
Column #21: Look Into ‘The Eye from TI’ for Precision Light Readings

The Nuts and Volts of BASIC Stamps (Volume 1) •••• Page 209

Column #21, November 1996 by Scott Edwards:

Look Into ‘The Eye from TI’
For Precision Light Readings
TSL230 light-to-frequency chip plus beginner’s race timer project

PHOTODIODES are excellent light sensors—better in most applications than cadmium-
sulfide photocells, phototransistors, photovoltaic cells, etc. What those other devices have
going for them is that their outputs are easier to interface than the tiny variations in
current through a photodiode. Nobody wants to fool around with the analog electronics
required to use photodiodes.

Texas Instruments (TI) looked at this situation and, instead of saying, “ain’t it a
shame” said, “let’s make a product!” The product—actually one of a family of
products—is the TSL230 programmable light-to-frequency converter.7 The TSL230
measures light to the nearest gnat’s whisker using an array of photodiodes, and outputs
Stamp-friendly digital square waves. We’ll look at two strategies for using it with the
Stamps, one for the BS1 and another for the BS2.

In BASIC for Beginners, we’ll lay the foundations of a fairly typical Stamp project: a
three-lane race timer.

7 The TSL230 is now made by TAOS at www.taosinc.com.

Column #21: Look Into ‘The Eye from TI’ for Precision Light Readings

Page 210 •••• The Nuts and Volts of BASIC Stamps (Volume 1)

Figure 21.1: Simplified block diagram of the TSL230 light sensor

The Eye from TI

Figure 21.1 is a block diagram of the TSL230 programmable light-to-frequency
converter. The IC package (an 8-pin DIP) is transparent so that light shining on it reaches
an array of photodiodes. An electronic sensitivity control connects part or all of this
array to a current-to-frequency converter that I’ve labeled “analog magic.” The frequency
ranges from near 0 Hz in darkness to around 1.4 MHz in bright light. The output is fed
into a programmable divider that can pass the signal as-is, or divide it by 2, 10, or 100.

The TSL230 has a couple of especially microcontroller-friendly features: Its OE (output
enable) pin lets you disconnect the output so that it can share a data bus with other
devices. And the sensitivity control may be used to power down the chip to reduce its
current draw from 2mA active to 10mA idle.

Since the TSL230’s output is basically a train of pulses, it’s easy to measure with the
Stamps using the Pulsin instruction available on the BS1 and BS2, or the new Count
instruction on the BS2 only. Figure 21.2 shows the hookup used in the example programs
of Listings 21.1 and 21.2.

Column #21: Look Into ‘The Eye from TI’ for Precision Light Readings

The Nuts and Volts of BASIC Stamps (Volume 1) •••• Page 211

Figure 21.2: Hookup for listings 21.1 and 21.2

Using Pulsin, the Stamp measures the width of a single pulse. This provides a quick
snapshot of the frequency. In order to get decent resolution out of a single pulse
measurement, we want the pulse to be as long as possible without exceeding the max
pulse width (655 ms for BS1 or 130 ms for BS2). To maximize pulse width, I set the
output divider to 100, meaning that each output pulse represents 100 cycles from the
light-to-frequency converter.

With the Count instruction, you can get high resolution by either ensuring that the
frequency is close to the maximum that Count will handle (125 kHz), or by setting the
instruction to count for a long period of time (up to 65 seconds).

Since bright light drives the light-to-frequency converter as high as 1.4 MHz, we have to
set the programmable divider to ensure that the output to the BS2 never exceeds 125 kHz.
The only setting that will do the trick is divide-by-100.

Column #21: Look Into ‘The Eye from TI’ for Precision Light Readings

Page 212 •••• The Nuts and Volts of BASIC Stamps (Volume 1)

With that setting, the max output to the BS2 is 14 kHz. Count has a 16-bit range (65535
max), so it could be set to count as long as 4.6 seconds without overflowing. In the
example program, I used a 1-second count.

Both of the example programs display the effects of cycling the sensitivity settings
through x1, x10, and x100. The sensitivity control is possibly the neatest feature of the
chip. TI refers to it as an “electronic iris,” since it works by controlling the surface area of
the photodiode array used to drive the light-to-frequency converter. Want more
sensitivity? Switch in all the photodiodes. Less? Switch in fewer photodiodes.

Controlling sensitivity can be important to a light-sensing application. For example, I
found that in bright sunlight the x10 and x100 setting returned the same value. The light-
to-frequency converter was saturated—driven as high as it would go regardless of further
input. Only the x1 setting returned usable results in bright sunlight.

In normal room light, I saw the advantage of the higher sensitivity settings. I tried
covering the TSL230 with a piece of transparent plastic cut from a plastic bag. At the
x100 setting, the plastic made a large difference in the light measurement. At x1, it didn’t
make a difference at all.

Applications for the TSL230? TI uses a smart washing machine as an example. The
TSL230 monitors the amount of light passing through the rinse water to determine when
to end the cycle. A similar arrangement might keep tabs on the quality of water in an
aquarium or beer in a vat. Photographic applications, like light metering, exposure
control, color matching, densitometry, etc. seem obvious. Or how about an improved
version of those heart-rate monitors that pass light through the skin? The frequency-
modulated output of the TSL230 ought to be less vulnerable to noise than amplitude-
modulated sensors.

BASIC for Beginners

Programming is about problem-solving, so this month we’ll conduct brainstorming
session aimed at finding a suitable solution to a typical Stamp programming problem.

The problem is this: We want to use a BS1 as a three-lane race timer for a Pinewood
Derby race. This kind of race involves small (6" or so) gravity-powered cars made from
blocks of wood. The cars start simultaneously, and the winner is the car that reaches the
end of the straight, downward-sloping track in the shortest time.

Column #21: Look Into ‘The Eye from TI’ for Precision Light Readings

The Nuts and Volts of BASIC Stamps (Volume 1) •••• Page 213

Figure 21.3: Arrangement of race-timer switches

From an electronic standpoint, let’s assume that we have four switches arranged as shown
in Figure 21.3. The start switch pulses low when the cars leave the starting gate, and the
three finish switches pulse low as their respective cars cross the finish line. The switches
could be simple mechanical devices, or fancier light-beam electronic switches.

The most important function of our program will be to keep an accurate record of the
time from start to finish for each of the cars. A secondary goal will be to have as much
timing precision as possible, since a race may be won by just milliseconds.

The first duty of our program will be to watch the start switch until it goes low, signaling
the start of the race. We have two choices: to read the start pin directly, or to use the
Button instruction, which offers such amenities as switch debouncing and autorepeat.

How to choose? Let’s try to state the function of the start switch as specifically as
possible. The contacts of the start switch will close at the instant the cars are released to
start the race. The switch will bounce (flutter on/off for a few milliseconds) after initially
closing, then stay closed for some indefinite amount of time. Once the cars are on their
way, the switch may reopen after a while.

Column #21: Look Into ‘The Eye from TI’ for Precision Light Readings

Page 214 •••• The Nuts and Volts of BASIC Stamps (Volume 1)

Hmm, switch bounce. Maybe we ought to go for the debouncing feature of Button. Or
should we? After all, it’s the initial switch closure that signals the start of the race, not
what happens after that. Once the race starts, we can completely ignore the start switch.
To put it into computerese, it’s the high-to-low transition that matters. So Button is
unnecessary; we can just watch the pin. A bit of initial coding and we have a test
program:

SYMBOL starter = pin7
hold:
 if starter =1 then hold
 debug "Start!", cr
end

As long as the start switch is open, the Stamp sees a 1 on pin7 (which we have renamed
“starter”). So the program keeps executing the line after hold: over and over. When the
switch closes, starter is equal to 0, so the if...then condition is no longer true. The
program drops down to the next line and prints the "Start!" message on the debug screen.

Now comes the harder part—keeping track of time for each of the racers until they cross
the finish line. The Stamp doesn’t have a timer function, so ‘keeping time’ really means
adding 1 to a counter in a loop that ends when the race is over. For instance, if we had
only one car to keep track of, we could use a variation of the hold loop above:

SYMBOL finish = pin0
SYMBOL time = w2
'... (hold loop here) ...
timing:
 if finish = 0 then raceOver
 time = time + 1
goto timing

raceOver:
 debug "Finish time =", #time, cr
end

While this approach would be fine for one lane, it wouldn’t work at all for three lanes.
The race ends only when all three cars have finished, and a finish switch only pulses
briefly when its car crosses the finish line. Thinking about adding a second lane to that
program, you might be tempted to write:

if finish1 = 0 then raceOver
if finish2 = 0 then raceOver

Column #21: Look Into ‘The Eye from TI’ for Precision Light Readings

The Nuts and Volts of BASIC Stamps (Volume 1) •••• Page 215

Then all timing would stop when either car crossed the finish line. We want race times
for all cars, and for the race to finish only when all cars are done. Another thought might
be:

if finish1 = 0 and finish2 = 0 ...
... then raceOver

No good. This code would only work if car 1 and car 2 finished simultaneously.

The point is that there’s really no way to patch up the one-lane approach to work for three
lanes. Something critical is missing, and we have to figure out what it is before we can
make a working program.

Why did I show you this blind alley? I wanted to talk about courage. That’s right,
courage; it takes guts to throw away an idea that initially seems promising.

The cowardly thing to do would be to attempt to save that first-draft code by adding more
and more instructions to counter each of its deficiencies.

We’re brave and bold enough to say “phooey” to a bad idea. Let’s start over with another
run at the problem in light of that false start.

The primary problem with the one-lane code is that it can’t deal with the fact that the
finish switches only pulse when the cars cross the finish line. If these switches came on
and stayed on, that code would be a lot more viable.

Ah, the snake rears its ugly head. Faced with difficulty, you begin to think about messing
with the hardware to salvage bad software. Resist temptation; hardware mods are a last
resort. Keep thinking.

OK, suppose we store the status of each car as something like “racing” and “finished.”
Then we have a clear-cut condition for keeping time, as in ‘if racing1 = 1 then time1 =
time1+1.’ (Assuming that ‘racing1’ is the status of car1, where 1=in-the-race and
0=finished.) We also have a clear condition for stopping a car’s timer; ‘if finish1 =
0 then racing1 = 0.’ And—hallelujah—we have a condition for ending the whole race; ‘if
racing1 = 0 and racing2 = 0 and racing3 = 0 then all_finished.’

It appears that our racing timer is now on the right track.

Column #21: Look Into ‘The Eye from TI’ for Precision Light Readings

Page 216 •••• The Nuts and Volts of BASIC Stamps (Volume 1)

Next month, we’ll prototype the racing timer application and look at ways to streamline
the code. We’ll see how bit variables can be used as flags, and how to convert If...Then
instructions into compact Boolean logic. I think you will be surprised and pleased to see
how simple the final code is.

' Program Listing 21.1. BS1 Program to Demonstrate TSL230
' Program: TSL230.BAS (Interface with TSL230 light sensor)
' This program demonstrates the light-to-frequency conversion
' capability of the TSL230 sensor from Texas Instruments.
' BS1 pins 0 and 1 control the sensitivity of the '230 through
' its "electronic aperture" feature. The higher the sensitivity,
' the higher the frequency output for a given light intensity,
' as shown below:
' bit1 bit0 Sensitivity
' ---- ---- -----------
' 0 0 sensor OFF
' 0 1 x1
' 1 0 x10
' 1 1 x100
' Since the BS1 measures pulse width rather than frequency, its
' response is reciprocal; larger numbers mean less light. The program
' reverses this by dividing the light-dependent value into 65535.
' The program displays its readings on a 2x16 serial LCD module.

SYMBOL sens = b2 ' Sensitivity setting.
SYMBOL mult = b1 ' Multiplier for a given sensitivity.
SYMBOL light = w2 ' Light-intensity reading.
SYMBOL I = 254 ' Instruction prefix for LCD.
SYMBOL one = 128 ' Address of 1st LCD line.
SYMBOL two = 192 ' Address of 2nd LCD line.
dirs = %00000011 ' Make pins 0 and 1 outputs.

again: ' Main program loop.
for sens = 1 to 3 ' Walk through sensitivity settings.
 pins = sens ' Write sensitivity setting to pins.
 lookup sens,(0,1,10,100),mult ' Get the sensitivity multiplier.
 pulsin 2,1,light ' Take a light reading.
 light = 65535/light ' Compute reciprocal.
 serout 7,n2400,(I,one,"multiplier: x",#mult," ") ' Display.
 serout 7,n2400,(I,two,"light: ",#light," ")
 pause 1000 ' Wait a second between readings.
next ' Next sensitivity.
goto again ' Repeat forever.

Column #21: Look Into ‘The Eye from TI’ for Precision Light Readings

The Nuts and Volts of BASIC Stamps (Volume 1) •••• Page 217

' Program Listing 21.2. BS2 Program to Demonstrate TSL230
' Program: TSL230.BS2 (Interface with TSL230 light sensor)
' This program demonstrates the light-to-frequency conversion
' capability of the TSL230 sensor from Texas Instruments.
' BS1 pins 0 and 1 control the sensitivity of the '230 through
' its "electronic aperture" feature. The higher the sensitivity,
' the higher the frequency output for a given light intensity,
' as shown below:
' bit1 bit0 Sensitivity
' ---- ---- -----------
' 0 0 sensor OFF
' 0 1 x1
' 1 0 x10
' 1 1 x100
' This BS2 program uses the COUNT instruction to count the number
' of TSL230 output cycles over a period of 1 second. This approach
' trades a relatively long measurement period for excellent
' resolution and accuracy. For a quick-and-dirty measurement,
' the PULSIN approach used with the BS1 could be employed instead.
' The program displays its readings on a 2x16 serial LCD module.

sens var byte ' Sensitivity setting.
mult var byte ' Multiplier for a given sensitivity.
light var word ' Light-intensity reading.
I con 254 ' Instruction prefix for LCD.
one con 128 ' Address of 1st LCD line.
two con 192 ' Address of 2nd LCD line.
n2400 con $418d ' Serial constant for 2400 bps

dirs = %00000011 ' Make pins 0 and 1 outputs.

again: ' Main program loop.
for sens = 1 to 3 ' Walk through sensitivity settings.
 OUTS = sens ' Write sensitivity setting to pins.
 lookup sens,[0,1,10,100],mult ' Get the sensitivity multiplier.
 count 2,1000,light ' Count pulses for 1 second.
 Serout 7,n2400,[I,one,"multiplier: x",DEC mult," "] ' Display.
 serout 7,n2400,[I,two,"light: ",DEC light," "]
next ' Next sensitivity.
goto again ' Repeat forever.

