
Column #119: Ping – I See You

The Nuts and Volts of BASIC Stamps (Volume 6) • Page 45

Column #119 March 2005 by Jon Williams:

Ping – I See You

I used to work for a man named Bob who insisted – and quite frequently – that most of us
needed to be exposed to the same piece of information five to seven times before that
information could be absorbed. I didn't always agree with Bob's philosophy, but just in case
he's right I thought we'd work through the mysteries of conditional compilation again.
Conditional compilation is worth mastering; it lets us write one program that will work on
nearly any BASIC Stamp module.

Maybe I'm just taking things for granted. Being on "the inside" and close to the development
of the BASIC Stamp Editor IDE, I completely understand conditional compilation and how to
take advantage of it. Apparently, however, I haven't done a very good job getting the good
word out – I keep getting a lot of question on this subject. So, I'm going to try again.

Let's start from the beginning. Why should we even bother with conditional compilation?
Well, it depends, really. If we're going to write a program that will NEVER (yeah, right...)
need to run on another BS2-family module then we don't need to bother. But ... what if we
want to share our cool program with a friend who uses a different module? And what if we
wrote our program for the BS2 and our friend is using a BS2sx? Most programs will run
without change, but the use of certain PBASIC keywords will require the code to be updated

Column #119: Ping – I See You

Page 46 • The Nuts and Volts of BASIC Stamps (Volume 6)

to run properly on the BS2sx. By using conditional compilation up front we can save
ourselves and others trouble later.

Ping... Ping...

Before we getting into the gritty details, let's have a little bit of fun first with a simple
program that actually uses conditional compilation. Sonic range-finding modules are very
popular with robotics builders and experimenters, and Parallax has recently created a new
module called Ping))) that makes sonar range-finding pretty easy. Honestly, I really like the
Ping))) sensor; it requires only one IO pin, it works with any BASIC Stamp module, and is
very low cost.

As you can see by Figure 119.1, the connection is a no-brainer – connect power (+5 volts),
ground (Vss), and a signal line to a free BASIC Stamp pin. With the Ping))) module, the IO
pin serves as both the trigger output and the echo input.

Figure 119.1: Ping))) Module to BASIC Stamp Connection

Column #119: Ping – I See You

The Nuts and Volts of BASIC Stamps (Volume 6) • Page 47

Figure 119.2: Ping))) Timing Diagram

Initially, the trigger pin is made an output and a short pulse (5 to 10 µS) is used to trigger the
Ping))) (we'll use PULSOUT to generate the trigger). The next step is what allows it to be
used with any BASIC Stamp. The Ping))) module delays the trigger to the sonic transmitter
element for 500 microseconds. This allows the BASIC Stamp to load the next instruction
(PULSIN) and be ready for the return echo. Once the echo pulse in measured, a bit of math is
used to convert the pulse width to distance.

Let's look at the subroutine which handles the Ping))) sensor:

Get_Sonar:
 Ping = 0
 PULSOUT Ping, Trigger
 PULSIN Ping, 1, rawDist
 rawDist = rawDist */ Scale
 rawDist = rawDist / 2
 RETURN

The code starts by making the output bit of the trigger pin 0. The reason for this is that
PULSOUT makes the trigger pin an output, then toggles its state, delays, then toggles that pin
back to the original state. Since the Ping))) module is looking for a low-high-low pulse to
trigger the measurement, presetting the pin to 0 makes this happen.

After the trigger is sent PULSIN is used to measure the width of the echo pulse. As I stated
earlier, the 500 microsecond delay in the Ping))) allows PULSIN to get loaded and ready.
There is no danger of PULSIN timing out as even the BS2p (fastest BASIC Stamp module)
won't time out for about 49 milliseconds. And for you clever readers that are wondering what
happens if we forget to make the signal pin an input after the trigger pulse ... no worries, there
is protection on the Ping))) sensor so that no harm is done if both sides are trying to drive the
signal line.

Column #119: Ping – I See You

Page 48 • The Nuts and Volts of BASIC Stamps (Volume 6)

And now we have to get back to that pesky conditional compilation stuff. Remember that the
various BASIC Stamp modules run at different speeds, and with some instructions the speed
differences give us different resolution. Let's look at the units returned by PULSIN:

BS2, BS2e: 2.00 µs
BS2sx, BS2p: 0.80 µs
BS2pe: 1.88 µs

And now let's see how conditional compilation lets us handle the differences in the various
modules:

#SELECT $STAMP
 #CASE BS2, BS2E
 Scale CON $200
 #CASE BS2SX, BS2P
 Scale CON $0CD
 #CASE BS2PE
 Scale CON $1E1
#ENDSELECT

The instructions prefaced with # are used in the conditional compilation process. These
instructions actually get processed before our program is tokenized. This allows constant
values and even bits of code if we choose, to be included in the program based on the BASIC
Stamp module in use. So, using the code above, if a stock BS2 module is installed, the
constant called Scale will have the value $200. If we unplug the BS2 and swap in a BS2p,
when we program the module Scale will have the value $0CD.

Let's get back to the program – we'll cover more conditional compilation later. The raw value
from PULSIN is converted to units of one microsecond with this line of code:

 rawDist = rawDist */ Scale

We're forced to use the */ (star-slash) operator to account for the fractional units when using
the BS2sx, BS2p, or BS2pe. For review, */ works like multiplication but in units of 1/256.
To determine the various values for Scale, we multiply the PULSIN units by 256 and take the
[rounded] integer result. Things work out like this:

BS2, BS2e INT(2.00 x 256) = 512 ($200)
BS2sx, BS2p INT(0.80 x 256) = 205 ($0CD)
BS2pe INT(1.88 x 256) = 481 ($1E1)

Column #119: Ping – I See You

The Nuts and Volts of BASIC Stamps (Volume 6) • Page 49

I prefer to use hex notation for values that are used with */ as the upper byte represents the
whole portion of the value, and the lower by the fractional portion (in units of 1/256).

Okay, the pulse is measured and converted to microseconds. Before returning to the caller
we'll divide the raw value by two. Why? Well, the pulse we've just measured actually
accounts for the distance to and from the target – actually twice as wide as we need it, hence
the division.

Now to convert to distance: At sea level and room temperature we assume that sound travels
at about 1130 feet per second; by multiplying by 12 we get 13560 inches per second. By
taking the reciprocal we find that it takes about 73.746 microseconds for sound to travel one
inch. For those that prefer the metric system we can convert 13560 inches to 34442
centimeters, and a timing value of 29.034 microseconds to travel one centimeter.

For our conversion code we'll use the other fraction math operator, **. This is similar to */,
except that it uses units of 1/65536 (which means in the 16-bit values used by the BASIC
Stamp we can use it to multiply by fractional values of less than one). In our program we can
convert 73.746 microseconds to a constant value like this:

1 / 73.746 → INT(0.01356 x 65536) = 889 ($379)

With that we can look at the rest of the program:

Reset:
 DEBUG CLS,
 "Parallax Ping Sonar", CR,
 "-------------------", CR,
 CR,
 "Time (uS)..... ", CR,
 "Inches........ ", CR,
 "Centimeters... "
Main:
 DO
 GOSUB Get_Sonar
 inches = rawDist ** RawToIn
 cm = rawDist ** RawToCm
 DEBUG CRSRXY, 15, 3,
 DEC rawDist, CLREOL
 DEBUG CRSRXY, 15, 4,
 DEC inches, CLREOL
 DEBUG CRSRXY, 15, 5,
 DEC cm, CLREOL

Column #119: Ping – I See You

Page 50 • The Nuts and Volts of BASIC Stamps (Volume 6)

 PAUSE 100
 LOOP
 END

The Reset section simply sets up the text portion of the Debug Terminal window, and in Main
we measure the distance, do the conversions, and display the results. Figure 119.3 shows the
output of the program.

Figure 119.3: Ping))) Debug Terminal Output

Column #119: Ping – I See You

The Nuts and Volts of BASIC Stamps (Volume 6) • Page 51

Stamping Under Any Condition

Okay, time to get back to conditional compilation. While most PBASIC instructions do not
require parameter changes when moving from one module to another, there are a few that do:

COUNT Units for Duration of COUNT window
DTMFOUT Units for OnTime
FREQOUT Units for Duration, Freq1, and Freq2
PULSIN Units for Variable (measured pulse)
PULSOUT Units for Duration
PWM Units for Duration
RCTIME Units for Variable (measured RC delay)
SERIN Units in Timeout, value of Baudmode
SEROUT Units in Pace and Timeout, value of Baudmode

The most common issue encountered by BASIC Stamp users when moving from module to
module is with SERIN and SEROUT. So common are these instructions that I have built the
following section into my default programming template:

#SELECT $STAMP
 #CASE BS2, BS2E, BS2PE
 T1200 CON 813
 T2400 CON 396
 T4800 CON 188
 T9600 CON 84
 T19K2 CON 32
 TMidi CON 12
 T38K4 CON 6
 #CASE BS2SX, BS2P
 T1200 CON 2063
 T2400 CON 1021
 T4800 CON 500
 T9600 CON 240
 T19K2 CON 110
 TMidi CON 60
 T38K4 CON 45
#ENDSELECT

SevenBit CON $2000
Inverted CON $4000
Open CON $8000

Baud CON T9600

Column #119: Ping – I See You

Page 52 • The Nuts and Volts of BASIC Stamps (Volume 6)

If SERIN and SEROUT aren't used by a given program there is no harm done – and it's far
handier to have constants predefined than to have to look them up. And this gives me the
opportunity to bring up another programming tip. I frequently get code that looks like this:

 SEROUT 15, 16468, [DEC temperature]

... which is followed by the complaint, "Jon, this used to work with my BS2, but now it
doesn't work with my BS2sx."

By now I'm sure the reason is obvious: by changing from the BS2 to a BS2sx we are forced to
update the baudmode parameter of SEROUT. The problem can be averted by using the
conditional section above and changing the Baud definition as follows:

Baud CON Inverted + T9600

And while we're cleaning up the code to make it easier to maintain, let's give a definition to
P15 so that we know the serial output is going to a serial LCD:

Lcd PIN 15

And now the corrected code becomes:

 SEROUT Lcd, Baud, [DEC temperature]

Where else might conditional compilation come in handy? How about program debugging?
There is an instruction called #DEFINE that can help in this regard. For example:

#DEFINE DebugOn = 1

While developing and troubleshooting an application we can do this:

#IF DebugOn #THEN
 DEBUG "Value = ", DEC value, CR
#ENDIF

... in as many places in the program as we need.

Once the program is fully tested and working as desired, changing the DebugOn definition to
zero will prevent the DEBUG statements in the #IF-#THEN section(s) from executing. It's
important to understand that conditional definitions are either defined (not zero) or not. In our
example above we could in fact remove the #DEFINE DebugOn line without harm to the

Column #119: Ping – I See You

The Nuts and Volts of BASIC Stamps (Volume 6) • Page 53

program. When the compiler encounters a conditional block (like #IF-#THEN) with an
undefined symbol, the section is skipped. I don't recommend this, however, as it can lead to
confusion if someone else reads code from which we've removed conditional symbol
definitions. It is best to disable the conditional symbol by redefining it as zero.

Another good use of conditional definitions is variable conservation. In our sonar program,
for example, practical use would usually not require both English and Metric units. We could
do this:

#DEFINE MetricUnits = 1

and...

#IF MetricUnits #THEN
 distance = rawDist ** RawToCm
#ELSE
 distance = rawDist ** RawToIn
#ENDIF

Finally, what about features that exist in the newer BASIC Stamp modules that do not exist in
the older – LCD control, for example? Well, we can deal with that too.

There was a project we did some time back that involved the Parallax LCD Terminal
AppMod that took advantage of conditional compilation. A program can check for the
availability of built-in LCD commands like this:

#DEFINE LcdReady = ($STAMP >= BS2P)

We can now put this definition to use in the following manner:

LCD_Command:
 #IF LcdReady #THEN
 LCDCMD E, char
 RETURN
 #ELSE
 LOW RS
 GOTO LCD_Write
 #ENDIF

LCD_Write:
 #IF LcdReady #THEN
 LCDOUT E, 0, [char]

Column #119: Ping – I See You

Page 54 • The Nuts and Volts of BASIC Stamps (Volume 6)

 #ELSE
 LcdBusOut = char.HIGHNIB
 PULSOUT E, 3
 LcdBusOut = char.LOWNIB
 PULSOUT E, 3
 HIGH RS
 #ENDIF
 RETURN

Yes, it takes a little bit of planning and extra work to implement conditional compilation, but
in the end I think you'll find it fairly simple to do, and a big time-saver when it comes to
moving code from one BASIC Stamp module to another.

Installing a Template

Earlier I mentioned my default template and its use of serial baudmode values. I've included
a copy of my template in the project files, and let me share a tip that may not be obvious. You
can have the BASIC Stamp IDE load this template each time you select File / New (or the
New icon from the toolbar).

Start by copying the template (template.bs2) to a convenient location. The open the
Preferences dialog (Edit / Preferences), select the Files & Directories tab, and then click on
the Browse button located net to the New File Template field. In the Open dialog, navigate to
the location where you copied the template file, select it, and then click on Open. Lock in the
setting by clicking OK at the bottom of the Preferences dialog. I find the template helps keep
my programs organized and I'm sure it will work for you too – if it doesn't quite, modify it
until it does!

Until next time, then, Happy Stamping.

Column #119: Ping – I See You

The Nuts and Volts of BASIC Stamps (Volume 6) • Page 55

Figure 119.4: Configure the BASIC Stamp Windows Editor for a Template

Column #119: Ping – I See You

Page 56 • The Nuts and Volts of BASIC Stamps (Volume 6)

' ===
'
' File....... Ping_Demo.BS1
' Purpose.... Demo Code for Parallax Ping))) Sonar Sensor
' Author..... Jon Williams -- Parallax, Inc.
' E-mail..... jwilliams@parallax.com
' Started....
' Updated.... 11 JAN 2005
'
' {$STAMP BS1}
' {$PBASIC 1.0}
'
' ===

' -----[Program Description]---
'
' This program demonstrates the use of the Parallax Ping Sonar sensor and
' converting the raw measurement to English (inches) and Metric (cm) units.
'
' Sonar Math:
'
' At sea level sound travels through air at 1130 feet per second. This
' equates to 1 inch in 73.746 uS, or 1 cm in 29.034 uS.
'
' Since the Ping sensor measures the time required for the sound wave to
' travel from the sensor and back. The result -- after conversion to
' microseconds for the BASIC Stamp module in use -- is divided by two to
' remove the return portion of the echo pulse. The final raw result is
' the duration from the front of the sensor to the target in microseconds.

' -----[Revision History]--

' -----[I/O Definitions]---

SYMBOL Ping = 7

' -----[Constants]---

SYMBOL Trigger = 1 ' 10 uS trigger pulse
SYMBOL Scale = 10 ' raw x 10.00 = uS

SYMBOL RawToIn = $0379 ' 1 / 73.746
SYMBOL RawToCm = $08D1 ' 1 / 29.034

' -----[Variables]---

Column #119: Ping – I See You

The Nuts and Volts of BASIC Stamps (Volume 6) • Page 57

SYMBOL rawDist = W1 ' raw measurement
SYMBOL inches = W2
SYMBOL cm = W3

' -----[EEPROM Data]---

' -----[Initialization]--

Reset:

' -----[Program Code]--

Main:
 GOSUB Get_Sonar ' get sensor value
 inches = rawDist ** RawToIn ' convert to inches
 cm = rawDist ** RawToCm ' convert to centimeters

 DEBUG CLS ' report
 DEBUG "Time (uS)..... ", #rawDist, " ", CR
 DEBUG "Inches........ ", #inches, " ", CR
 DEBUG "Centimeters... ", #cm, " "

 PAUSE 1000
 GOTO Main

 END

' -----[Subroutines]---

' This subroutine triggers the Ping sonar sensor and measures
' the echo pulse. The raw value from the sensor is converted to
' microseconds based on the BASIC Stamp module in use. This value is
' divided by two to remove the return trip -- the result value is
' the distance from the sensor to the target in microseconds.

Get_Sonar:
 LOW Ping ' make trigger 0-1-0
 PULSOUT Ping, Trigger ' activate sensor
 PULSIN Ping, 1, rawDist ' measure echo pulse
 rawDist = rawDist * Scale ' convert to uS
 rawDist = rawDist / 2 ' remove return trip
 RETURN

Column #119: Ping – I See You

Page 58 • The Nuts and Volts of BASIC Stamps (Volume 6)

' ===
'
' File....... Ping_Demo.BS2
' Purpose.... Demo Code for Parallax Ping))) Sonar Sensor
' Author..... Jon Williams -- Parallax, Inc.
' E-mail..... jwilliams@parallax.com
' Started....
' Updated.... 11 JAN 2005
'
' {$STAMP BS2}
' {$PBASIC 2.5}
'
' ===

' -----[Program Description]---
'
' This program demonstrates the use of the Parallax Ping Sonar sensor and
' converting the raw measurement to English (inches) and Metric (cm) units.
'
' Sonar Math:
'
' At sea level sound travels through air at 1130 feet per second. This
' equates to 1 inch in 73.746 uS, or 1 cm in 29.034 uS).
'
' Since the Ping sensor measures the time required for the sound wave to
' travel from the sensor and back. The result -- after conversion to
' microseconds for the BASIC Stamp module in use -- is divided by two to
' remove the return portion of the echo pulse. The final raw result is
' the duration from the front of the sensor to the target in microseconds.

' -----[Revision History]--

' -----[I/O Definitions]---

Ping PIN 15

' -----[Constants]---

#SELECT $STAMP
 #CASE BS2, BS2E
 Trigger CON 5 ' trigger pulse = 10 uS
 Scale CON $200 ' raw x 2.00 = uS
 #CASE BS2SX, BS2P
 Trigger CON 13
 Scale CON $0CD ' raw x 0.80 = uS
 #CASE BS2PE
 Trigger CON 5

Column #119: Ping – I See You

The Nuts and Volts of BASIC Stamps (Volume 6) • Page 59

 Scale CON $1E1 ' raw x 1.88 = uS
#ENDSELECT

RawToIn CON $0379 ' 1 / 73.746
RawToCm CON $08D1 ' 1 / 29.034

' -----[Variables]---

rawDist VAR Word ' raw measurement
inches VAR Word
cm VAR Word

' -----[EEPROM Data]---

' -----[Initialization]--

Reset:
 DEBUG CLS, ' setup report screen
 "Parallax Ping Sonar", CR,
 "-------------------", CR,
 CR,
 "Time (uS)..... ", CR,
 "Inches........ ", CR,
 "Centimeters... "

' -----[Program Code]--

Main:
 DO
 GOSUB Get_Sonar ' get sensor value
 inches = rawDist ** RawToIn ' convert to inches
 cm = rawDist ** RawToCm ' convert to centimeters

 DEBUG CRSRXY, 15, 3, ' update report screen
 DEC rawDist, CLREOL
 DEBUG CRSRXY, 15, 4,
 DEC inches, CLREOL
 DEBUG CRSRXY, 15, 5,
 DEC cm, CLREOL

 PAUSE 100
 LOOP
 END

' -----[Subroutines]---

Column #119: Ping – I See You

Page 60 • The Nuts and Volts of BASIC Stamps (Volume 6)

' This subroutine triggers the Ping sonar sensor and measures
' the echo pulse. The raw value from the sensor is converted to
' microseconds based on the BASIC Stamp module in use. This value is
' divided by two to remove the return trip -- the result value is
' the distance from the sensor to the target in microseconds.

Get_Sonar:
 Ping = 0 ' make trigger 0-1-0
 PULSOUT Ping, Trigger ' activate sensor
 PULSIN Ping, 1, rawDist ' measure echo pulse
 rawDist = rawDist */ Scale ' convert to uS
 rawDist = rawDist / 2 ' remove return trip
 RETURN

