
In the Eye
of the
Beholder

Displaying
Messages
with the
LightStick II

Sham J. Greaney

ou walk into the
room and, tucked

spy a vertical column of
LEDs flickering just slightly. “What’s
that thing supposed to do!” you ask
yourself. Shrugging, you redirect your
gaze to more interesting matters. As
you turn away, you think you see
something from the corner of your eye,
but then it’s gone. You look back at
the LEDs to find them still flickering
ever so innocently. Turning away, you
again catch a glimpse of a picture.
You’ve just discovered the LightStick.

Bill Bell’s United States patent [l]
calls his light stick a “Momentary
Visual Image Apparatus.” It is a device
that creates an optical illusion that is
formed by multiplexing the multiple
columns of an image onto a single
column of LEDs. Everyone has seen
examples of m- x n-pixel arrays used to
create two-dimensional images. PC
graphics adapters support 1024 x 768,
800 x 600,640 x 480 to name a few.
Old dot matrix printers supported 5 x 7
characters. From the instant replay
screen in the football stadium to the
graphics display on my HP 48SX, they
all share something in common. The
images all consist of static arrays of m
columns of n picture elements. The
specific spatial displacement in x and y
required by each individual pixel is
provided by the physical display.

What a light stick does differently
is to display all m columns of the
picture on a single column of n pixels.

Construction of the image
depends on the human eye’s persis-
tence of the retina and on its natural,
rapid movements from one point of
fixation to another.

The persistence of the retina gives
you after-images from flash bulbs and
allows you to draw line images with
Fourth of July sparklers. The rapid eye
movements are involuntary and you
are probably unaware of the fact that
you are doing it. Normal visual
activity consists of fixating on a point
of interest, capturing the visual
information, and then rapidly moving
to the next point of interest. During
the transition from one point to the
next, normally no visual information
is gathered. Everything would appear a
blur and is ignored. It is during this
time that the light stick works.

If you look directly at the column
of LEDs, you will perceive it as a
flickering or shimmering stick of light.
As the individual pixels are rapidly
turned on and off it appears that they
are either continuously on, or off, or
being slightly modulated in intensity.
If instead you ignore the stick and let
your eyes wander around the room, the
horizontal motion of your eye will
spread the columns across your retina,
thus building up an image that exists
as long as your persistence of the
retina holds it.

My light stick was inspired by one
of Bill Bell’s light sticks that was on
display at the Exploratorium in San
Francisco back in 1986. The
Exploratorium is a nonprofit science
museum that everyone should visit at
least once, and Bill Bell’s light stick
optical displays are certainly among
the most striking and interesting
pieces of modern art.

Photo l--The image produced by the LighfSfick II is
painted on your retina as you quic/dy look past the
device. While it’s easy to see the image here, if’s gone
in an instant when you look at the real display.

26 Issue #43 February 1994 The Computer Applications Journal

21:
STRB

Figure la--The LiahtStick /I controller couldn’t be simpler, using a COP for the brains, an EPROM to ho/d image data, and a counter fo help with the EPROM addressing. Data
isshiffed out serially to the stick itself.

THE LIGHTSTICK II
The basic operation of LightStick

II is very straightforward. The picture
data is stored in an EPROM (see Figure
1). A microprocessor retrieves the data,
one byte at a time, and shifts it into a
string of 20 serial-to-parallel convert-
ers that are located adjacent to the
LEDs in the stick. This continues until
an entire column-20 bytes-is shifted
in. It waits for a specified period of
time, then strobes the data out onto
the LEDs. Then it goes back and gets
another column. This cycle continues
and repeats after 204 columns.

The hardware consists of two
subassemblies connected via a five-
wire cable: the LED display and the
microprocessor-based controller. The
cable provides DATA, CLOCK, and
STROBE logic signals for the stick as
well as power and ground.

THE STICK
The stick for LightStick II consists

of a single column of 160 LEDs with
National Semiconductor
MC74HC595N serial-to-parallel
converters to drive them. While Figure
lb shows just ten sets of converters
and LEDs, the second group of ten is
wired exactly the same.

I chose HP HDSP4830 lo-segment
bargraph LED modules because of the
ease of lining up 10 LED segments as
opposed to individual LEDs. The
74HC595 allowed me to have a serial
data bus and a 5-wire cable from the
control board to the stick display
board. Five-conductor DIN connectors
made the whole system easy to break
down and reassemble.

I chose the height of 160 pixels
based on the original bitmap that I
wanted to display. I obtained a bitmap
of the AT&T company logo that was
intended for 300-dpi laser printers. The
logo is 150 pixels (or I/, inch) high and
336 pixels wide. The LED arrays are
grouped as 10 LED segments, and the
microprocessor likes to work in &bit
bytes, so 160 is a convenient height.
The logo is 42 bytes (336 pixels) wide,
so I divided it into two pictures and
padded each out to 204 columns so
that each would occupy approximately
one half of the 27C64 EPROM.
Splitting the logo into two parts also
keeps the image simple and easy to
view. More on this later.

THE CONTROLLER
The controller subassembly

consists of a National Semiconductor

COP822 microprocessor emulator, a
five-key keypad, a 27C64 EPROM, an
RCA CD74HC4040E ripple counter to
help out with addressing the EPROM,
and a reset button.

I chose the COP822 based on its
projected cost in large volumes.
Because of its low cost, we were
planning to use the COP822 to replace
some discrete logic in one of our
designs. The LightStick II project
provided an excellent opportunity to
learn how to program the COP822-
and microprocessors in general-since
I am primarily an RF engineer.

The actual processor I used was an
EEPROM COP8722, which was a
limited-production version of the
COP822 emulators used for early
development. National Semiconductor
has since come out with COP8782C
OTP and UV EPROM parts that would
provide a more cost-effective solution
for development and limited produc-
tion use.

The 20-pin COP822 has two I/O
ports available on it: the L port and the
G port. The L port is a full 8 bits wide
while the G port is only 7 bits wide.
The chip also has a timer function and
a serial port. To use the serial port, the
upper 3 bits of the G port are config-

The Computer Applications Journal Issue #43 February 1994 2 7

T O C O N T R O L C A B L E T O S T I C K
I
41 ;:
2: i2
5; :4

Figure 1 b--Twenty serial-to-pm//e/ converters (only half are shown here) are used to receive data sent by the confroffer for display on the LEDs.

V25 POWER COMES TO EMBEDDED CONTROL!
Micromint’s RTCV25 is the perfect marriage of an 8088-compatible processor, programming convenience, and control I/O. Forget
the need for cross-assemblers and cross-compilers; your favorite high-level language for the PC and a “locate” facility are all you
need. The RTCV25 enhances the V25’s power with parallel I/O; A/D conversion; RS-232 and RS-485 serial ports; up to 384K of
RAM and EPROM; a battery-backed clock/calendar; 128 byte EEPROM, ROM monitor, and the RTC stacking bus. Ease of code
development combined with its small size and low power consumption make the RTCV25 ideal for all embedded control applica-
tions. And of course the RTCV25 is compatible with Micromint’s full line of RTC peripheral boards and products.

Features:

- 8 MHz CMOS NEC
V25 processor

- Up to 384K of RAM
and EPROM

- Two serial ports
l Battery-backed clocki
calendar

l 128 byte EEPROM

* 40 parallel I/O lines
- d-channel, 8- (or lo-) bit ADC
- RTC stacking bus
- Small 3.5” x 5” size
- 5-volt only operation

(150mA max.)
l Full featured ROM monitor
l ROMable operating system

Ff- +@MI~R~MINT, INC.
4 Park%. l Vernon,CT 06066

call l-800-635-3355
1203 871-6170 l Fax:(203)872-2204

28 Issue #43 February 1994 The Computer Applications Journal

ured as Serial Clock, Serial Output,
and Serial Input. Since I am not
interested in receiving serial data, I
grounded G6, the Serial Input. The
lower 4 bits of the G port are used to
control the addressing of the EPROM
(with help from the 74HC4040) and to
control the strobe signal to the
74HC595s. The strobe signal is also
used to activate the 5-key keypad. I
use the L port for data input from both
the 8bit-wide data from the EPROM
and the 5-bit-wide keypad.

The image size of 204 x 160 (4080
bytes] allows two uncompressed
images in the 64K-bit ROM. Keep in
mind that the final image exists only
in the persistence of the viewer’s
retina, so you want to keep it as
narrow and as simple as possible.

The keypad is used to control the
display of the image. I set a default
time delay between column strobes
that is a compromise between how
narrow the image will appear and how
much the leading edge of the image
fades by the time the trailing edge is
displayed. You may adjust this time

delay using the “faster” and “slower”
keys on the keypad. The three other
keys allow you to invert the image,
choose between the two images in the
ROM, and toggle between Normal and
Slow mode. In Slow mode the control-
ler clicks off a column every 100 ms
(adjustable) for diagnostic purposes.
Also, in Slow mode, pressing both
“faster” and “slower” together puts
you into a Halt mode where you can
single step through the ROM one
column at time.

THE POWER SUPPLY
The HP HDSP4830 LEDs are rated

at a maximum DC forward current of
30 mA. At 20 mA, the typical forward
voltage is 1.6 V. I chose to run them at
the maximum DC current to get as
much light out as possible while still
allowing for the Halt mode where the
LEDs may be illuminated for an
indeterminate period of time-a 100%
duty cycle. I make the assumption that
the forward voltage will approach 2.0
V at 30 mA. This leads to a current-
limiting resistor of lOOR. Fortunately,

each current-limiting resistor only
dissipates a maximum 116 mW, so I
chose a resistor array package, making
the assembly more elegant. The LEDs
are conservatively rated; I plan to use
them in pulsed mode most of the time,
and, most importantly, I socketed
them.

Assuming a worst-case LED
current of 34 mA, 160 LEDs on would
draw 5.44 A! This is not counting the
shift registers and control circuits. I
chose a supply that sources 6 A at 5 V.

SOFTWARE
The COP800 cross-assembler

listing for the most recent version of
microprocessor code is available on the
Circuit Cellar BBS. The comments in
the beginning include the values
stored in memory locations unique to
the COP8722 EEPROM emulator.
Address 804 prevents modifying the
ROM section once programmed.
Address 805 contains configuration
information relating to the mask-
selectable oscillator options: divide by
10 or 20 and either RC, crystal, or

EXPRESS CIRCUITS
MANUFACTURERS OF PROTOTYPE PRINTED CIRCUITS FROM YOUR CAD DESIGNS

TURN AROUND TIMES AVAILABLE FROM 24 HRS - 2 WEEKS

Special Support For:

l TANGO.PCB l FULL TIME MODEM
l TANGO SERIES II l GERBER PHOTO PLOTTING
l TANGO PLUS
l PROTEL AUTOTRAX
l PROTEL EASYTRAX
l smARTWORK
l HiWIRE-Plus
l HiWIRE II
l EE DESIGNER I
l EE DESIGNER III
l ALL GERBER FORMATS

WE CAN NOW WORK FROM
YOUR EXISTING ARTWORK BY
SCANNING. CALL FOR
DETAILS!

Exmess
Circuits - Quotes:

l-800-426-5396
Phone: (919) 667-2100

Fax: (919) 667-0487

1150 Foster Street l PO. Box 58
Industrial Park Road

Wilkesboro, NC 28697

#113
The Computer Applications Journal Issue #43 February 1994 2 9

1Configure I/O
Ports

szROWREG=20

Strobe Column on
the Stick (G3)

COLREG..
COLREG-1

I

LStop the Timer

ct,KYSCAN

Arm and Start
Timer

ROWREG-20

Clock the
74HC4040 (GO)

XOR Data Byte
with VIDREG

Send Data Byte
Out Serial Port

Stop the Timer

KYSCAN .

Strobe Column on

COLREG=
COLREG - 1

Figure P-Upon initialization of the Light Sfick, al/ports and registers are set to heir default values. The actual image you
see is the result of data being sent out, very quickly, one column af a fime in the main loop. Other loops include key and
keypad scanning, as well as a half mode.

external clock. I chose crystal and
divide by 20 to give me a 1 -ps clock
with a 20-MHz crystal (the fastest
instruction clock possible). Locations
800 through 803 hex are available for
comments. I used them for the date
and iteration number of the code.

The code may be logically broken
up into five routines: an initialization

routine where default values are set; software interrupt. I have no provi-
two display loops, one fast and one sions for using software interrupts, so
slow; a keypad servicing routine; and if one occurs, it is probably a good idea
an auxiliary halt mode loop. See Figure to reinitialize everything. This routine
2 for a flowchart of the whole system. configures ports L and G, configures

the Control Register,‘and sets the
INITIALIZATION following conditions: do not invert the

This routine is run upon power outgoing data, there is no current
up, hard reset, or in the event of a keypress, the column time delay for

30 Issue #43 February 1994 The Computer Applications Journal

Photo P--The complete LightStick II consists of a
controller board and the display connected by a 5wire
cable. The display stick stands a little under two feef
tall.

Slow mode is 100 ms, the column time
delay for Fast mode is 466 us, and the
serviced flag is set.

MAIN LOOP
The main loop’s primary responsi-

bility is to extract one column of
picture data from the 27C64 and shift
it into the 74HC595s as quickly as
possible so as to allow for maximum
variability in column timing. After
shifting in an entire column, it waits
for the column timer to expire before
strobing the new column onto the
stick and starting over again.

Optimizing the routine for speed
means optimizing for the minimum
number of clock cycles used by the
instructions within the Fast loop. For
this reason, keypad scans are made
outside the loop, in between picture
displays. Register Indirect instructions
only take one clock cycle as opposed
to three clock cycles for Memory
Direct instructions. If two or more
instructions are going to operate on
the same location in memory (Port G,
for instance), it makes sense to spend
the three clock cycles it takes to load
the address of the memory location
into register B, thereby minimizing the
overall total number of clock cycles.

0RETURN

c5FAST

NOCHNGQ

I/O savings are realized by using SECONDARY LOOP
the 74HC4040 ripple counter to The secondary loop performs
sequentially step through one half of basically the same as the main loop
the 27C64’s address space. Since both except it does a key scan after every
the ripple counter and the 27C64 take column instead of after each complete
a little while to stabilize, I clock the picture since I am not as time con-
74HC4040 immediately after getting a strained.
data byte to maximize the time This loop is really slow, so it
available for this settling. counts up 10 timer periods instead of a

32 Issue #43 February 1994 The Computer Applications Journal

c5RETURN clRETURN

Figure 2-continued

indicating I should repeat
the modification to the
time delay. SE R keeps
track of whether the key
request has been serviced.
H LT indicates Halt mode,
used for branching back
into the Halt routine. PI C
indicates which picture is
current. I NV keeps track
of whether or not to
invert the outgoing data.
F I S indicates either Fast
or Slow mode, used for
branching at the end of
the key scan routine. S LW
is a Slower request, so I
have to increase the time
delay. FST is a Faster
request, so I have to
decrease the time delay.

HALT MODE
Halt mode may

almost be considered a
limited functionality
subroutine of the keypad
routine. When in Halt,
the keypad is continu-
ously examined for one of
only two valid
keypresses: Step or

single timer period for the main loop.
This also changes the effective timer
increment/decrement time slice from
50 us to 500 ps and allows me to use
the same time delay adjustment
routine for both the Fast and Slow
time delays.

Continue. Just as the regular Keypad
routine either jumps back to Fast or
Slow depending on where you came
from, when you get a Step keypress
you go back to the parent process and
execute only one column for Slow or

KEYPADSCAN
The primary responsibility of the

Keypad Scan routine is to get updated
configuration information in between
pictures in the Main Loop or in
between columns in the Secondary
Loop. The types of things you want to
adjust are how quickly you walk
through the columns, which picture
you want to display, whether or not to
invert the picture (“on” for “off” and
“off” for “on”), and which primary
mode you want the processor to
operate in: Fast, Slow, or Halt.

To help me keep track of where I
am in the Keypad Scan, I defined eight
flags. RE P helps me keep track of a key
that is continuously held down

one picture for Fast. When you go for
another key scan you are placed back
in Halt. The only ways out of Halt are
Continue and Reset.

TRANSLATION UTILITIES
Since the column-at-a-time, 204 x

160, two-color picture format is not an
accepted standard yet, a couple of C-
code programs were written to trans-
late data from the existing, more
common standards into STK-light
stick-format. Both of these programs
are available on the Circuit Cellar BBS.

The company logo image data was
given to me in an unformatted 336
wide by 150 high two-color binary file
that was organized as a sequence of
rows starting from the upper left
corner of the picture. That’s 6300
bytes of input picture data. I had to
convert the data into a stream of ASCII
represented hex bytes that were
grouped one column at a time starting
from the upper left hand corner of the
picture.

A friend at work, Tom Recht,
wrote the original translation program
that took the raw binary input file and
rearranged it for LightStick I (yes, there
was a version before this one). I
modified this program to create
X LATE 2 . C, the LightStick II transla-
tion program.

Since the stick is 160 rows high, a
336 x 160 or 6720-pixel buffer is
created and initialized. The binary
input file is then read into this 6720

Photo J--The controller board has Z/F sockets for the the processor and EPROM to make if easier to change the
control code and the image displayed.

The Computer Applications Journal Issue #43 February 1994 3 3

array of bytes where each byte repre-
sents a single pixel of the picture. The
picture is stored in the original data
file such that the most-significant bit
of the first byte is the upper left corner
of the picture, and the buffer is
arranged such that the first byte is the
upper left corner so that the index
loops used to write the data can start
at zero and increase monotonically to
read from left to right and top to
bottom.

The company logo is not exactly
symmetrical, so the first half is only
160 columns wide (20x8) with real
data, and the file is padded with 896
null bytes to pad the 27C64 EPROM to
4096 bytes for the first half of the logo.
The second half has 176 columns of
real data (22x8), so it only needs 576
null bytes of padding to fill the second
4096 bytes of the EPROM.

The output file is written as ASCII
represented hex bytes. Another friend
at work, Bruce Haggerman, wrote a C
utility that takes such a hex file and
adds the appropriate addresses and
checksums to create an Intel hex
format file ready to download to the
PROM programmer.

Eventually, the company logo gets
kind of old. To give myself some
practice coding C, I wrote a program
that takes uncompressed, B&W,
windows BMP image files, pads or
truncates the image to the 204 by 160
light stick size, and generates an ASCII
represented hex output file. I found the
windows BMP file and image headers
explained in “Graphics File Formats.”
PI

In BMPZSTK. C, I tried to write
code that I could easily modify for
other programs. To that end there is a
general-purpose, configurable
f i 1 eopen () routine that tries to get
all the input and output file informa-
tion from the command line argu-
ments. If this fails; it will prompt the
user for the information.

The routine of interest from the
light stick perspective is read () . This
routine defines two structures to
extract size and configuration informa-
tion from the file and image headers.
Using information in the headers, I
check for valid BMP file type, check
for the two-color requirement, and get

Exchange
Working TAU 8

Memory TAU

f-lSet Flag SER

RETURN

INVERTxToggle the
VIDREG

00 <->FF

Toggle G2 Al 2
of the 27C64

+

Set Flag SER

Set Flag HLT

Enable the
Keypad (G3)

I
+

Read the
Keypad
(Port L)

+

Reenable the
27C64 (G3)

+
Find Keypress in
HALT Look-Up

Table

1c

Y Same as
LASTKY ?52N

Store Keypress
in LASTKY I

I

l--lClear SER

Figure 2-continued

34 Issue #43 February 1994 The Computer Applications Journal

Set Flag REP

RETURN

HALT

tlgure n-conmed

loop sizes from the image size data
fields.

The BMP image format requires
the data stored in the BMP file to fall
on 4-byte boundaries for image width.
If the actual image size does not fall
onto a 4-byte boundary, the image data
is padded with garbage out to the next
4-byte boundary. It is the responsibil-
ity of the display program to get the
actual image size from the image
header and to crop this garbage data
out of the displayed image.

I have a 204 wide by 160 high
buffer that is initialized to 00. As I
read the BMP into the buffer, a row at
a time, I check to see if I exceed the
buffer width. If so, I keep reading bytes

in and discard
them. I store the
data into the
buffer one pixel at
a time, from left
to right. If the
image is less than
204 pixels wide
and not an integer
number of 4-byte
blocks wide, I
stop transferring
pixels at the last
data bit of
significance. Since
the buffer is
initially set to all
00, the image is
effectively padded
out to 204 pixels
wide. The other
interesting thing
about BMP files is
that they are
arranged with the
lower left corner
of the picture
first. This means
the upper and
right edge of the
picture will be
clipped if it is
larger than 204 by
160.

The write(1
routine is very
similar to that of
the XLATE2.C
program. It also
pads 16 bytes to

make up the difference between the
4080 bytes in one 204 x 160 light stick
image and the 4096-byte capacity of
half of the 27C64 EPROM. This
program takes two BMP files as input
and generates one STK file as output.

CONCLUSION
LightStick II provides a fairly

flexible architecture for examining the
optical effect described by Bell in his
patent. This allows you to play with
both the type of picture and the
display parameters of the picture. Keep
in mind that the COP assembly code
and the C code were written by an RF
engineer, so if you believe there is a
more efficient or elegant way of

writing the code, you are probably
right. If you do rewrite any of the code
to be more flexible, efficient, or
elegant, I would be interested in
hearing about your efforts.

The type of information that may
be successfully displayed is somewhat
limited by the humans that are going
to observe it. When I first wrote the
B M P 2 ST K . C translation code, I fever-
ishly converted a couple of B&W
digitized pictures to the stick format. I

then spent half an hour getting a sore
neck trying to view them. The best
images are simple geometric shapes,
words with few letters, and stick
figures. Even the Circuit Cellar INK
logo used in the photo for this article
presents a challenging image to view
in its entirety. So, don’t worry if you
are not the most elaborate Paintbrush
artist in the world; the people who
would be required to view your
creation don’t exist yet anyway. q

Shaun Greaney is an RF Design
Engineer at ATdT. He holds a BSEE
from Rensselaer Polytechnic Institute
and an MSEE from the University of
California, Berkeley. He may be
reached at sjg@hocpa.att.com.

1. Bell, Bill, United States Patent
Number 4,470,044, “Momen-
tary Visual Image Apparatus,”
1984.

2. Kay, David C. and John R.
Levine, “Graphics File For-
mats,” Windcrest/McGraw-
Hill, 1992, ISBN 0-8306-3059-
7.

Software for this article is avail-
able from the Circuit Cellar BBS
and on Software On Disk for this
issue. Please see the end of
“ConnecTime” in this issue for
downloading and ordering
information.

I

404 Very Useful
405 Moderately Useful
406 Not Useful

The Computer Applications Journal Issue #43 February 1994 3 5

