
 1

The Ultimate TABLEBot
By Camp L. Peavy, Jr.

At the April 2003
HomeBrew Robotics Club
SIG (HBRC Special
Interest Group) a few of us
were lamenting the lack of
robot building within the
club. We noted building
activity coincided with
contests; specifically a
recent line-following event
and maze-busting contest
called �the hurdle�. We
also noted that we had lots
of table-top sized robots in
the club including several
Boe-Bots from a recent
club buy. We thought in
terms of what we wanted
in a contest... we thought
we'd like something with
no setup� that is, we
would like to use whatever
was readily available. At the time we met in the �Castro Middle School� library and were
surrounded by tables. What about table-top soccer? �Non-trivial� Bill Benson would
say... well, we could put a net around the table to catch the robots should they fall... no�
that would involve setup... that's when it was born... the TABLEBot!

A �TABLEBot� is defined as a
robot that survives, lives and plays
on a table or pays the price. Now
back to this non-trivial task of
playing table-top soccer� like any
big job or complicated process...
you break it into smaller pieces or
�phases� was the suggestion by
Bill Hubbard. For the first phase
we could simply have the robot go
from one end of the table to the
other. Then have the robot push a
block off the ledge and finally have
the robot push the block into a

shoebox mounted at the end of the table. That's it! Those are all of the rules of the
TABLEBot Challenge.

Camp Peavy demonstrates his Phase III robot named
�Buggy� at the October 2005 HBRC �TABLEBot Challenge�.

Phase I: Build a robot that goes from one end of
a table to the other and back.

Phase II: Have the robot push a block off the

ledge of the table.

Phase III: Have the robot push the block into a

shoebox mounted at the end of the
table.

The TABLEBot Challenge

 2

There are no restrictions or limitations on
the size or weight of the robot. Run what
ya' brung! We don't even specify the size
of the table, the block or how you mount
the shoebox at the end of the table. A
�TABLEBot� should simply be able to
survive, live and play on a table... or pay
the price. The TABLEBot Challenge
rules are purposefully vague and non-
restrictive so one can use whatever robot
they have (Boe-Bot, SumoBot, LEGO�)
and whatever table/block/box
combination is readily available.

So it was decided that we would
announce to the club at the official
meeting the following week the
�TABLEBot Challenge� and have �Phase

I� for the June meeting, �Phase II� in August and �Phase III� in October. This would give
builders two months between phases with a relatively simple beginning and increasingly
difficult stages for August and October. It was emphasized by Wayne Gramlich that this
was not a �contest� but a �challenge�. Ever since it has been a joke within that club that
anytime anyone refers to it as a �contest� they are immediately reprehended, �This is not
a contest... it is a �challenge�.� The non-competitive nature of the event makes for good-
natured fun without competitive pressure, including the hassle of officiating. We treat it
like �show and tell�; a regular feature at the end of each HBRC meeting. Participants are
always allowed to show their creations in the best light.

The �ledge� itself represents the real excitement
of the event� as relatively expensive robots
hurl towards 30� high cliffs� 30� high to scale
that is, if the robots were full-sized cars. The
ledge keeps everyone on edge! Sometimes they
fall; sometimes they break. This is the reason
for 5-minute epoxy and this is why one of our
club members, David Wyland, invented the
�Wyland Leash�; a string tied around the robot
to be held for debugging or if you're not
completely confident of a particular
environment (table color, lighting, etc). If you
think about it this is really a practical exercise
for a mobile robot. To paraphrase Clint
Eastwood, �A robot's gotta' know its limits��
like say for instance the stairwell?

Dave Wyland anxiously watches his custom
Boe-Bot as it completes �Phase I�. Wyland�s

advice, �Never give Murphy and even break!�

Ted Larson of �Ologic� demonstrates
�Tracker� his color following TABLEBot.

 3

In the October 2005 issue of SERVO
magazine I introduced a Stamp based
educational robot called the �PROTOBot�
(Figure 1). Copies of the article are available
at www.camppeavy.com/protobot.pdf. The
original PROTOBot was built from common
electronic components and radio-control
(RC) airplane parts. It was an exercise in
minimalism. I was trying to build an
inexpensive but quality robot with as few
parts as possible.

Figure 1: The PROTOBot: A Stamp-based
educational robot.

BS2
SOUT

SIN
ATN
VSS

P0
P1
P2
P3
P4
P5
P6
P7 P8

P9
P10
P11
P12
P13
P14
P15
+5V
RESET

GND
PWR1

2
3
4
5
6
7
8
9
10
11
12 13

14
15
16
17
18
19
20
21
22

24
23

Left servo Right servo

Left bump
switch

Right bump
switch

+9V

7805

White

Red

Black

White

Black

Red

10K
10K

+5V

Left wheel Right wheel

Figure 2: The original PROTOBot circuit.

 4

In this article we will expand the PROTOBot into the Ultimate
TABLEBot. We will add downward facing ledge sensors, a
block-acquisition gripper, a
dual rearward tablespace
detector and more. In fact I
want to use this project to
totally pimp-out the original
PROTOBot and use all 16
pins on the BASIC Stamp 2
(BS2) needed or not. The
circuits in this article are
from the Parallax manual or
website with some
modifications. The narrative
describes my experiences for
the edification of the
community.

First let's take a look at the
original PROTOBot circuit
(Figure 2). Basically the
PROTOBot is just a solderless breadboard on wheels
controlled by a BS2 Stamp. The program we left off with in the
previous article www.camppeavy.com/protobot.pdf was a
module that made the robot go forward until it sensed an
obstacle; at which point it would back up� turn the opposite
direction and continue forward (Figure 3). We also built a
homebrew cable (Figure 4) to program the Stamp by soldering
22 Gauge solid core wire to pins 2, 3, 4 and 5 and fashioning a
plug to plug into the solderless breadboard (Figure 5).

BS2
SOUT

SIN
ATN
VSS

P0
P1
P2
P3
P4
P5
P6
P7 P8

P9
P10
P11
P12
P13
P14
P15
+5V

GND
PWR1

2
3
4
5
6
7
8
9
10
11
12 13

14
15
16
17
18
19
20
21
22
23
24 DB9

female
(to PC)

2
RX

3 TX
4DTR

GND 5

DSR 6

RTS 7

Figure 4: The programming cable connections from a
PC to the BS2 Stamp.

RES

Figure 3. BS2 Stamp
program to make

PROTOBot go forward;
sense obstacles; backup
and turn the opposite

direction.

Figure 5: This is the homebrew plug.
You may need to re-cut and re-strip the
wires so that they are even. Tag or label
the ground pin (5) with black tape and
maintain the order of these 22-Gauge

solid core wires as they will be plugged
into pins 1-4 on the Stamp.

' {$STAMP BS2}

x VAR Byte

fwd:
PULSOUT 0,1000
PAUSE 20
PULSOUT 1,500
PAUSE 20
IF IN2 = 0 THEN bwdr
IF IN3 = 0 THEN bwdl
GOTO fwd

bwdl:
FOR x = 1 TO 10
PULSOUT 0,500
PAUSE 20
PULSOUT 1,1000
PAUSE 20
NEXT
FOR x = 1 TO 3
PULSOUT 0,500
PAUSE 20
PULSOUT 1,500
PAUSE 20
NEXT
GOTO fwd

bwdr:
FOR x = 1 TO 10
PULSOUT 0,500
PAUSE 20
PULSOUT 1,1000
PAUSE 20
NEXT
FOR x = 1 TO 3
PULSOUT 0,1000
PAUSE 20
PULSOUT 1,1000
PAUSE 20
NEXT
GOTO fwd

 5

Much of the electronic construction of the PROTOBot
involves simply soldering 22 gauge solid core wire to
whatever you want to interface with the Stamp
microcontroller. While professionally the solderless
breadboard is considered a prototyping tool; for
hobbyists it is often good enough.

One of my
favorite
adhesives is
E6000
because of its
strength and
shock
absorbency

(Figure 6). It is commonly available in hobby
and craft stores. �Goop� and �Shoe-Goo� are
similar but I really like the way E6000 sets.
Another secret ingredient is 5-minute epoxy;
not as shock absorbent as E6000 but cures in
only 10 minutes! I made a point in the
previous article that many good robots never
get built because the builder doesn�t have just
the right screw or perhaps one never gets
around to drilling a hole, etc, etc� just glue
it� especially for a tabletop robot� chances
are you�re going move it anyway� so gluing gives you more options. E6000 is great for
this. The mount is permanent but if you really want� you can peel it up, reposition and
re-glue. In prototyping flexibility is a good
thing.

The first thing to turn the PROTOBot into
the Ultimate TABLEBot is something to
detect the ledge of the table; after all
�Phase I� involves simply going from one
end of the table to the other and back. I�ve
used a variety of sensors in this challenge
including mechanical and ultrasonic but for
this project I�m going to use the
discontinued SSIR (Swanson Sensor IR)
sensor from Parallax (Figure 7). The
reason I am using the SSIR is I happen to
have two of them. One of the great things
about having built robots for a long time is
you have plenty of spare parts (Figure 8).

Figure 7: The first rule: stay on the table!
E6000 (yes it�s a verb) the IR detectors

downward so to detect the ledge.

Figure 8: The great thing about having built
robots for a long time is plenty of spare parts�

now finding them is another story.

Figure 6: E6000 industrial/craft
adhesive. Right up there with

Velcro, duct tape and 5-minute
epoxy.

 6

It�s basically an infrared LED
and 38 kHz modulated receiver.
The IR LED is modulated by
the Stamp (FREQOUT
PIN,1,38500) and the receiver
pin goes low when it detects the
38kHz signal (Figure 9).

On my 2005 TABLEBot
�Buggy� I used two �Ping�
sensors from Parallax (Figure
10)� one low; one high.
Basically the lower Ping looked
for the *block* and the higher

sensor looked for the *box*. I liked the strategy and
have decided to do more of the same with this
project except this time I mounted the top or higher
Ping on a servo so it could swivel. This will help in
centering the robot in relation to the *box* for Phase
III (Figure 11) plus looks cool!

My 2004
TABLEBot
entry �Antsey�
featured a servo
actuated tail

(Figure 12).
Basically I
mounted two
micro switches on
Popsicle sticks

and before the robot reversed it would tap down its
�tail� and verify �tablespace� before going
backwards. Again it�s great to have built robots for a
while. Not only do you have plenty of spare parts but
actual subassemblies. This time I borrowed Antsey�s
tail for� hey! Wait a minute� it�s time this robot
got a name!

Naming your robot has got to be one of the real joys
of robotics. Sometimes you start with a name and
concept� other times it just comes to you as you
work� this unit will be known as �Timmay� the
Ultimate TABLEBot (Figure 13). I like it� it has
rhythm� and personality!

Figure 9: This is not the same circuit as the discontinued
SSIR sensor but does detect IR strobed at 38kHz.

IR
LED

+5V

to I/O pin

to a different
I/O pin

220 Ohms

Parallax #150-02210

40 kHz IR Detector Parallax #350-00014

Parallax
#350-
00017

Figure 11: The high or upper Ping
ultrasonic sensor swivels on a servo to

find the box.

+5V I/O pin

Front of
Ping)))
ultrasonic
sensor

Figure 10: The Ping is as easy as it
gets; pulsout/pulsin� one wire

operation� the pulsin variable reads
the raw time of flight.

 7

At first I tried to get away with only one
ultrasonic sensor in the front but after working
through the design felt I needed two; for
differential sensing (Figure 14). The strategy is if
the robot senses something on the left, turn right
and if it senses something on the right, turn left.
If it sees something in both; go forward! I�ve
added a micro switch in the center of the
bumper� when it gets depressed the �gripper�
comes out and acquires the *block*. Once the
block is acquired the higher Ping can focus on
finding the *box*; into which the *block* will be
deposited. In considering the necessity of
detecting the table ledge I�ve elected to drive the
servos from a �Scott Edwards� Servo Controller
board (Figure 15)� again because I happen to
have one. These boards are really cool for
overcoming bandwidth limitations on the Stamp;
especially with a mission critical function like
staying on the table.

This allowed me to drive six servos
from one pin on the Stamp. Now
what to do with all those freed up
pins� and what of the power
situation? Everything worked fine -
one at a time but when I tried to flex
all the muscles at once the robot
acted erratically.

Well duh, you�re using one 7805 and
those servos can draw .3A each� I
found a neat trick that turned out I
was just lucky. Of course the proper
way to source more current is to use
a bigger heatsink but I started reading on the web about paralleling voltage regulators� I
tried it and it worked! Found out later I was just lucky in that the only reason it worked
was probably due to the resistance in the solderless breadboard.

Figure 12: This is Timmay�s rear
view with the �tail� in the upward
position. When the robot senses a
ledge (front downward-facing IR
sensors) the tail lowers and with
the two microswitches tests for
�tablespace� before reversing.

Figure 14: Here are the dual Ping ultrasonic
sensors. They will be used to triangulate the
location of the block. The center switch will
detect whether the robot has acquired the

block.

 8

When thinking about programming robots put yourself in the robot�s place. First the
robot has to move; so pulse the wheels forward.

Figure 13: This is �Timmay� the Ultimate TABLEBot. He features differential
drive 3.5� wheels, PROTOBot tri-bumper, dual downward facing IR sensors for

detecting the ledge, forward facing differential Ping sensors for sensing the
block; dual servo coat-hanger-wire arm and gripper w/ �Bake and Bend�

Sculpy claw, palm switch for verifying block acquisition, Upper level swiveling
Ping for finding the box; speaker for �beep-beep� voice, servo actuated dual

rearward tablespace sensors and reed-switch/passive caster wheel based
mobility detector. All controlled by a BS2 Stamp and Mini Serial Servo

Controller (MSSCII). Rube Goldberg would be proud!

My goal with this robot was to use all 16 pins on the BS2 whether I needed them
or not. It's both a totally pimped out PROTOBot and the Ultimate TABLEBot. I

still have 3 more Stamp ports and two more available connections from the
servo controller; front and rear CdS cells and a microphone come to mind.

 9

Then you have to be sure that you
DO NOT FALL OFF THE TABLE
so look at your downward facing
IR sensors. In addition you will
want to �pulsout� the dual forward
facing ultrasonic Ping sensors to
try and find the *block*. When the
robot detects the *block* on the
left you want to turn right and
when you detect the *block* on the
right you want to turn left; when
you detect the *block* on both
Pings; go forward!
When the center switch (P11) gets
pressed the robot assumes it�s the
block and actuates the gripper.
When *block* has been acquired
the high swivel Ping looks around

for the *box*. When the *box* is located move
the *block* into *box* and you�re done. The
other sensors and output devices are icing on the
cake; unnecessary but fun. All of the microswitch
sensors use the standard switch interface (Figure
16). The speaker is useful for debugging without
the �debug� command. Have it beep at different
frequencies or intervals for different
subroutines� this way you know what your
robot�s thinking (Figure 17).

Here�s a couple of tips for working with
the BASIC Stamp. When you encounter
weird problems check your power (Tip!
Buy a battery tester). The Stamp will not
run when connected to the computer
unless you are running �debug�. I assume

Mini
ssc II

Servos 0-7

+9V

GND

Power for
MSSC II

+5V

GND

Power for
servos

Modular
phone jack
serial input

Optional header
serial input and
configuration

jumpers

Figure 15: A specialized servo controller, like the Scott
Edwards Mini SSC, helps overcome bandwidth

limitations on the Stamp. Pulsing all those servos can
overload the Stamp.

Figure 16: This is the circuit for the bump
and tail switches. It is �active-low�. That is
when the button is pressed the TTL logic

state goes to �0� or ground.

to I/O pin

+5V

10k

I/O pin
+

10 mF
8 Ohm
speaker

33 Ohms

Figure 17: This is the basic speaker circuit.
You could use a 40 Ohm speaker in place of
the 8 Ohm and 33 Ohm resister. Give your

robot a �beep-beep� voice.

 10

it has something to do with the DTR connection from the computer. Build and test, build
and test, build and test. Make frequent incremental saves of your code; �Save As� and
increment the number by one. Use debug commands as you debug the system and remark
(�) them out as you finish testing and especially before you place the robot on a �live�
table. This way if you have to test again you can simply un-rem them. As you drop a
small part look quickly where it�s going; otherwise it might be lost forever. Find tools
that you enjoy working with. It makes the activity more enjoyable.

In building robots, as in life, all things conspire to keep you from doing what needs to be
done. If it�s not one thing it�s another (tip: turn off the TV). Regardless, remember that
building is a series of small steps. Don�t think about the complexity of the overall project
or you will become discouraged. Do the small things on a daily basis and eventually the
whole thing will be done. If you come to a dead-end or stopping point with one

BS2
SOUT

SIN
ATN
VSS

P0
P1
P2
P3
P4
P5
P6
P7 P8

P9
P10
P11
P12
P13
P14
P15
+5V

1
2
3
4
5
6
7
8
9
10
11
12 13

14
15
16
17
18
19
20
21
22
23
24

GND
PWR

RES

Mini
SSC II

Servos 0-7

Left
Wheel

Right
Wheel

Upper Ping
swivel

Tail
actuator

Lower
gripper servo

Upper gripper
servo

Left
bump
switch

Right
bump
switch

Left
downward
facing IR

Right
downward
facing IR

High Ping
ultrasonic

Left low
Ping

Right low
Ping

Speaker

Left tail
switch

Right tail
switch

Palm
switch

Mobility
detector

I�m using 12 of the 16 General Purpose I/O pins on the BS2 Stamp and 6 of the 7
servo ports on the Scott Edwards MiniSSCII. The program below accomplishes the

TABLEBot Challenge �Phase III�.

 11

subsystem (glue drying or need a part) consider what can be done on another
subsystem� I think too many times we try and come up with reasons as to why things
can�t be done or we didn�t get around to them rather then �just doing them� to paraphrase
the Nike motto. Enter contests! There�s nothing like a deadline to force one to create.

At this point Timmay is capable of depositing the block-in-the-box-on-a-table but I still
haven�t used all 16 pins on the BS2 Stamp plus I haven�t integrated the �mobility
detector�; a small rare earth magnet (Radio Shack #64-1895) embedded in the passive
caster tire and a small reed switch (RS#49-496) glued to the solderless breadboard body.
I pipe the On/Off signal from the reed switch into P12 and as long as the wheel is turning
the robot is �happy�. The good news is I still have until June for the 2006 TABLBot
Challenge �Phase I� and October for �Phase III�. This will be our 4th annual
www.hbrobotics.org.

' {$STAMP BS2}

' Variables
x VAR Byte ' Generic counter variable
holdbit3 VAR Bit ' Bit for left downward facing IR sensor.
holdbit4 VAR Bit ' Bit for right downward facing IR sensor.
rawdata1 VAR Word ' Variable for swivel Ping (upper)
rawdata2 VAR Word ' Variable for left Ping (lower)
rawdata3 VAR Word ' Variable for right Ping (lower)

main: ' Main programing loop

' "Scott Edwards" Mini Serial Servo Controller (MSSCII) initial settings
SEROUT 0,$4054,[255,0,254] ' Left drive wheel; Forward = 254, Stop 131
SEROUT 0,$4054,[255,1,0] ' Right drive wheel; Forward = 0, Stop 130
SEROUT 0,$4054,[255,2,127] ' Swivel Ping servo, Higher left
SEROUT 0,$4054,[255,3,254] ' Tail servo, Higher up
SEROUT 0,$4054,[255,5,254] ' Gripper high, Higher down (254,0,175)
SEROUT 0,$4054,[255,4,125] ' Gripper low, Lower back (125,254)

'FREQOUT 8,1000,2500,250 ' Audio speaker

' Downward facing IR sensors
FREQOUT 3,1,38500 ' Left downward facing IR (table ledge sensor)
holdbit3 = IN3
'DEBUG "sensor = ",DEC holdbit3,CR

FREQOUT 4,1,38500 ' Right downward facing IR (table ledge sensor)
holdbit4 = IN4
'DEBUG "sensor = ",DEC holdbit4,CR

' IR Table Matrix
IF holdbit3 = 1 AND holdbit4 = 1 THEN filter ' Backward and turn opposite direction
IF holdbit3 = 1 THEN filter ' Backward and turn right
IF holdbit4 = 1 THEN filter ' Backward and turn left

' Differential "Block" ultrasonic
IN6 = 0 ' Set trigger
PULSOUT 6, 1 ' Activate sensor

 12

PULSIN 6, 1, rawdata2 ' Measure echo pulse (Rawdata2 for left Ping!)
PULSOUT 5, 1 ' Activate sensor
PULSIN 5, 1, rawdata1 ' Measure echo pulse (Rawdata2 for left Ping!)
'DEBUG ? rawdata1
'DEBUG ? rawdata2, CR ' 5000 = ~3' / 600 = ~7" away
IF rawdata2 < 300 THEN block

IN7 = 0 ' Set trigger
PULSOUT 7, 1 ' Activate sensor
PULSIN 7, 1, rawdata3 ' Measure echo pulse (Rawdata3 for right Ping!)
'DEBUG ? rawdata3, CR ' 5000 = ~3' / 600 = ~7" away
IF rawdata3 < 300 THEN block

'PAUSE 1000

' Center palm switch
'DEBUG ? IN11, CR ' Look at value in Pin 11 (Palm switch)
IF IN11 = 0 THEN grab ' 0 = switch pressed / Grab block

' Front bumper switches
IF IN1 AND IN2 = 0 THEN bwdo ' Backward and turn opposite direction
'DEBUG ? IN1, CR ' Look at value in Pin 1 (Left bump switch)
IF IN1 = 0 THEN bwdr ' IF left bump then back and turn right
'DEBUG ? IN2, CR ' Look at value in Pin 2 (Right bump switch)
IF IN2 = 0 THEN bwdl ' IF right bump then back and turn left

'PAUSE 1000
GOTO main ' Return to main programming main

bwdo:
SEROUT 0,$4054,[255,0,131] ' Forward 254, Stop 131 'Stop!
SEROUT 0,$4054,[255,1,130] ' Forward 0, Stop 130

SEROUT 0,$4054,[255,3,0] ' Tail servo, Higher up 'Lower tail to check for tablespace
PAUSE 500
IF IN9 = 1 THEN halt ' If no reverse tablespace do not back up
IF IN10 = 1 THEN halt ' If no reverse tablespace do not back up

SEROUT 0,$4054,[255,3,254] ' Tail servo, Higher up 'Bring tail back up if tablespace
PAUSE 500

FOR x = 1 TO 5
SEROUT 0,$4054,[255,0,0] ' Forward 254, Stop 131 'Reverse
SEROUT 0,$4054,[255,1,254] ' Forward 0, Stop 130
PAUSE 50
NEXT
SEROUT 0,$4054,[255,0,254] ' Forward 254, Stop 131 'Turn right
SEROUT 0,$4054,[255,1,254] ' Forward 0, Stop 130
PAUSE 1000
'DEBUG "Left and Right", CR
GOTO main

bwdr:
SEROUT 0,$4054,[255,0,131] ' Forward 254, Stop 131 'Stop!
SEROUT 0,$4054,[255,1,130] ' Forward 0, Stop 130

 13

SEROUT 0,$4054,[255,3,0] ' Tail servo, Higher up 'Lower tail to check for tablespace
PAUSE 500
IF IN9 = 1 THEN halt ' If no reverse tablespace do not back up
IF IN10 = 1 THEN halt ' If no reverse tablespace do not back up

SEROUT 0,$4054,[255,3,254] ' Tail servo, Higher up 'Bring tail back up if tablespace
PAUSE 500

FOR x = 1 TO 5
SEROUT 0,$4054,[255,0,0] ' Forward 254, Stop 131 'Reverse
SEROUT 0,$4054,[255,1,254] ' Forward 0, Stop 130
PAUSE 50
NEXT
SEROUT 0,$4054,[255,0,254] ' Forward 254, Stop 131 'Turn right
SEROUT 0,$4054,[255,1,254] ' Forward 0, Stop 130
PAUSE 250
'DEBUG "Left", CR
GOTO main

bwdl:
SEROUT 0,$4054,[255,0,131] ' Forward 254, Stop 131 'Stop!
SEROUT 0,$4054,[255,1,130] ' Forward 0, Stop 130

SEROUT 0,$4054,[255,3,0] ' Tail servo, Higher up 'Lower tail to check for tablespace
PAUSE 500
IF IN9 = 1 THEN halt ' If no reverse tablespace do not back up
IF IN10 = 1 THEN halt ' If no reverse tablespace do not back up

SEROUT 0,$4054,[255,3,254] ' Tail servo, Higher up 'Bring tail back up if tablespace
PAUSE 500

FOR x = 1 TO 5
SEROUT 0,$4054,[255,0,0] ' Forward 254, Stop 131 'Reverse
SEROUT 0,$4054,[255,1,254] ' Forward 0, Stop 130
PAUSE 50
NEXT
SEROUT 0,$4054,[255,0,0] ' Forward 254, Stop 131 'Turn left
SEROUT 0,$4054,[255,1,0] ' Forward 0, Stop 130
PAUSE 250
'DEBUG "right", CR
GOTO main

grab:
SEROUT 0,$4054,[255,0,131] ' Left drive wheel Forward = 254, Stop 131
SEROUT 0,$4054,[255,1,130] ' Right drive wheel Forward = 0, Stop 130

SEROUT 0,$4054,[255,5,0] ' Gripper high, Higher down (254,0,175)
SEROUT 0,$4054,[255,4,125] ' Gripper low, Lower back (125,254)
PAUSE 500

SEROUT 0,$4054,[255,5,0] ' Gripper high, Higher down (254,0,175)
SEROUT 0,$4054,[255,4,254] ' Gripper low, Lower back (125,254)
PAUSE 500

SEROUT 0,$4054,[255,5,175] ' Gripper high, Higher down (254,0,175)

 14

SEROUT 0,$4054,[255,4,254] ' Gripper low, Lower back (125,254)
PAUSE 500

IF IN11 = 0 THEN hold ' If block sensed hold

SEROUT 0,$4054,[255,5,0] ' Gripper high, Higher down (254,0,175)
SEROUT 0,$4054,[255,4,254] ' Gripper low, Lower back (125,254)
PAUSE 500

SEROUT 0,$4054,[255,5,0] ' Gripper high, Higher down (254,0,175)
SEROUT 0,$4054,[255,4,125] ' Gripper low, Lower back (125,254)
PAUSE 500

SEROUT 0,$4054,[255,5,254] ' Gripper high, Higher down (254,0,175)
SEROUT 0,$4054,[255,4,125] ' Gripper low, Lower back (125,254)
PAUSE 500

'DEBUG "test", CR

GOTO main

hold:
IF IN11 = 1 THEN main
SEROUT 0,$4054,[255,5,175] ' Gripper high, Higher down (254,0,175)
SEROUT 0,$4054,[255,4,254] ' Gripper low, Lower back (125,254)
PAUSE 20

FREQOUT 8,1000,2500,250 ' Audio speaker

FOR x = 127 TO 254
SEROUT 0,$4054,[255,2,x] ' Swivel servo, Higher left
NEXT

FOR x = 254 TO 127
SEROUT 0,$4054,[255,2,x] ' Swivel servo, Higher left
NEXT

FOR x = 127 TO 0
SEROUT 0,$4054,[255,2,x] ' Swivel servo, Higher left
NEXT

FOR x = 0 TO 127
SEROUT 0,$4054,[255,2,x] ' Swivel servo, Higher left
NEXT
GOTO hold

halt:
SEROUT 0,$4054,[255,0,131] ' Left drive wheel Forward = 254, Stop 131
SEROUT 0,$4054,[255,1,130] ' Right drive wheel Forward = 0, Stop 130
'DEBUG ? IN9
'DEBUG ? IN10
IF IN9 AND IN10 = 0 THEN main
IF IN10 AND IN9 = 0 THEN main
GOTO halt

filter

 15

'Downwa:rd facing IR sensors
FREQOUT 3,1,38500 ' Left downward facing IR (table ledge sensor)
holdbit3 = IN3
'DEBUG "sensor = ",DEC holdbit3,CR

FREQOUT 4,1,38500 ' Right downward facing IR (table ledge sensor)
holdbit4 = IN4
'DEBUG "sensor = ",DEC holdbit4,CR

'IR Table Matrix
IF holdbit3 = 1 AND holdbit4 = 1 THEN bwdo ' Backward and turn opposite direction
IF holdbit3 = 1 THEN bwdr ' Backward and turn right
IF holdbit4 = 1 THEN bwdl ' Backward and turn left
GOTO main

' Timmay sees block
block:
'SEROUT 0,$4054,[255,0,131] ' Left drive wheel Forward = 254, Stop 131
'SEROUT 0,$4054,[255,1,130] ' Right drive wheel Forward = 0, Stop 130
'DEBUG ? IN9
'DEBUG ? IN10
IF IN11 = 0 THEN grab ' 0 = switch pressed / Grab block
IF IN9 AND IN10 = 0 THEN main
IF IN10 AND IN9 = 0 THEN main

IN6 = 0 ' Set trigger
PULSOUT 6, 1 ' Activate sensor
PULSIN 6, 1, rawdata2 ' Measure echo pulse (Rawdata2 for left Ping!)
'DEBUG ? rawdata2, CR ' 5000 = ~3' / 600 = ~7" away
'PAUSE 250

IN7 = 0 ' Set trigger
PULSOUT 7, 1 ' Activate sensor
PULSIN 7, 1, rawdata3 ' Measure echo pulse (Rawdata3 for right Ping!)
'DEBUG ? rawdata3, CR ' 5000 = ~3' /600 = ~7'
'PAUSE 250

' Decision matrix
IF rawdata2 < 500 AND rawdata3 < 500 THEN main
IF rawdata2 > 500 AND rawdata3 > 500 THEN main
IF rawdata2 > rawdata3 THEN right
IF rawdata2 < rawdata3 THEN left
IF rawdata2 = rawdata3 THEN main
IF IN11 = 0 THEN grab ' 0 = switch pressed / Grab block
GOTO block

right:
SEROUT 0,$4054,[255,0,254] ' Forward 254, Stop 131 'Turn right
SEROUT 0,$4054,[255,1,130] ' Forward 0, Stop 130
GOTO block

left:
SEROUT 0,$4054,[255,0,131] ' Forward 254, Stop 131 'Turn left
SEROUT 0,$4054,[255,1,0] ' Forward 0, Stop 130
GOTO block

