL
 LOW i2cSDA ' SDA -> low while SCL high

Clock_Hold:
 IF (Ins.LowBit(SCL) = 0) THEN Clock_Hold ' device ready?
 RETURN

' --- Transmit ---

I2C_TX_Byte:
 SHIFTOUT i2cSDA,SCL,MSBFIRST,[i2cWork\8] ' send byte to device
 SHIFTIN i2cSDA,SCL,MSBPRE,[i2cAck\1] ' get acknowledge bit
 RETURN

' --- Receive ---

I2C_RX_Byte_Nak:
 i2cAck = Nak ' no Ack = high
 GOTO I2C_RX

I2C_RX_Byte:
 i2cAck = Ack ' Ack = low

I2C_RX:
 SHIFTIN i2cSDA,SCL,MSBPRE,[i2cWork\8] ' get byte from device
 SHIFTOUT i2cSDA,SCL,LSBFIRST,[i2cAck\1] ' send ack or nak
 RETURN

Column #85: I2C Fun For Everyone

Page 166 • The Nuts and Volts of BASIC Stamps (Volume 3)

' --- Stop ---

I2C_Stop: ' I2C stop bit sequence
 LOW i2cSDA
 INPUT SCL
 INPUT i2cSDA ' SDA --> high while SCL high
 RETURN

