VAKXV

Maxim > App Notes > VIDEO CIRCUITS

Keywords: Video, On-Screen Display, Security Cameras, DVRs, Switchers, Composite Video, Video Switch Matrix, CCTV Cameras, OSD, Video Mar 31, 2008
Monitors, Video Recorders, PTZ Cameras, SPI Interface, Software Routines, MAX7456, Monochrome OSD, Code for MAX7456

C-Code Software Routines for Using the SPI Interface on the MAX7456 On-Screen
Display

Abstract: The MAX7456 on-screen display (OSD) generator has an SPI™-compatible control interface. This application note describes the
operation of the SPI interface. The article also includes C-code that a microcontroller can use to control the part through a bit-banged SPI

interface.

The MAX7456 Serial Interface

The MAX7456 single-channel, monochrome on-screen display (OSD) generator is preloaded with 256 characters and pictographs, and can
be reprogrammed in-circuit using the SPI port. The SPI-compatible serial interface programs the operating modes, the display memory, and
the character memory. Read capability permits both write verification and reading of the Status (STAT), Display Memory Data Out (DMDO),
and Character Memory Data Out (CMDO) registers. For detailed information on the MAX7456 registers and memory organization, refer to
the product data sheet and to application note 4117, "Generating Custom Characters and Graphics by Using the MAX7456's Memory and EV

Kit File Formats."

The MAX7456 supports interface clocks (SCLK) up to 10MHz. Figure 1 illustrates writing data and Figure 2 illustrates reading data from
the device.

To write to a register, bring active-low CS low to enable the serial interface. Data is clocked in at SDIN on the rising edge of SCLK. When
active-low CS transitions high, data is latched into the input register. If active-low CS goes high in the middle of a transmission, the
sequence is aborted (i.e., data is not written to the registers). After active-low CS is brought low, the device waits for the first byte to be
clocked into SDIN before it can identify the type of data transfer being executed.

To read a register, bring active-low CS low as described above. The address is clocked in at SDIN on the rising edge of SCLK, as described
above. The data is then clocked out at SDOUT on the falling edge of SCLK.

The SPI commands are 16 bits long; the 8 most significant bits (MSBs) represent the register address and the 8 least significant bits (LSBs)
represent the data (Figures 1 and 2). There are two exceptions to this arrangement:

1. Autoincrement write mode, used for display memory access, is a single 8-bit operation (Figure 3). The start address must be set
before the data is written. When performing the autoincrement write for the display memory, the 8-bit address is internally
generated; only 8-bit data is required at the serial interface, as shown in Figure 3.

2. Reading character data from the Display Memory, when in 16-bit Operation Mode, is a 24-bit operation (8-bit address + 16-bit

data).

When performing a read operation, only an 8-bit address is required, as shown in Figure 2.

SDIN — 0 |AG|AS|A4| A3 (A2 A1|AD(DT|DE6|D5(D4| D3| DZ2| 01| DO —

e TN RN

Figure 1. Write operation.

http://www.maxim-ic.com/
http://www.maxim-ic.com/
http://www.maxim-ic.com/appnotes10.cfm
http://www.maxim-ic.com/appnotes10.cfm/ac_pk/26/ln/en
http://www.maxim-ic.com/max7456
http://www.maxim-ic.com/an4117
http://www.maxim-ic.com/an4117

&—I —

SDIM = 1 | AB| AS| A4 AZ|AZ| A1 AD

sSDOuUT O7|D6|05\D4|D3) 02|01 |00 X —

Figure 2. Read operation.

7 B

S0iN — | D7 DG |05 (D4 D3 02| D | D0 f—

Figure 3. Write operation in autoincrement mode.

C-Code Routines

The C-code described below has been compiled for the MAXQ2000 microcontroller, which is used on the MAX7456 evaluation (EV) kit. The

complete set of software routines is available in this application note. The routines are self-documenting, so little additional description is
provided. The C-Code below is also available in the following files: spi.c and MAX7456.h

The code uses the standard nomenclature for the SPI lines. The MAXQ2000 processor is the SPI master and the MAX7456 is the SPI slave.

CS is the same as is used in the MAX7456 data sheet.
SDIN is referred to as MOSI (master out slave in).
SDOUT is referred to as MOSI (master in slave out).
SCLK is referred to as CK.

The prefix SPI_is used on all lines.

Data Structures

The data structure shown below is used to access data directly or bit by bit. This is used to access the pins for the SPI port
individually. (C++ and some newer C compilers support the bit-field union/struct syntax.)

/* Port 5 Qutput Register */
_no_init volatile __io union

unsi gned char PO5;

struct

{
unsi gned char bit0
unsi gned char bit1l
unsi gned char bit2
unsi gned char bit3
unsi gned char bit4
unsi gned char bit5
unsi gned char bit6
unsi gned char bit7

} PO5_bit;

RPRRRRRRE

}

This code assigns a single byte to PO5, which is the address of the microcontroller's output port. It then assigns another byte to the same

http://www.maxim-ic.com/maxq2000
http://www.maxim-ic.com/max7456evkit
http://www.maxim-ic.com/tools/other/appnotes/4184/4184_spi.c
http://www.maxim-ic.com/tools/other/appnotes/4184/4184_max7456.h

memory address that can be accessed bit by bit.

Therefore, the port can be addressed directly by using commands like:

PO5 = 0x10;

Or bit by bit by using commands like:

PO5_bit.bit4 = 1;

This structure can be customised if the code is used on different processors.

If using an older C compiler which does not support the bitfield width specifier, the bitwise boolean operators can be used to set and clear
bits:

/* Portable bit-set and bit-clear nmacros. */
#define BI T_SET(sfr, bitmask) sfr |= (bitnmask)
#define BIT_CLR(sfr, bitmask) sfr &=~ (bitnmask)
#define BI TO 0x01

#define BI T1 0x02

#define BI T2 0x04

#defi ne BI T3 0x08

#define Bl T4 0x10

#define BI T5 0x20

#define BI T6 0x40

#define BI T7 0x80

exanpl e: BI T_SET(PCb, BI TO); BI T_CLR(PGO5, BI T6) ;

Macros

There is a simple tip to make the routines more mobile: use macros to define the controller pin assignments, as shown below.

#define SPI_CS PC6_bit.bit4 /1 POb_bit.bitd4 = active-low CS—hip sel ect

#define SPI_MOSI PC5_bit.bits /1 POb_bit.bit5 = MOSI —mster out slave in,
/] data to MAX7456

#define SPI_M SO PI5_bit.bit7 /1 POb_bit.bit7 = M SO+aster in slave out,
/] data from MAX7456

#define SPI_CK PC6_bit.bit6 /1 POb_bit.bit6 = SCK - SPI clock

Using these macros and the data structure above, one can set and reset each pin in an 10 port individually with commands such as:
SPI_CS =1;

Changing the macros will move the pins around. This is useful if the code is to be used in different designs that assign different pins for the
SPI port, or if the pins need to be reassigned for better PCB routing.

Code for a Single-Byte Write

The code for a single-byte write operation (Figure 1) is shown below. If one can guarantee that the active-low CS and CK lines are at the
correct state on entry, the first two instructions can be removed.

The routine first sends the address followed by the data. Two loops are used for this. It is possible to simplify the routine by using a single
loop and a 16-bit data store. Rotating a 16-bit "int" takes longer than rotating an 8-bit "char" on the MAXQ2000 microcontroller, so a trade-
off has been made.

/**

* spiWiteReg

*

* Wites to an 8-bit register with the SPI port

******‘k****************‘k****************‘k***********‘k*************‘k**‘k************k****/

voi d spi WiteReg(const unsigned char regAddr, const unsigned char regData)

{
unsi gned char SPI Count ; /] Counter used to clock out the data
unsi gned char SPI Dat a; /1 Define a data structure for the SPI data
SPI _Cs ; /'l Make sure we start with active-low CS high

SPI _CK ; /1 and CK | ow

SPI Data = regAddr; /| Preload the data to be sent with Address

SPI _CS = 0; /1 Set active-low CS lowto start the SPI cycle
/1 Although SPIData could be inplenented as an "int",
/1 resulting in one
/1 loop, the routines run faster when two | oops
/1 are inmplemented with
/1 SPlData inplenented as two "char"s.

for (SPICount = 0; SPICount < 8; SPI Count ++) /'l Prepare to clock out the Address byte
{
if (SPlData & 0x80) /1 Check for a1l
SPI_MOSI = 1; /1 and set the MOSI |ine appropriately
el se
SPI _MOSI = 0;
SPI _CK = 1; /'l Toggle the clock line
SPI _CK = 0;
SPI Data <<= 1; /'l Rotate to get the next bit
} /1 and | oop back to send the next bit

/'l Repeat for the Data byte

SPI Data = regDat a; /1 Preload the data to be sent with Data
for (SPICount = 0; SPICount < 8; SPI Count ++)
{
if (SPIData & 0x80)
SPI _MOSI = 1;
el se
SPI _MOSI = 0;
SPI_CK = 1;
SPI_CK = 0;
SPI Data <<= 1,
}
SPI_CS = 1;
SPI _MOSI = 0;

Code for a Byte-Read Operation

The code for a byte-read operation (Figure 2) is shown below. It is similar to the routine above. The address is first sent, and the data is
read back by toggling the clock and then reading in the data from the MISO line.

/**

* spi ReadReg
*

* Reads an 8-bit register with the SPI port.

* Data is returned.
**/

unsi gned char spi ReadReg (const unsigned char regAddr)

{

unsi gned char SPI Count; /'l Counter used to clock out the data
unsi gned char SPI Dat a;
SPI_Cs = 1; /'l Make sure we start with active-low CS high
SPI _CK = 0; /1 and CK | ow
SPI Dat a = regAddr; /'l Preload the data to be sent with Address and Data
SPI_CS = 0; /1 Set active-low CS lowto start the SPI cycle
for (SPICount = 0; SPICount < 8; SPI Count ++) /'l Prepare to clock out the Address and Data
{

if (SPIData & 0x80)

SPI_MOSI = 1;
el se
SPI _MOSI = 0;

SPI_CK = 1;

SPI_CK = 0;

SPI Data <<= 1,
} /1 and | oop back to send the next bit
SPI _MOSI = 0; /'l Reset the MOSI data line
SPI Data = 0;
for (SPICount = 0; SPICount < 8; SPICount ++) /'l Prepare to clock in the data to be read

{

SPI Dat a <<=1; /!l Rotate the data

SPI_CK = 1; /1l Raise the clock to clock the data out of the MAX7456
SPI Data += SPI_M SO /1l Read the data bit
SPI_CK = 0; /'l Drop the clock ready for the next bit

} /1 and | oop back

SPI_CS = 1; /1 Raise CS

return ((unsigned char) SPI Dat a) ; /1 Finally return the read data

}
Code for a Byte-Write Operation Using Autoincrement

The code for a byte-write operation using the autoincrement function (Figure 3) is shown below. It, too, is similar to the single-byte write
routine above. The address is first sent, and the data is read back by toggling the clock and then reading in the data from the MISO line.

/**

* spi WiteRegAut ol ncr

*

* Wites to an 8-bit register with the SPI port using the MAX7456's autoi ncrenment node

**/

voi d spi WiteRegAutol ncr(const unsigned char regData)

{
unsi gned char SPI Count; /'l Counter used to clock out the data
unsi gned char SPI Dat a; /1 Define a data structure for the SPlI data.
SPI_CS = 1; /'l Make sure we start with active-low CS high
SPI_CK = 0; /1 and CK | ow
SPI Data = regDat a; /'l Preload the data to be sent with Address and Data
SPI _CS = 0; /1 Set active-low CS lowto start the SPI cycle
for (SPICount = 0; SPICount < 8; SPI Count ++) /'l Prepare to clock out the Address and Data
if (SPlData & 0x80)
SPI_MOSI = 1;
el se
SPI_MOSI = 0;
SPI_CK = 1;
SPI _CK = 0;
SPI Data <<= 1,
} /'l and | oop back to send the next bit
SPI_MOSI = 0; /!l Reset the MOSI data line
}

Code to Write to the Display Memory Using Autoincrement

The following routine uses the autoincrement function to write to the display memory. The code uses a global variable array called "data". It
is defined below:

extern vol atil e unsigned char data[DATA BUF_LENGTH] ;

DATA BUF_LENGTH = 968

When the routine is called, data[] contains the display memory to be written as below:

data[0] = ignored (contains a command byte used by the EV kit GU software)
data[1l] = character byte 1

data[2] = attribute byte 1

data[3] = character byte 2

data[4] = attribute byte 2

etc.

Autoincrement mode is terminated by writing OxFF. Hence, character OxFF cannot be written to the display in this mode. If this is required,
a single-byte write can be used.

/**

* spiWiteCM

*

* Wites to the Display Menory (960 bytes) from "data" extern.
* 960 = 16 rows x 30 colums x 2 planes {char vs. attr} screen-position-indexed nenory

~k**~k**********~k***********~k**~k*~k***********~k**~k*********************************/
void spiWiteCM) /1 On entry: global data[l..960]

/'l contains char+attr bytes

/1 (optionally term nated by OxFF data)

/1l First, wite data[1,3,5,...] Character plane;
/1 MAX7456 WiteReg(0x05, 0x41)

/] "Character Menory Address Hi gh";

/1 0x02: Attribute bytes;

/'l 0x01: character nenory address nsb

{
vol atile unsigned int |ndex = 0x0001,; /1 Index for |ookup into
/1 data[l..960]
spi Wi teReg(DM _ADDRH _WRI TE, 0x00) ; /1 initialise the Display Menory high-byte
spi WiteReg(DM ADDRL_WRI TE, 0x00) ; /1 and the | ow byte
spi WiteReg(DM MODE_WRI TE , 0x41); /1 MAX7456 WiteReg(0x04,0x41) "Display Menory Mbode";
/1 0x40: Perform 8-bit operation; 0x01: Autol ncrenent
Do /'l Loop to wite the character data
if (data[lndex] == OxFF) { /'l Check for the break character
break; } /1 and finish if found
spi Wi teRegAut ol ncr(data[| ndex]); /'l Wite the character
I ndex += 2; /1 Increment the index to the next character,
/'l skipping over the attribute
} while(lndex < 0x03Cl); /1 0x03Cl1 = 961
/1 and | oop back to send the next character
spi Wit eRegAut ol ncr (0xFF) ; /1 Wite the "escape character" to end Autol ncrenent
/1 node
spi WiteReg(DM ADDRH WRI TE, 0x02) ; /1 Second, wite data[2,4,6,...]
/1 Attribute plane; MAX7456
/1 WiteReg(0x05, 0x41)
/1 "Character Menory Address H gh";
/1 0x02: Attribute bytes; 0x01l:character nmenory address
/1 msb
spi WiteReg(DM ADDRL_WRI TE, 0x00) ;
spi WiteReg(DM MODE_WRI TE, 0x41); /'l MAX7456 WiteReg(0x04, 0x41) "Character Menory
/1 NMode"; 0x40: Perform 8-bit operation; 0x01: Auto-
/'l 1 ncrenent
I ndex = 0x0002;
do
if (data[lndex] == OxFF)
br eak;
spi Wit eRegAut ol ncr (dat a[I ndex]) ;
I ndex += 2;
} while(lndex < 0x03C1);
spi Wit eRegAut ol ncr (0xFF) ;
}

Code to Write to the Character Memory

The following routine writes a single character to the character memory. Each character is 12 pixels by 18 lines, totalling 216 pixels. Since
each byte defines four pixels, 54 bytes are required to define each character. The data for the character is held in data[] on entry. (This is
similar to the above routine for writing to the display memory.)

Writing to the character memory is worth some extra explanation. The memory is nonvolatile and, therefore, writing to it takes around
12ms and is performed by the MAX7456 itself. Only whole characters of 54 bytes can be written to the character memory.

The device contains a 54-byte shadow memory. This memory is first filled with the character data to be written. The device is then triggered
to write this data to the NVM character memory.

There are several registers used to write to the character memory:

1. Character Memory Mode = 0x08. Write OxAO to this register to trigger the device to write the shadow memory to the NVM character
memory.

2. Character Memory Address High = 0x09. This contains the address of the character to be written.

3. Character Memory Address Low = OxOA.

4. Character Memory Data In = 0x0B
5. Status = OxAO. Read from this to determine when the character memory is available for writing.

On entry, data[1] contains the address of the character to be written, data[2...54] contains the data for the character.

To write a character to the NVM character memory, first write the address of the character. Each byte is then written to the shadow

memory. There is no autoincrement mode for writing to shadow memory, so the address within the shadow memory must be written each
time. The shadow memory can then be written to the NVM character memory by writing OxXAO to the Character Memory Mode register. The

device will then set the Status register bit 5 high to indicate that the character memory is not available for writing. Once completed, the
device will reset this bit low. No attempt should be made to write to the shadow memory while it is being transferred to the character
memory.

To avoid causing objectionable display flicker, the routine disables the OSD before writing to the character memory.

/**

* spiWiteFM
*

* Wites to the Character

Menory (54 bytes) from "data" extern

**/

voi d

{

spi WiteFM)
unsi gned char | ndex;

spi WiteReg(VI DEO MODE 0 _WRI TE, spi ReadReg
(VI DEO_MODE_0_READ) & O0xF7);
spi WiteReg(FM ADDRH_WRI TE, data[1]) ;

for(lndex = 0x00; Index < 0x36; |ndex++)

{

spi WiteReg(FM ADDRL_WRI TE, | ndex) ;

spi WiteReg(FM DATA | N WRI TE, dat a[| ndex + 2]);
}

spi Wi t eReg(FM_MODE_WRI TE, 0xA0) ;

whi | e ((spi ReadReg(STATUS_READ) & 0x20) != 0x00);

Header File for the MAX7456

/1 Clear bit 0x08 to DI SABLE the OSD di spl ay

/1 Wite the address of the character to be witten
/'l MAX7456 glyph tile definition

/1 length = 0x36 = 54 bytes

/1 MAX7456 64-byte Shadow RAM accessed

/1 through FMDATA .. FM ADDR.. contains a single
/'l character/glyph-tile shape

/!l Wite the address within the shadow RAM
/! Wite the data to the shadow RAM

/'l MAX7456 "Font Menory Mode" wite OxXAO triggers
/'l copy from 64-byte Shadow RAMto NV array.

/1 Vit while NV Menory status is BUSY
/1 MAX7456 OxAO status bit 0x20: NV Menory Status
/'l Busy/ ~Ready

The following listing is a header file for the MAX7456. This code defines the register map for the device.

[Kk ks ks ks ke ks ks sk sk sk sk sk sk sk sk sk sk sk ko sk ke sk sk sk ko sk ko sk ko ko ko ok koK kK ok ok kK

* spi WiteRegAutol ncr

*

* Wites to an 8-bit register with the SPI port by using the MAX7456's autoi ncrenment node

***********************‘k****************‘k***/

#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i

#def i
#def i
#def i
#def i
#def i
#defi
#def i

ne VI DEO MODE_O_WRI TE 0x00
ne VI DEO_MODE_O_READ 0x80
ne VI DEO MODE_0_40_PAL 0x40
ne VI DEO_MODE_0_20_NoAut oSync 0x20
ne VI DEO MODE _0_10_Syncl nt 0x10
ne VI DEO MODE_0_08_EnGOsD 0x08
ne VI DEO MODE_0_04_Updat eVsync 0x04
ne VI DEO MODE_0_02_Reset 0x02
ne VI DEO_ MODE_0_01_EnVi deo 0x01
ne NTSC 0x00
ne PAL 0x40
ne AUTO_SYNC 0x00
ne EXT_SYNC 0x20
ne | NT_SYNC 0x30
ne OSD_EN 0x08
ne VERT_SYNC | WM 0x00

/| MAX7456 VI DEO MODE_O regi ster

/1 VI DEO MODE 0 bitmap

#def i ne VERT_SYNC VSYNC 0x04

#define SW RESET 0x02
#defi ne BUF_EN 0x00
#defi ne BUF_DI 0x01

/1 MAX7456 VI DEO MODE 1 register
#define VIDEO MODE_1_WRI TE 0x01
#define VI DEO_MODE_1_READ 0x81

/1 MAX7456 DM MODE regi ster
#defi ne DM_MODE_WRI TE 0x04
#defi ne DM _MODE_READ 0x84

/1 MAX7456 DM ADDRH regi ster
#defi ne DM_ADDRH WRI TE 0x05
#defi ne DM ADDRH_READ 0x85

/1 MAX7456 DM ADDRL regi ster
#defi ne DM _ADDRL_WRI TE 0x06
#defi ne DM _ADDRL_READ 0x87

/1 MAX7456 DM CODE_I N regi ster
#define DM CODE_I N WRI TE 0x07
#defi ne DM _CODE_| N_READ 0x87

/1 MAX7456 DM CODE_OUT register
#def i ne DM_CODE_OUT_READ 0xBO

/1 MAX7456 FM _MODE regi ster
#defi ne FM_MODE_VRI TE 0x08
#defi ne FM_MODE_READ 0x88

/'l MAX7456 FM ADDRH regi ster
#defi ne FM_ADDRH WRI TE 0x09
#defi ne FM_ADDRH_READ 0x89

/1 MAX7456 FM ADDRL regi ster
#defi ne FM_ADDRL_WRI TE 0x0A
#defi ne FM_ADDRL_READ O0x8A

/1 MAX7456 FM DATA I N register
#define FM_DATA | N WRI TE 0x0B
#define FM_DATA | N_READ 0x8B

/| MAX7456 FM DATA_OUT regi ster
#defi ne FM _DATA OUT_READ 0xCO

/1 MAX7456 STATUS regi ster
#defi ne STATUS_READ 0xA0
#defi ne STATUS 40 RESET BUSY 0x40
#def i ne STATUS_20_NVRAM BUSY 0x20
#define STATUS 04_LCOSS_OF_SYNC 0x04
#defi ne STATUS_02_PAL_DETECTED 0x02
#define STATUS 01_NTSC_DETECTED 0x01

/1 MAX7456 requires clearing OSD Bl ack Level

/'l register bit O0x10 after reset
#defi ne OSDBL_WR 0x6C
#defi ne OSDBL_RD OxEC

#define OSDBL_10_Di sabl eAut oBl ackLevel 0x10

Conclusion and Performance

The MAX7456 EV kit uses the MAXQ2000 microcontroller that runs at 20MHz clock. This microcontroller contains an internal hardware SPI
controller. The MAX7456's SPI port can, therefore, run at full speed. The software SPI routines above do perform slower than the hardware
controller. However, the routines have been optimized for portability if a customer application lacks a hardware SPI port.

SPI is a trademark of Motorola, Inc.

Application Note 4184: www.maxim-ic.com/an4184

http://www.maxim-ic.com/an4184

More Information
For technical support: www.maxim-ic.com/support

For samples: www.maxim-ic.com/samples
Other questions and comments: www.maxim-ic.com/contact

Keep Me Informed
Preview new application notes in your areas of interest as soon as they are published. Subscribe to EE-Mail - Application Notes for weekly

updates.

Related Parts
MAX7456: QuickView -- Full (PDF) Data Sheet -- Free Samples

MAX7456EVKIT: QuickView -- Full (PDF) Data Sheet

AN4184, AN 4184, APP4184, Appnote4184, Appnote 4184
Copyright © by Maxim Integrated Products
Additional legal notices: www.maxim-ic.com/legal

http://www.maxim-ic.com/support
http://www.maxim-ic.com/samples
http://www.maxim-ic.com/contact
http://www.maxim-ic.com/ee_mail/home/subscribe.mvp?phase=apn
http://www.maxim-ic.com/quick_view2.cfm/qv_pk/5516/ln/en
http://pdfserv.maxim-ic.com/en/ds/MAX7456.pdf
http://www.maxim-ic.com/samples/index.cfm?Action=Add&PartNo=MAX7456&ln=en
http://www.maxim-ic.com/quick_view2.cfm/qv_pk/5569/ln/en
http://pdfserv.maxim-ic.com/en/ds/MAX7456EVKIT.pdf
http://www.maxim-ic.com/legal

