
BlackCat Debugger Getting Started

Copyright 2010 Ross Higson Page 1 of 23

A Tutorial on using the BlackCat Debugger for Catalina

BACKGROUND... 2

WHAT IS BLACKCAT?... 2
WHAT IS THE STATUS OF BLACKCAT? .. 2
WHAT ARE THE PREREQUISITES FOR BLACKCAT? .. 2
HOW DO I INSTALL BLACKCAT?... 3
WHY IS BLACKCAT “UNORTHODOX”?.. 3
DOES BLACKCAT SUPERSEDE POD? .. 3
WHO DEVELOPED BLACKCAT?... 4
ARE THERE ANY KNOWN PROBLEMS WITH BLACKCAT? ... 4
WHO SHOULD I CONTACT ABOUT BLACKCAT?... 4
WHY IS IT CALLED BLACKCAT? ... 4

PREPARING PROGRAMS FOR USE WITH BLACKCAT .. 4

OVERVIEW.. 4
PREPARING A PROGRAM USING CATALINA FROM THE COMMAND LINE ... 5
PREPARING A PROGRAM USING CATALINA FROM CODE::BLOCKS .. 6
LOADING A PROGRAM INTO THE PROPELLER .. 7
STARTING BLACKCAT .. 8

USING BLACKCAT.. 8

OVERVIEW.. 8
The BlackCat Window... 8
The Propeller Communications Window .. 9

CONNECTING TO THE PROPELLER ... 10
SELECT THE ADDRESS MODE ... 10
BLACKCAT MENU BAR COMMANDS .. 11

Open dbg file... 11
Clear Output Panel ... 11
Options.. 11

Show Virtual Breakpoints..11
Show Traffic in Communications Window..11
Remove all Breakpoints ...11

Show Comms Stats .. 11
Shutdown... 12

DISPLAYING FILES IN THE SOURCE PANEL .. 12
USING BOOKMARKS ... 12
MANAGING THE VARIABLE “SHOW” LIST OR READ/WRITE VARIABLES... 13
DISPLAYING AND EDITING VARIABLES... 14

AN EXAMPLE OF USING BLACKCAT.. 14

OVERVIEW.. 14
COMPILING THE EXAMPLE PROGRAM.. 14
LOADING THE EXAMPLE PROGRAM ... 15
STARTING BLACKCAT, ESTABLISHING COMMS AND LOADING THE DBG FILE .. 15
USING STEP, STEP INTO & STEP OUT.. 17
USER BREAKPOINTS ... 19
VIEWING AND MODIFYING VARIABLES .. 20
COMBINING USER AND VIRTUAL BREAKPOINTS... 21

KNOWN ISSUES WITH BLACKCAT.. 22

ADVANCED TOPICS ... 23

DEBUG FILES AND LISTING FILES .. 23
MODIFYING KERNEL AND HUB / XMM MEMORY LOCATIONS .. 23
MODIFYING OR RECOMPILING PROGRAMS .. 23

BlackCat Debugger Getting Started

Copyright 2010 Ross Higson Page 2 of 23

Background
This document provides some assistance to get you up and running with the
BlackCat source level debugger for the Catalina C compiler.

It starts out with some basic information, but also covers some of the more advanced
concepts – however, it is not necessary to complete reading the whole document to
begin using BlackCat – in fact it is intended that you have BlackCat running as you
work your way through the included example program.

What is BlackCat?

BlackCat is a Windows application that allows source level debugging of C programs
that have been compiled using the Catalina C compiler, and are executing on a
supported Propeller platform.

BlackCat runs on a host PC, and uses a serial link to communicate with the program
executing on the Propeller.

BlackCat provides the ability to display C source files, set and clear user
breakpoints, single step through C programs, and display or modify the values of the
local or global C variables visible whenever the program is stopped.

What is the status of BlackCat?

BlackCat is currently in alpha release – it is being submitted to a selected group of
alpha testers for initial functional testing and to elicit suggestions for improvement.

BlackCat is already capable of debugging arbitrary C programs, including all the
example programs provided with Catalina.

BlackCat supports LMM programs on all platforms supported by Catalina, and
LARGE mode XMM programs on some of those platforms – see the prerequisites
section below.

SMALL mode XMM has also been implemented but not tested.

Some C language features have not been implemented.

What are the prerequisites for BlackCat?

The alpha release of BlackCat runs only under Windows. It has been tested under
Windows XP SP2 (32 bit), but should also run on other versions of Windows.

Programs to be debugged using BlackCat must be compiled using Catalina 2.4 or
greater – BlackCat will not work with any earlier versions of Catalina. Programs must
be prepared by compiling them using a new -g command line option to Catalina (the
meaning and use of this option is described later in this document).

BlackCat requires that the program being debugged has a cog free to manage the
BlackCat serial link with the host PC. Other than that, the overhead of BlackCat on
the compiled program is limited to the execution of approximately 100 additional
instructions (400 bytes) during program initialization. When not actually stopped at a
breakpoint, the program executes as usual (i.e. at normal speed) and is unaware of
BlackCat – this makes BlackCat suitable for debugging real-time or time-critical
programs.

BlackCat Debugger Getting Started

Copyright 2010 Ross Higson Page 3 of 23

Catalina itself can be used under either Linux or Windows – i.e. programs to be
debugged using BlackCat under Windows can be compiled using Catalina under
Linux. However, for the sake of brevity, this document assumes you are using both
BlackCat and Catalina under Windows.

BlackCat also requires a USB or RS232 serial connection to the Propeller running
the program to be debugged. The reason BlackCat does not support XMM on all
platforms supported by Catalina is that BlackCat currently assumes this serial link is
implement on pins 30 and 31, and this is not available on platforms that use the
HX512 SRAM expansion card (e.g. the Hydra and the Hybrid). 1

How do I install BlackCat?

You should completely install Catalina 2.4 before installing BlackCat. This document
assumes you have installed Catalina in the default location (under Windows this is
C:\Program Files\Catalina).

If you have not installed Catalina yet, see the Catalina Reference Manual for
instructions. You should install at least the binary release of Catalina, plus the
Catalina demo programs.

If you have already installed Catalina, but to a directory other than the default
directory, then all the Catalina commands and options shown will be identical – but
some of the directory names will need to be changed.

BlackCat can be installed by unzipping the distribution provided in the main Catalina
directory (e.g. C:\Program Files\Catalina). This will replace a few of the normal
Catalina files, and add some new ones specific to BlackCat.

If you are using Code::Blocks, BlackCat includes a replacement User Template for
Catalina that will build both a Release and a Debug version of all programs. Install
the new Catalina.cdb provided in the BlackCat distribution over the top of the
existing template – this will be in a location such as:

C:\Documents and Settings\<your name>\Application Data\codeblocks\UserTemplates\Catalina

Why is BlackCat “unorthodox”?

The BlackCat debugger uses a slightly unusual approach to breakpoints, which are
of two types – user or virtual. This can lead to unexpected results when a program is
executed using a combination of the user breakpoint operations (set and clear
breakpoint, run to breakpoint), and the various virtual breakpoint operations (step
next, step into, step out).

This is more fully explained later in this document.

Does BlackCat supersede POD?

Not entirely. BlackCat is much easier to use for debugging C programs, and it also
supports XMM programs (which POD does not). BlackCat is therefore expected to
become the preferred “Catalina users” tool, but POD will continue to be included with
Catalina, as a “Catalina gurus” tool.

1
 Plans are underway for the next release of BlackCat to support arbitrary pins for serial communications,

allowing platforms that use the HX512 to be supported by the use of additional hardware to implement a
serial link on other pins.

BlackCat Debugger Getting Started

Copyright 2010 Ross Higson Page 4 of 23

Being an assembly language debugger, POD is useful for debugging the assembly
code generated by Catalina, or debugging any changes to the Catalina LMM kernel.
In fact, POD was used to debug the code added to the kernel to support BlackCat!

Who developed BlackCat?

BlackCat was developed co-operatively by Bob Anderson and Ross Higson.

Bob Anderson is responsible for the overall design of BlackCat, the parsing of debug
information generated by Catalina into a form suitable for use with BlackCat, the
BlackCat user interface and the BlackCat debug cog that interacts with the Catalina
Kernel.

Ross Higson is responsible for Catalina. Changes required to Catalina to support
BlackCat include a modified Catalina code generator that emits debugging
information during compilation, BlackCat specific targets that incorporate BlackCat-
specific program initialization code, and BlackCat support specific to each Catalina
LMM and XMM Kernel.

Are there any known problems with BlackCat?

Yes, there are a few things not yet implemented, and a few other issues – see the
section Known Issues later in this document.

Who should I contact about BlackCat?

Please contact Ross Higson at ross@thevastydeep.com

Why is it called BlackCat?

During World War II, a Catalina used for combat missions – particularly night
missions – was often painted matt black and known as a “Black Cat”.

See http://www.daveswarbirds.com/blackcat

Preparing programs for use with BlackCat

Overview

Preparing a program can be as simple as including the –g command line option
when compiling the program with Catalina. This instructs Catalina to do two things:

1. Generate additional information that is required by the BlackCat debugger. A
.debug file is generated for each C source file and these are then combined
into one .dbg file that can be loaded by BlackCat.

2. Select a BlackCat enabled target for the program. BlackCat targets are
provided for LMM, EMM and XMM programs. These targets contain additional
initialization code that loads the BlackCat debug cog, and performs other
additional tasks required to prepare the kernel for co-operation with the debug
cog.

There are a few things that you need to be aware of when preparing programs for
use with BlackCat:

• The program must have a spare cog available.

BlackCat Debugger Getting Started

Copyright 2010 Ross Higson Page 5 of 23

• The program must allow Propeller pins 30 and 31 to be used for serial
communication with the BlackCat debugger running on the host.

• You cannot specify your own target – to use BlackCat you must let Catalina
select a BlackCat-enabled target.

• The resulting program executable will be slightly larger – about 400
additional bytes of initialization code, plus up to 512 bytes of debug cog
code. However, the space used for the debug cog code is reclaimed during
initialization for use as program stack or heap space once the program is
executing, so the final overhead is only about 400 bytes.

Preparing a program using Catalina from the command line

As mentioned above, simply include the –g command line option along with all the
other normal options when compiling the program.

For example, after setting up to use Catalina (via the use_catalina batch file)
execute the following command in the Catalina demo directory:

catalina hello_world.c –lc -g

This will produce output similar to the following:

Note that Catalina has automatically used the lmm_blackcat.spin target (instead of
the more usual lmm_default.spin target).

In addition to the normal hello_world.binary, Catalina will also generate the
following files:

• A file called hello_world.lst (a listing file is always produced when the –g
command-line option is included).

• A file called hello_world.debug (one such file is generated file for each C
source file, named with the same name as the C source file but with a .debug
extension)

• A file called hello_world.dbg (one such file is generated for the whole
compilation, named with the same name as the output binary file but with a
.dbg extension).

BlackCat Debugger Getting Started

Copyright 2010 Ross Higson Page 6 of 23

Preparing a program using Catalina from Code::Blocks

BlackCat provides an updated version of the Code::Blocks Catalina User Template
to be used for creating new Catalina projects. This template will automatically set up
new projects to build either a Debug or a Release version of your program. The
Debug version will have the –g option enabled, while the Release version will not.

To select which version to build, use the menu command Build->Select a Target.
The Release version will be built in a bin\release\ subdirectory and the debug
version will be built a bin\debug\ subdirectory of the main project directory.

However, for existing projects you will have to tell Code::Blocks specifically how to
build a debug version of your program – one way to do this is by modifying the
Release version to specify the –g option in two places (both accessible via the
Project -> Build Options menu item):

1. On the Compiler Settings tab, check the Produce Debugging Symbols [-g]
Compiler Flag:

BlackCat Debugger Getting Started

Copyright 2010 Ross Higson Page 7 of 23

2. On the Linker Settings tab, check the -g to the set of Other linker options:

Then you simply compile and link your program as normal. Alternatively, a second
Debug target could be added to the project alongside the Release target, which will
then need to have the –g flag added (as described above).

Note that the .debug files generated by Catalina will be placed in the same directory
as the source files, but the .lst and .dbg files will be placed in the same directory as
the binary output file. This is important to know because you will have to load the dbg
file into BlackCat (this is described later).

Loading a program into the Propeller

Neither Catalina nor BlackCat currently provide any support for loading programs
into the Propeller2. You will have to use one of the following methods:

1. For LMM programs, you can load them using the Parallax Propeller tool.

2. For EMM programs, you can program them into an EEPROM and then reboot
the Propeller.

3. For LMM or XMM programs, you can write them to an SD card and then use
the Catalina Generic SD Program Loader. For multi-CPU systems such as the
TriBladeProp or Morpheus, you may also need to use the Catalina Generic
SIO Program Loader.

In any case, all programs built using the –g flag always stop after the execution of
the initialization code, and then wait till the BlackCat debugger establishes serial
communications with the debug cog.

2
 This will be rectified in a later release of Catalina and/or BlackCat.

BlackCat Debugger Getting Started

Copyright 2010 Ross Higson Page 8 of 23

Starting BlackCat

To start BlackCat, simply enter the following command:

blackcat

This command accepts no parameters. See the next section on how to configure and
use BlackCat once it has started.

Using BlackCat

Overview

This section contains a general introduction to each component of BlackCat, such as
the windows, menus and various commands.

The BlackCat Window

When BlackCat is first started, it opens two windows. The larger window is referred
to as the BlackCat window. This window is used for displaying source files, setting
and clearing breakpoints, viewing and modifying program variables.

It will appear similar to that shown below:

The BlackCat Window contains:

• A menu bar for executing commands

• A tool bar with buttons, a file list dropdown box, and a status indictor. The
meaning of the buttons is as follows (their use is described in more detail
later):

 Step (to the next virtual breakpoint);

 Step Into (any procedure called on the current line);

 Step Out (back to the calling function);

BlackCat Debugger Getting Started

Copyright 2010 Ross Higson Page 9 of 23

 Run (to next user breakpoint);

 Increase (left click) or decrease (right click) the font size;

 Search for text in source files;

 Open (or bring to top) the Propeller Communications window.

The file list dropdown box will list all the C source files used in the current
program, and is used to select which source file to display.

The status indicator that indicates whether the program is running or stopped,
and the current program counter.

• A Source panel. This is used to display the file selected in the file list
dropdown box.

• A Bookmark panel. This is used to display a list of lines that have been
“marked” for future attention. It allows easy navigation back to the line in the
future.

• An Output panel. This is where all status information is displayed, and where
the variables visible at each breakpoint are listed.

The Propeller Communications Window

The smaller window that opens when BlackCat is started is referred to as the
Propeller Communications window.

It will appear similar to that shown below:

BlackCat Debugger Getting Started

Copyright 2010 Ross Higson Page 10 of 23

This window contains controls for:

• Selecting the serial port to use, and the baud rate, and opening or closing the
serial port.

• Closing the Propeller Communications Window (it can be re-opened at any
time from the toolbar of the main BlackCat window).

• Viewing communications traffic between BlackCat and the Propeller program.

• Displaying Kernel and Hub or XXM RAM values.

• Selecting whether to use Listing or Absolute addresses. Listing addresses are
those used in the leftmost column of the listing file produced by Catalina – but
you may notice that these are not the actual addresses used within the
instructions themselves – those are absolute addresses.

• Selecting the Address Mode: LMM, XMM SMALL or XMM LARGE. It is
important to do this before a dbg file is loaded.

• Modifying Kernel and Hub or XXM RAM values (these controls are disabled
by default).

Connecting to the Propeller

The first thing to do once BlackCat is started is to select the serial port and baud
rate. Both USB and RS232 ports can be used. A baud rate of 115200 should be
specified (the program defaults to this). While the baud rate can go up to 921600 but
this requires changes to be made to the compiled program (i.e. by manually editing
Catalina_Common_Input.spin).

A baud rate of 115200 was chosen as the default as it is appropriate for both USB
and RS232 ports. Higher speeds may work on some platforms but not others.

Once these are selected, press the Open port button. An error message will be
displayed if the port cannot be opened. If the port is opened successfully, there is no
message – but you can check if BlackCat is able to communicate with the debug cog
running on the Propeller by pressing the Show Propeller-side Comms Stats
button.

Once the Com port and Baud Rate are selected, they are remembered from
sessions to session.

Select the Address Mode

Before loading any dbg file, it is important to check the Address Mode. Eventually,
this may be selected for you automatically whenever a dbg file is loaded, but at
present it must be done manually before loading the dbg file!

If you fail to select the correct Address Mode, the results will be unpredictable, and
you will need to shutdown BlackCat and also reload the binary program into the
Propeller.

The setting for this is also remembered from session to session – but it is wise to
check it each time.

BlackCat Debugger Getting Started

Copyright 2010 Ross Higson Page 11 of 23

BlackCat Menu Bar Commands

Open dbg file

You need to tell BlackCat to load a dbg file, which must match the binary currently
being executed on the Propeller. If the two do not match, the results will be
unpredictable.

Since BlackCat immediately starts setting up Virtual Breakpoints once a dbg file is
loaded, the Propeller Communications Window must be used to configure and open
the serial port, and select the address mode, before a dbg file is loaded. This is why
the Propeller Communications window is always opened on top of the BlackCat
window. However, once this task is done the Propeller Communications Window can
often be closed for the remainder of the debug session.

Before a dbg file is loaded, about all you can do is read specific locations from the
kernel or from memory using an absolute address – using listing addresses instead
of absolute addresses is not be valid because it requires information in the dbg file
(this information is displayed in the Relocation Constant (Listing address – final
address) field once a dbg file has been loaded.

Clear Output Panel

This command simply clears the contents of the output panel.

Options

The options menu contains the following additional commands:

Show Virtual Breakpoints

This option (selected by default) determines whether virtual breakpoints will be
shown in the left margin of the source panel. This is handy as it tells you those lines
that have had code generated for them (and hence can hav a breakpoint added) and
those that didn’t.

Show Traffic in Communications Window

This option causes messages to be logged for all commands between BlackCat and
the debug cog visible in the Propeller Communications window. It overrides the
Show Traffic option in that window (which does a similar thing).

Remove all Breakpoints

Remove all user and virtual breakpoints that BlackCat has inserted into the program.

Show Comms Stats

Print current BlackCat communications statistics in the output window. Clear the
counters.

BlackCat Debugger Getting Started

Copyright 2010 Ross Higson Page 12 of 23

Shutdown

Remove all virtual and user breakpoints (if possible), and let the program run as
normal.

This is only possible if the program is still under the control of BlackCat – i.e. it is
stopped at a breakpoint.

Displaying files in the Source Panel

Once a dbg file is loaded, the source file dropdown list will be populated with the
names of all the C source files used in the compilation. The source file containing the
main function will be displayed initially, and the program will be stopped at the entry
point to main.

The left hand column of the source panel shows whether or not there are any virtual
or user breakpoints that refer to the line, and also whether the program is stopped on
the displayed line:

 Virtual Breakpoint

 User Breakpoint

 Program stopped at Virtual Breakpoint

 Program stopped at User Breakpoint

Right clicking in this window brings up the following menu:

Bookmark highlighted line adds the highlighted line to the lines listed in the
bookmark panel. Remove all breakpoints from all files is similar to the Remove all
Breakpoints menu item.

Using Bookmarks

Right-clicking the mouse on a line in the bookmark panel brings up the following
menu:

Go to { line } … displays the highlighted line in the source panel. Delete
highlighted bookmark removes a bookmark, and Clear bookmarks removes all
bookmarks from the current file.

Only the bookmarks for the current file are shown. Bookmarks are saved from
session to session.

BlackCat Debugger Getting Started

Copyright 2010 Ross Higson Page 13 of 23

Managing the Variable “Show” list or Read/Write Variables

The “Show” list is the list of all variables – global or local – that are visible from the
breakpoint at which BlackCat is currently stopped. It is displayed in the output panel
after each and every breakpoint (user or virtual).

If the list of such variables is large, this can be slow, and make it difficult to locate a
value of particular interest.

So BlackCat provides a means of managing the “Show” list. Right clicking on a
highlighted line in the output panel brings up the following menu:

Remove this variable from the ‘Show’ List – remove the highlighted variable from
the list of those shown at each breakpoint.

Add his variable back into the ‘Show’ list – show the highlighted variable at each
breakpoint.

Remove all variables from the ‘Show’ list – do not show any variables at each
breakpoint.

Put all variables back in the ‘Show’ list – show all variables at each breakpoint
again.

Reshow all visible variables once (override ‘Show’ list one time) – show all
variables once – useful to find variables that may need to be added back into the
show list.

Reshow variables using current ‘show’ list – redisplay the current list – useful if
there are variables that may be updated by another executing cog.

Read/Write highlighted Variable – open a dialog box that allows the value of the
highlighted variable to be displayed in more detail, and/or modified (see next
section).

BlackCat Debugger Getting Started

Copyright 2010 Ross Higson Page 14 of 23

Displaying and Editing Variables

When the “Show” list is displayed in the output window, highlighting a line containing
a variable (by left clicking on it) and then right clicking to bring up the menu and
selecting Read/Write highlighted variable displays the Variable Viewer/Modifier
dialog box:

This box contains the name of the variable, its location (register, frame or global), its
current value, and its size (typically 1, 2 or 4 bytes for simple scalars). Also, if the
variable is not a simple scalar (e.g. it is a structure, union or array) the dropdown list
will enumerate all the possible scalars that comprise the variable.

A new value can be written to each scalar, or scalar component of a more complex
variable.

If the variable contains a pointer it can be de-referenced to display the value that the
pointer currently points to (and de-referenced again, if that value is also a pointer).

The format used to display scalar variables is selectable.

An example of using BlackCat

Overview

This section provides a real-world example of using BlackCat. It uses an example
program provided with the BlackCat distribution, which will be located in the
blackcat_demo subdirectory once BlackCat has been installed.

The example program requires an external VGA or TV display and keyboard, but no
mouse or floating point libraries.

Compiling the example program

The example program provided consists of the following C source files:

debug_test.h

debug_main.c

debug_functions_1.c

debug_functions_2.c

BlackCat Debugger Getting Started

Copyright 2010 Ross Higson Page 15 of 23

To build the example program, go to the demo director and run the
build_example.bat batch file provided, specifying your Propeller platform as a
command line parameter. If that platform has multiple CPUs, also specify the CPU.

For example:

build_example TRIBLADEPROP CPU_1

or

build_example DRACBLADE

This will generate the following files:

example.binary

example.dbg

example.lst

debug_main.debug

debug_functions1.debug

debug_functions2.debug

A Code::Blocks project is also provided, which by default builds the example for the
TRIBLADEPROP CPU_1 platform – you may need to edit this to suit your platform.

Note that if you use the batch file to compile the example, the binary output file (and
corresponding lst and dbg files) will be located in the blackcat_demos subdirectory,
whereas if you use Code::Blocks to compile the example, the files will be located in
the blackcat_demos\Example\bin\Debug subdirectory.

Loading the example program

The example program is compiled as an LMM program, so the binary output file
example.binary can be loaded into the Propeller using the Parallax Propeller Tool.

When the binary has been loaded, all the drivers are initialized, so you should see a
blank display appear. However, the C program will not begin to execute until we start
BlackCat.

Starting BlackCat, establishing comms and loading the dbg file

Start BlackCat using the command:

blackcat

When the BlackCat and Propeller Communications windows open, select the serial
port and baud rate (use 115200 baud). Then press Open port.

There is no message, but you can manually verify the serial communications is
working by pressing Show Propeller-side comm stats. You may get an error on the
first attempt, but the second press should work.

BlackCat Debugger Getting Started

Copyright 2010 Ross Higson Page 16 of 23

Here is what you might see if you had your Propeller connected to COM8:

You can now close the Propeller Communications window (press the Close button at
the top right).

The Propeller Communications window can be re-opened by pressing the
button on the toolbar of the main BlackCat window.

In the BlackCat main window, Press Open dbg file. A dialog box will appear in
which you can select the dbg file to load – it must be one that corresponds to the
binary you have loaded into the Propeller.

A message will appear similar to the following while the dbg file is being loaded and
processed:

BlackCat Debugger Getting Started

Copyright 2010 Ross Higson Page 17 of 23

One the load is complete (it may take a few seconds) the example program should
appear in the BlackCat source panel, similar to that shown below:

Note that the blue circle in the margin means the program is stopped at a virtual
breakpoint – this virtual breakpoint is automatically added by BlackCat on
initialization.

Note also that the progress indicator (top right) indicates the address the program is
stopped (in this case 0x5b4), and the output panel contains a message about where
the program is stopped (in main() at line 45) and also a printout of all the variables
visible at this point.

Scroll within the source panel to display more of the main function. You will notice
markers for virtual breakpoints that have been set at every executable line in the
main function. These virtual breakpoints are used to step through the program line
by line, and show where the program will stop at each step (since not all lines have
code generated for them).

Using Step, Step Into & Step Out

To execute a single ‘Step’, you press the button once. Do this now. The
program should step to line 57, the variable list will be displayed in the output
window, and the source panel will appear.

Press ‘Step’ one more time to step to line 60. The display attached to the Propeller
should now show a line of text on it (put there by the function call executed on line
57).

BlackCat Debugger Getting Started

Copyright 2010 Ross Higson Page 18 of 23

The BlackCat window should now appear similar to the following:

This time, instead of pressing ‘Step’ (which steps over function calls), press to
‘Step Into’ those calls. The program will step into the function test_2.

Now press ‘Step’ to step to line 12. Notice how the virtual breakpoints change as
you do so.

BlackCat Debugger Getting Started

Copyright 2010 Ross Higson Page 19 of 23

Then press ‘Step Out’ to return to line 61 – i.e. the line after the procedure we
‘Stepped Into’.

User Breakpoints

Sometimes, we do not want to single step through the program – we just want to set
a user breakpoint on a specific line and let the program run till it reaches it.

To demonstrate user breakpoints, we will set a breakpoint on line 7 of the file
debug_functions_2.c (in function test_11). First, change file by selecting the file
from the file drop down list at the top of the file window. Then put a user breakpoint
by clicking next to line 7 in the left hand margin.

The result will look something like this:

Now we simply want to let the program continue till it reaches this user breakpoint.

To do that we use the ‘Run’ button. This button will cause the program to
execute till it reaches the user breakpoint – it will not stop at virtual breakpoints on
the way. Press it now.

There may be a pause while the program removes all the virtual breakpoints it has
previously placed (to support the single stepping we did earlier), then the program
will proceed.

Note that the program is interactive – you need to press enter on the keyboard a
couple of times. Then the program will stop at line 7.

BlackCat Debugger Getting Started

Copyright 2010 Ross Higson Page 20 of 23

Note that the output panel displays the values of the variables i and j:

We will now modify one of these variables and then let the program continue.

Viewing and Modifying Variables

To view or modify a variable, left click to highlight the line containing the variable in
the output panel (in yellow), then right click to bring up the menu and select
Read/Write highlighted Variable.

A dialog box similar to the following will appear:

This dialog box can be used to display the scalar value of the variable (as a float, an
int, an unsigned int or a hex value), or to de-reference it (if the variable in fact
contains a pointer to a scalar data type rather than the data type itself) by pressing
the Treat value as pointer button. It can also be used to change the current value
of the variable.

You can change the value by typing the new value in the field next to the Write new
Value button, then pressing that button, then Close to close the dialog box. Try this
now – change the value of j to 4.

BlackCat Debugger Getting Started

Copyright 2010 Ross Higson Page 21 of 23

If we ‘Step’ the program, we will see the new value of j in use.

The dropdown list is used to allow the selection of the element of an array, or the
member of a structure. For a simple scalar variable (such as j), the dropdown list
contains only the name of the scalar variable, and can be ignored. To see it in use
for a non-scalar variable, remove the user breakpoint from line 7 of the current file,
and select the file debug_main.c. Put a user breakpoint on line 132 in function
main, just after the calls to test_11. Then press ‘Run’ (if you didn’t remove the user
breakpoint in function test_11, you will need to press ‘Run’ more than once since
that function is called twice).

Then highlight the line containing the variable oldest and open the Read/Modify
dialog box again.

This time, the dropdown list contains a list of all the elements of the oldest structure,
including the element name, which is an array:

In addition to selecting from the list, you can also type in the name of the structure
member or array element and press TAB. If the name is valid it will be displayed.

Combining User and Virtual Breakpoints

While working through this example, we have used both user breakpoints (which we
set and cleared on specific lines) and virtual breakpoints (via the single step
operations).

However, care must be taken when combining the two different types of breakpoint,
as the results can be unexpected.

To see this, select the file debug_functions_2.c again and put a breakpoint on line
41 (in function test_13). Then press ‘Run’ to reach that line.

You may expect that you can now use the ‘Step Out’ operation to go back to line 144
of debug_main.c (i.e. the line after test_13 was called). However, this will not
work. Try it if you like – you will simply lose control of the program, which will then
run to completion without stopping at any further breakpoints.

To understand why this is so (and why BlackCat is a bit ‘unorthodox’ in this respect)
you need to understand what BlackCat is doing with virtual breakpoints.

BlackCat Debugger Getting Started

Copyright 2010 Ross Higson Page 22 of 23

When main is first entered, a virtual breakpoint is placed on each line of the main
function. Then the rules that apply are as follows:

‘Step’ adds a virtual breakpoint to every line in the current function only (if not
already present).

‘Step Into’ adds a virtual breakpoint to the first line of every function in the
program (if not already present).

‘Step Out’ removes the virtual breakpoints from every line in the current function
only, and from the first line of every function.

‘Run’ removes all virtual breakpoints so the program will only stop on user
breakpoints.

This logic means that everything works as expected when using only virtual or only
user breakpoints – but when the two are used in the same program, it is possible to
enter a function without having set the virtual breakpoints that BlackCat relies on to
enable it step out of the function again (i.e. the virtual breakpoints on each line of the
calling function). In summary:

1. ‘Step’ will always work as expected, even after a user breakpoint.

2. ‘Step Into’ will not work as expected after a user breakpoint. If the current function
does not have virtual breakpoints on each line, use ‘Step’ before using ‘Step Into’.

3. ‘Step Out’ will not work as expected after user breakpoint. Instead, put a manual
breakpoint after the calling instead of relying on ‘Step Out’. Once back in the
calling function.

Known Issues with BlackCat
This alpha release of BlackCat has a few limitations and known issues – most of
these are with the Variable Viewer/Modifier dialog box:

• Bit fields are not implemented;

• Enums are not implemented;

• Unions and structures embedded within a structure are not implemented.

• Arrays of pointers to structures cause an exception;

• There is no specific char or char array types – use int or hex to view
individual characters instead.

• The format is not automatically selected (e.g. to display a float value you have
to manually specify that the variable is in fact a float and not an int).

Other miscellaneous issues:

• SMALL XMM mode has been implemented but not tested.

• The source panel cannot be used to display .h files.

• BlackCat cannot resolve symbols that have been redefined using #define.

• The length of the file selection dropdown list is too short too display the full
filename in some cases.

BlackCat Debugger Getting Started

Copyright 2010 Ross Higson Page 23 of 23

Advanced Topics

Debug files and listing files

The .debug files contain ‘stabs’ format information (a common format used to hold
symbol table information for use by debuggers) as generated by the LCC compiler.
This is the raw information that is used to build the .dbg file that BlackCat uses.

The listing files are generated by Homespun, and are useful for determining program
code and data addresses for use in BlackCat. However, note that the addresses
given on the listing are not “real” addresses – they primarily represent where the
object ended up in the binary file generated by Homespun, and this is not
necessarily where the object will be physically loaded at run time. However, once a
dbg file has been loaded into BlackCat, BlackCat can do the necessary conversion
to allow either listing or absolute addresses to be used.

Modifying Kernel and Hub / XMM memory locations

To enable the normally disabled functions in the Propeller Communications Window
to allow kernel and hub memory locations to be modified directly, enter the word
toggle in the Read Kernel @ data entry box, and then press the Read Kernel @
button.

Note that this can only be done while BlackCat is stopped at a breakpoint.

Modifying or Recompiling programs

To prevent erroneous results, if BlackCat detects that important files such as the
source files or the dbg files are modified while the program is being debugged,
BlackCat will print a message in the output panel telling you to shut BlackCat down
and restart it. Not doing so when this message appears will lead to unpredictable
results.

