
Chapter 6

In order to get effective use from our propellers chip we need to be able to

interface any number of devices, that react with the real world, and provide us

with information that we can use with microprocessor. Though there are a number

of devices that you might start with but we going to start with the 3208 because

it allows us to read potentiometers into the propellers chip. We will use the

information that they provide to drive any number of devices from speakers to

motors in our later experiments.

Take a close look at Figure 6-1 herein. Then refer it from time to time so see how

the data transfer takes place. Also see page 16 of the data sheet Figure 5-1

Figure 6-1

Segments of the program to read the 3208 are included in the following text. The

entire program is listed at the end of the chapter and can be run on your

propeller. The program is also on line in the discussion forum if you want to

downloaded it from there it will be easier. (Page 12 post #236)

The 3208 is capable of reading up to eight potentiometers one at a time at about

100,000 reading a second. We will place our potentiometers across 5 V and connect

the wipers of the potentiometers to the eight input lines on the 3208. To start

with, we will use only one potentiometer and it should be connected to Pin one.

Though we are connecting the potentiometer across 5 V it is not necessary that the

potentiometers read across 5 V. There is a ground line, and a reference voltage

line dedicated to the use with the input devices. The limitation is that since

there is only one reference voltage line for all the potentiometers they all have

to play be placed across this same voltage.

We are interested in potentiometers because a potentiometer is a device that is

easily manipulated to provide a variable input. When we build other devices and

connect them to a propellers chip for whatever purpose we may have in mind we can

make the connections through the 3208 to provide the interface. The importance of

a variable signal is to be appreciated, because we want to be able to make sure

that we are actually reading or manipulating a changing signal. The signal may be

an input or may be an output but in either case, we will have to see the results

change in some way to make sure that the device is actually working. If nothing

changes, not much can be deduced.

The 3208 is particularly well suited to our purpose or reading our first device,

because the device is fairly easy to connect to and to use. Here is the procedure

for reading the device. Follow along with the diagrams provided so that you can

see exactly what we are going to do and how the system will respond.

There are four lines that control the operation of the 30 28. They are.

The clock line.

The data input line.

The data output line. We read the signal that comes out of this line

The chip select line.

The chip is dormant when the chip select line is high. We select the chip by

making the chip select line low. When we make the chip select line low the 3028

responds by seeing it as a start signal for the whole next clock cycle.

DAT org 0 'sets the starting point in Cog

generate mov dira, set_dira 'sets direction of the prop pins

 call #chip_sel_lo 'selects chip by pulling line low

 call #Clk_lo 'START. Clock needs to be low to load data

 call #Din_hi 'must start with Din high to set up 3208

 call #Tog_clk 'clk hi-lo to read data

 call #Din_Hi 'SINGLE DIFF Low to load

 call #Tog_Clk 'toggle clock line hi then low to read in the data

The next bit, we send it is a bit that selects the mode in which we want the 3208

to respond. For our purposes, we are interested in a single response and this is

selected by making the data input line, low and toggling the clock chip high and

then low it.

We next send out three the more bits. These bits identify one of the eight lines

that we are going to read. A three bit signal can select one of the eight lines on

the 3208. We will select line 0 in the initial experiment so the address we

transmit to make the selection will be 000. Each line is impressed on the Din line

and each time the clock is toggled high and then low one bits is read the the

3208.

 call #Din_Lo 'D2 Low to load input line selection sequence 000 for line 0

 call #Tog_Clk 'toggle clock line hi then low to read in the data

 call #Din_Lo 'D1 Low to load input line selection sequence 000 for line 0

 call #Tog_Clk 'toggle clock line hi then low to read in the data

 call #Din_Lo 'D0 Low to load input line selection sequence 000 for line 0

 call #Tog_Clk 'toggle clock line hi then low to read in the data

 call #Din_Lo 'blank bit needs a clock cycle, next

 call #Tog_Clk 'toggle clock line hi then low to read in the data

 'next toggle is for the null bit, nothing read

 call #Tog_Clk 'toggle clock line hi then low to read in the data

Once the chip has accepted the three bit signal that the Din line goes into a

don't care state. And we have no interest in it for the rest of the reading

cycle.

Once the 3208 chip now knows, which line to read. It starts sending us the

information about that line as 14 bits released by 14 clock cycles that we sent to

the 3208. The first cycle provides indeterminate information and is to be

ignored. The next bit as a low bit, to make sure we initiate our reading cycle

properly. This bit is to be considered a null bit but it does tells us that the

cycle has started. The next 12 bits are the data that we are interested in, and

they are transmitted one bit at a time. Each bit arriving when the clock goes

from low to high.

 mov dat_red, #0 'Clear register we will read data into

 mov count, #12 'Counter for number of bits we will read

read_bit mov temp, ina 'read in what is in all the input lines

 andn temp, inputmask wz 'mask off everything except Dout line. Set Z flag

 shl Dat_red, #1 'shift reg left 1 bit to get ready for next bit

 if_nz add Dat_red, #1 'if value is still positive add 1 to data register

 call #Tog_Clk 'toggle clock to get next bit ready in Dout

 sub count, #1 wz 'decrement the "bits read" counter. Set Z flag

 if_nz jmp #read_bit 'go up and do it again if counter not yet 0

We read the bits by first clearing the register we are going to read into and then

setting a counter to 12 to represent the 12 bits that we are going to read in. The

bits are read by reading in the entire I/O register and then masking every bit

except that the Dout bit from the 3208. If the masked answer is a one we add one

to the register we are reading into and shift the whole register to the left one

bit. If the red bit is a zero, we'd just shift all the bits left one bit. This

makes the LSB in the register to zero. We do this 12 times and at the end of the

12 cycles. We have the reading from the potentiometer in our register.

 wrlong dat_red, par 'write it in PAR to share it as P.Val

 call #Chip_Sel_Hi 'Put chip to sleep , for low power usage

 jmp #generate 'go back to do it all again

We then write this information into the PAR register and it becomes available to

the SPIN cog in our program, and we can use it for what ever we want. I have

written in the code needed to send what is needed to the parallax serial terminal

both as 12 bits binary and as a decimal quantity. As you manipulate the control

knob of the potentiometer, the readings should go from 0 to 1111_11111111 on line

1 and from zero to 4095 on line 2.

B null | P_VAL

fds.start(31,30,0,115200) 'start console at 115200 for debug output

 cognew(@generate, @P_Val) 'start new cog at "generate" and read variable into P_Val

 cognew(oscope, @stack1) 'open cog to generate osc signals

 cognew(spkr, @stack2) 'open cog to generate speaker signals

 dira[0 ..11]~~ 'sets 12 lines as outputs. 12 lines needed for 1.5 bytes

 repeat 'loop

 global_value:=P_VAL 'endless loop to display data

 outa[0..11] := P_Val 'displays 1.5 bytes of data on the LEDs

 fds.bin(P_val,12) 'print value to the PST in binary to match LEDs

 fds.tx($d) 'new line

 fds.dec(P_val) 'print value as decimal

 fds.tx(" ") 'spaces

 fds.tx($1) 'home to 0,0

 waitcnt(clkfreq/60+cnt) 'flicker free wait

Here is the listing of the entire program.

{{

Program to read a pot

August 05 2011

Sandhu

Works.

Using a speaker or the o'scope is optional.

LEDs and serial terminal both show what is being read

}}

CON

 _clkmode = xtal1 + pll16x

 _xinfreq = 5_000_000

 spkr_line=22

 osc_line=23

VAR

 long global_value

 long stack1[25] 'space for oscope

 long stack2[25] 'space for speaker

OBJ

 fds : "FullDuplexSerial"

PUB null | P_VAL

fds.start(31,30,0,115200) 'start console at 115200 for debug output

 cognew(@generate, @P_Val) 'start new cog at "generate" and read variable into P_Val

 cognew(oscope, @stack1) 'open cog to generate osc signals

 cognew(spkr, @stack2) 'open cog to generate speaker signals

 dira[0 ..11]~~ 'sets 12 lines as outputs. 12 lines needed for 1.5 bytes

 repeat 'loop

 global_value:=P_VAL 'endless loop to display data

 outa[0..11] := P_Val 'displays 1.5 bytes of data on the LEDs

 fds.bin(P_val,12) 'print value to the PST in binary to match LEDs

 fds.tx($d) 'new line

 fds.dec(P_val) 'print value as decimal

 fds.tx(" ") 'spaces

 fds.tx($1) 'home to 0,0

 waitcnt(clkfreq/60+cnt) 'flicker free wait

PRI oscope 'oscilloscope output cog

dira [osc_line]~~ 'set pin direcion as output

 repeat 'loop

 !outa[osc_line] 'invert line

 waitcnt(clkfreq/(global_value+20)+cnt) 'wait suitable for osc view

PRI spkr 'speaker oputput cog

dira [spkr_line]~~ 'set pin direcion as output

 repeat 'loop

 !outa[spkr_line] 'invert line

 waitcnt(clkfreq/(global_value+20)+cnt) 'wait suitable for speaker

DAT org 0 'sets the starting point in Cog

generate mov dira, set_dira 'sets direction of the prop pins

 call #chip_sel_lo 'selects chip by pulling line low

 call #Clk_lo 'START. Clock needs to be low to load data

 call #Din_hi 'must start with Din high to set up 3208

 call #Tog_clk 'clk hi-lo to read data

 call #Din_Hi 'SINGLE DIFF Low to load

 call #Tog_Clk 'clock line hi then low to read in the data

 call #Din_Lo 'D2 Low to load input sel 000 for line 0

 call #Tog_Clk 'clock line hi then low to read in the data

 call #Din_Lo 'D1 Low to load input seq 000 for line 0

 call #Tog_Clk 'clock line hi then low to read in the data

 call #Din_Lo 'D0 Low to load line seq 000 for line 0

 call #Tog_Clk 'clock line hi then low to read in the data

 call #Din_Lo 'blank bit needs a clock cycle, next

 call #Tog_Clk 'lock line hi then low to read in the data

 'next toggle is for the null bit

 call #Tog_Clk 'tlock line hi then low to read in the data

 mov dat_red, #0 'Clear register we will read data into

 mov count, #12 'Counter for number of bits we will read

read_bit mov temp, ina 'read in what is in all the input lines

 andn temp, inputmask wz 'mask off except Dout line. Set Z flag

 shl Dat_red, #1 'shift reg left 1 bit, ready for next bit

 if_nz add Dat_red, #1 'if still positive add 1 to data register

 call #Tog_Clk 'toggle clock to get next bit ready in Dout

 sub count, #1 wz 'decr the "bits read" counter. Set Z flag

 if_nz jmp #read_bit 'go up and do it again if counter not yet 0

 wrlong dat_red, par 'write it in PAR to share it as P.Val

 call #Chip_Sel_Hi 'Put chip to sleep by de selecting

 jmp #generate 'go back to do it all again

'Subroutines

Clk_Hi or outa, clk_bit 'OR it with the Clock Bit to make high

Clk_Hi_ret ret 'return from this subroutine

Clk_Lo andn outa , clk_bit 'ANDN it with the Clock Bi to make low

Clk_Lo_ret ret 'return from this subroutine

Tog_Clk call #Clk_hi 'make clock bit high

 call #clk_lo 'make clock bit low

Tog_Clk_ret ret 'return from this subroutine

Din_Hi or outa , din_Bit 'Makes the Din high

Din_Hi_ret ret 'return from this subroutine

Din_Lo andn outa , din_Bit 'makes Din low

Din_Lo_ret ret 'return from this subroutine

Chip_Sel_Hi or outa , chs_Bit 'Makes Chip select high

Chip_Sel_Hi_ret ret 'return from this subroutine

Chip_Sel_Lo andn outa, chs_Bit 'makes chip select low

Chip_Sel_Lo_ret ret 'return from this subroutine

Read_Next_Bit mov temp, ina 'Get the INA register

 or temp, inputmask 'mask all but Din bit

Read_Next_Bit_ret ret 'return from this subroutine

'Constants. This section is similar to the CON block in SPIN

Set_dira long %00001011_11000000_00001111_11111111 'Set dira register

Chs_Bit long %00000001_00000000_00000000_00000000 'Chip select bit 24

Din_Bit long %00000010_00000000_00000000_00000000 'Data in bit 25

Dout_Bit long %00000100_00000000_00000000_00000000 'Data out bit 26

Clk_Bit long %00001000_00000000_00000000_00000000 'Clock bit 27

inputmask long %11111011_11111111_11111111_11111111 'Mask for Dout bit only

Pin_23 long %00000000_10000000_00000000_00000000 'osc line

Pin_22 long %00000000_01000000_00000000_00000000 'Speaker line

'Variables. This section is similar to the VAR block in SPIN

temp res 1 'temporary storage variable, misc

count res 1 'temporary storage variable, read bit counter

Dat_Red res 1 'temporary storage variable, data being read

My Comments

Everywhere 3208 is refereed to as chip in the PASM comments I think should read 3208.

