F:\-Morph-Temp_NANO_\Emulator\Prop2_Docs.txt.spin den 16 december 2012 17:00

Some info merged from:
Propeller2DetailedPreliminaryFeatureList-v2._pdf
Some info merged from:
From diverse thread-"s

pAco |[|

1| bacz || paca
S000 COG RAM
E {SﬂerEJH(ES} CTRA | CTRB PIX PTRA
FRQ FRQ
$1F5] SHS SHS \le PTRB
$1F6 s INDA SIN SIN
le? 1 INDB (] CQos
$1F8 PINA LFSR <« XFR
S1F9 PINB
STACK RAM
S1FA PINC 256 LONGS -+ SPA
$1FB PIND DATA or VIDEO «| SPB
1F DIRA
S1FC ACCAL | ACCAH
$1FD DIRB
ACCBL | ACCBH
$1FE DIRC
$1FF DIRD MULL | MULH — CK
50
X Y z SER —= o

"SPECIAL REGISRERS

F:\-Morph-Temp_NANO_\Emulator\Prop2_Docs.txt.spin

den 16 december 2012 17:00

"Nutson - Sapieha. | remember Chip saying there were more than 40 registers now.
" We will get a full description in due time.

"Just read the preliminary feature list and made this list for my own reference:
" 1 added some more.

"There are 10 memory mapped registers that allow control over 1/0 pins and indirection:

INDA/Z INDB Ox1F6 - Ox1F7 "Indirect registers access to COG memory
PINA/PINB/PINC/PIND Ox1F8 - Ox1FB "Read / write 1/0 ports
DIRA/DIRB/DIRC/DIRD Ox1FC — Ox1FF "Enables or disables the output functionally of PORTA.

"Input reading is never disabled.

"All other registers can be accessed only with specialised instructions

PTRA/PTRB "Pointer for hub access

SPA/SPB "CLUT (stack) pointer

CNT "System time counter

CTRA/CTRB (FRQ,PHS,SIN,COS) "Each have FRQ, PHS, SIN and COS register

MULLL/ZMULLH "etc, registers to acces the multiply, divide, SQRT and CORDIC ooperations

DACO/DAC1/DAC2/DAC3 "configuration and data for the DAC’s

LFSR "Random number generator

MACA/MACB "Accu for 64 bit MAC operation

(ACCA 64-bit) "Multiply Accumullator A.

(ACCB 64-bit) "Multiply Accumulator B.

CCcCcC "Condition bit pattern (not available for instructions using indirect addressing)
AA INDA/Z INDB "destination encoding for all instructions that support indirect addressing
BB INDA/Z INDB "source encoding for all instructions that support indirect addressing

CCcCcC indaZindb - CCCC=1111 after Ffirst stage of pipeline if inda/indb used (indx=inda/indb)

XXAA

xx00 source indx
xx01 source indx++
xx10 source indx--

2

F:\-Morph-Temp_NANO_\Emulator\Prop2_Docs.txt.spin

den 16 december 2012 17:00

xx11 source ++indx

BBxx

00xx destination indx

01xx destination indx++

10xx destination indx--

11xx destination ++indx

Instruction | Encoding

D(estination),S(ource) D(estination),S(ource)

MNEMONIC D,S |l - - 1111 DDDDDDDDD SSSSSSSSS
MNEMONIC D,#n | - —- 1111 DDDDDDDDD nnnnnnnnn

[COND] MNEMONIC D,S [WZ] [WC] [NR] | --—-—- ZCR 1 CCCC DDDDDDDDD SSSSSSSSS
MNEMONIC INDA,S [WzZ] [WC] [NR] | --—-—- ZCR O AAOO 111110110 SSSSSSSSS
MNEMONIC INDA,#n [WZ] [WC] [NR] | --—-—- ZCR 0 AAOO 111110110 nnnnnnnnn
MNEMONIC D, INDA [Wz] [WC] [NR] | - ZCR O OOAA DDDDDDDDD 111110110
MNEMONIC INDA,INDB [WZ] [WC] [NR] | ------ ZCR 0 AABB 111110110 111110111
Example e
RDBYTE D,S 000000 O 01 O 1111 DDDDDDDDD SSSSSSSSS
RDBYTE D,PTR 000000 0 01 1 CcccCC DDDDDDDDD SUPNNNNNN

[COND] RDBYTE D,S [WZ] 000000 Z 01 O CCCC DDDDDDDDD SSSSSSSSS

[COND] RDBYTE D,PTR [WZ] 000000 Z 01 1 CccC DDDDDDDDD nnnnnnnnn
RDBYTE [INDA,S [WZ] 000000 Z 01 O AAOO 111110110 SSSSSSSSS
RDBYTE INDA,PTR [WZ] 000000 Z 01 1 AAOO 111110110 SUPNNNNNN
RDBYTE D, INDA [WZ] 000000 Z 01 O OOAA DDDDDDDDD 111110110
RDBYTE INDA, INDB [WZ] 000000 Z 01 O AABB 111110110 111110111

0 SSSSSSSSS register
1 #SSSSSSSSS immediate, zero-extended

Z “Zero effect

C r~Carry effect

R “Register effect
I “Immediate effect

F:\-Morph-Temp_NANO_\Emulator\Prop2_Docs.txt.spin

den 16 december 2012 17:00

ZCR effects
000 nz, nc, nr
001 nz, nc, wr
010 nz, wc, nr
011 nz, wc, wr
100 wz, nc, nr
101 wz, nc, wr
110 wz, wc, nr
111 wz, wWC, Wr
Effect | Result
wz | [[(default)] meaning of zero flag set to 1]
wC | [[(default)] meaning of carry flag set to 1]
WR | [[(default)] meaning of value written to register]
COGINIT D 000011 000 O 1111 DDDDDDDDD SSSSSSSSS

|
[COND] COGINIT D,S [Wz] [WC] [WR] | 000011 ZCR O CCCC DDDDDDDDD SSSSSSSSS

COGSTOP D | 000011 000 1 1111 DDDDDDDDD 000000011
[COND] COGSTOP D [Wz] [WC] [WR] | 000011 ZCR O CCCC DDDDDDDDD 000000011

PROPELLER 2 MEMORY

In the Propeller 2, there are two primary types of memory:
HUB MEMORY
128K bytes of main memory shared by all cogs
- cogs launch from this memory
- cogs can access this memory as bytes, words, longs, and quads (4 longs)

- $00000. .$00E7F is ROM - contains Booter, SHA-256/HMAC, and Monitor
- $00E80..$1FFFF is RAM - for application usage

F:\-Morph-Temp_NANO_\Emulator\Prop2_Docs.txt.spin den 16 december 2012 17:00
COG MEMORY (8 instances)

512 longs of register RAM for code and data usage

- simultaneous iInstruction, source, and destination reading, plus writing
- last eight registers are for 1/0 pin control

256 longs of stack RAM for data and video usage

- accessible via push and pop operations
- video circuit can read data simultaneously and asynchronously

XXXXXX XXX X XxXxXX DDDDDDDDD SSSSSSSSS
| S Source field in instruction
D Destination field in instruction

PTRA and PTRB are only for pointing to HUB memory .
INDA and INDB are for pointing to COG memory .
SPA and SPB are for pointing to CLUT/stack memory .

"If you want to read longs quickly into registers,
it"s simplest to just do "RDLONGC INDA++,PTRA++".
" Less stuff to think about that way.

PTR EXPRESSIONS:

INDEX -32 .. +31 Simple offset

INDEX 0 . 31 ++ Auto-increments range
INDEX 0 . 32 -- Auto-decrement range
SCALE 1 BYTE

SCALE 2 WORD

SCALE 4 LONG

SCALE 16 QUAD

HUB MEMORY INSTRUCTIONS

These instructions read and write HUB memory .

F:\-Morph-Temp_NANO_\Emulator\Prop2_Docs.txt.spin

den 16 december 2012 17:00

All instructions use D as the data conduit, except WRQUAD/RDQUAD/RDQUADC, which uses the four QUAD
registers. The QUADs can be mapped into COG register space using the SETQUAD instruction or kept
hidden, in which case they are still useful as data conduit and as a read cache. If mapped, the QUADs
overlay four contiguous COG registers. These overlaid registers can be read and written as any other
registers, as well as executed. Any write via D to the QUAD registers, when mapped, will affect the
underlying COG registers, as well. A RDQUAD/RDQUADC will affect the QUAD registers, but not the
underlying COG registers.

The cached reads RDBYTEC/RDWORDC/RDLONGC/RDQUADC will do a RDQUAD if the current read address is
outside of the 4-long window of the prior RDQUAD. Otherwise, they will immediately return cached
data. The CACHEX instruction invalidates the cache, forcing a fresh RDQUAD next time a cached read
executes.

Hub memory instructions must wait for their COG"s HUB cycle, which comes once every 8 clocks. The
timing relationship between a COG"s instruction stream and its HUB cycle is generally indeterminant,
causing these iInstructions to take varying numbers of clocks. Timing can be made determinant, though,
by intentionally spacing these instructions apart so that after the first In a series executes, the
subsequent HUB memory instructions fall on HUB cycles, making them take the minimal numbers of
clocks. The trick is to write useful code to go in between them.

WRBYTE/WRWORD/WRLONG/WRQUAD/RDQUAD complete on the HUB cycle, making them take 1..8 clocks.

RDBYTE/RDWORD/RDLONG complete on the 2nd clock after the HUB cycle, making them take 3
RDBYTEC/RDWORDC/RDLONGC take only 1 clock if data is cached, otherwise 3..10 clocks.
RDQUADC takes only 1 clock if data is cached, otherwise 1..8 clocks.

Floating QUAD “window does not copy its contents to the underlying registers.

After a RDQUAD, mapped QUAD registers are accessible via D and S after three clocks:

RDQUAD hubaddress "read a quad into the QUAD registers mapped at quadO..quad3
NOP "do something for at least 3 clocks to allow QUADs to update

NOP

NOP

CMP quadO,quadl "mapped QUADs are now accessible via D and S

..10 clocks.

-6-

F:\-Morph-Temp_NANO_\Emulator\Prop2_Docs.txt.spin den 16 december 2012 17:00

After a RDQUAD, mapped QUAD registers are executable after three clocks and one instruction:

SETQUAD #quadO "map QUADs to quadO..quad3
Floating QUAD window does not copy its contents to the underlying registers.

RDQUAD hubaddress "read a quad into the QUAD registers mapped at quadO..quad3

NOP "do something for at least 3 clocks to allow QUADs to update
NOP
NOP

NOP "do at least 1 instruction to get QUADs into pipeline

quado NOP "QUADO. .QUAD3 are now executable
quadl NOP
quad2 NOP
quad3 NOP

After a SETQUAD, mapped QUAD registers are writable immediately, but original contents are
readable via D and S after 2 instructions:

SETQUAD #quadO "map QUADs to quadO..quad3 (new address)

NOP "do at least two instructions to queue up QUADs

NOP

CmMP quad0, quadl "mapped QUADS are now accessible via D and S

On cog startup, the QUAD registers are cleared to 0°s.

instructions clocks

000000 000 O CcCCC DDDDDDDDD SSSSSSSSS WRBYTE D,S write lower byte in D at S 1..8

-7-

F:\-Morph-Temp_NANO_\Emulator\Prop2_Docs.txt.spin den 16 december 2012 17:00

000000 000 1 cccC DDDDDDDDD SUPNNNNNN WRBYTE D,PTR write lower byte in D at PTR 1..8

000000 Z01 O CCCC DDDDDDDDD SSSSSSSSS RDBYTE D,S read byte at S into D 3..10

000000 Z01 1 cccC DDDDDDDDD SUPNNNNNN RDBYTE D,PTR read byte at PTR into D 3..10

000000 Z11 O CCCC DDDDDDDDD SSSSSSSSS RDBYTEC D, S read cached byte at S into D 1, 3..10

000000 z11 1 cCCC DDDDDDDDD SUPNNNNNN RDBYTEC D,PTR read cached byte at PTR into D 1, 3..10

000001 000 O CCCC DDDDDDDDD SSSSSSSSS WRWORD D,S write lower word in D at S 1..8

000001 000 1 cccC DDDDDDDDD SUPNNNNNN WRWORD D,PTR write lower word in D at PTR 1..8

000001 z01 O CCCC DDDDDDDDD SSSSSSSSS RDWORD D,S read word at S into D 3..10

000001 z01 1 CccC DDDDDDDDD SUPNNNNNN RDWORD D,PTR read word at PTR into D 3..10

000001 711 O CCCC DDDDDDDDD SSSSSSSSS RDWORDC D, S read cached word at S into D 1, 3..10

000001 z11 1 cccC DDDDDDDDD SUPNNNNNN RDWORDC D,PTR read cached word at PTR into D 1, 3..10

000010 000 O CCCC DDDDDDDDD SSSSSSSSS WRLONG D,S write D at S 1..8

000010 000 1 CcccC DDDDDDDDD SUPNNNNNN WRLONG D,PTR write D at PTR 1..8

000010 Z01 O CCCC DDDDDDDDD SSSSSSSSS RDLONG D,S read long at S into D 3..10

000010 z01 1 cccC DDDDDDDDD SUPNNNNNN RDLONG D,PTR read long at PTR into D 3..10

000010 Z11 0O CCCC DDDDDDDDD SSSSSSSSS RDLONGC D,S read cached long at S into D 1, 3..10

000010 Z11 1 CcCCC DDDDDDDDD SUPNNNNNN RDLONGC D,PTR read cached long at PTR into D 1, 3..10

000011 000 O cccc DDDDDDDDD 010110000 WRQUAD D write QUADs at D 1..8 (waits for hub)
000011 001 1 CCCC SUPNNNNNN 010110000 WRQUAD PTR write QUADs at PTR 1..8 (waits for hub)
000011 000 O cccc DDbDDDDDDD 010110001 RDQUAD D read quad at D into QUADs 1..8 (waits for hub)
000011 001 1 CCCC SUPNNNNNN 010110001 RDQUAD PTR read quad at PTR into QUADs 1..8 (waits for hub)
000011 010 O cccc DDbDDDDDDD 010110001 RDQUADC D read cached quad at D into QUADs 1, 1..8 (waits for hub if cache
miss)

000011 011 1 CCCC SUPNNNNNN 010110001 RDQUADC PTR read cached quad at PTR into QUADs 1, 1..8 (waits for hub if cache
miss)

Conditionally read into QUADs from hub memory at D

PTR EXPRESSIONS:

INDEX -32 .. +31 Simple offset

INDEX 0 . 31 ++ Auto-increments range
INDEX 0 . 32 -- Auto-decrement range
SCALE 1 BYTE

SCALE 2 WORD

F:\-Morph-Temp_NANO_\Emulator\Prop2_Docs.txt.spin

den 16 december 2012 17:00

SCALE
SCALE

INDEX
SCALE

S =
U =
P =

NNNNNN =

4
16

LONG
QUAD

0 for PTRA, 1 for PTRB
0 to keep PTRx same, 1 to update PTRx
0 to use PTRx + INDEX*SCALE, 1 to use PTRx (post-modify)

INDEX

nnnnnn = -INDEX

SUP

NNNNNN

PTR expression

-32..+431 for simple offsets, 0..31 for ++’s, or 0..32 for --"s
1 for byte, 2 for word, 4 for long, or 16 for quad

000
100
011
111
011
111
010
110
010
110

000000
000000
000001
000001
111111
111111
000001
000001
111111
111111

NNNNNN
NNNNNN
NNNNNN
NNNNNN
nnnnnn
nnnnnn
NNNNNN
NNNNNN
nnnnnn
nnnnnn

Examples:

PTRB

PTRA++
PTRB++
PTRA--
PTRB--
++PTRA
++PTRB
--PTRA
--PTRB

PTRA[INDEX]

PTRB[INDEX]

PTRA++[INDEX]
PTRB++[INDEX]
PTRA-- [INDEX]
PTRB-- [INDEX]
++PTRA[INDEX]
++PTRBINDEX]
——PTRA[INDEX]
~—PTRB[INDEX]

+ o+

+ o+

SCALE,
SCALE,
SCALE,
SCALE,

INDEX*SCALE
INDEX*SCALE

INDEX*SCALE,
INDEX*SCALE,
INDEX*SCALE,
INDEX*SCALE,

PTRA +=
PTRB +=
PTRA -=
PTRB -=
PTRA +=
PTRB +=
PTRA -=
PTRB -=

PTRA +=
PTRB +=
PTRA -=
PTRB -=
PTRA +=
PTRB +=
PTRA -=
PTRB -=

SCALE
SCALE
SCALE
SCALE
SCALE
SCALE
SCALE
SCALE

INDEX*SCALE
INDEX*SCALE
INDEX*SCALE
INDEX*SCALE
INDEX*SCALE
INDEX*SCALE
INDEX*SCALE
INDEX*SCALE

F:\-Morph-Temp_NANO_\Emulator\Prop2_Docs.txt.spin

den 16 december 2012 17:00

000000
000001
000010
000011
000000

000001
000010
000011
000000
000001

Bytes, Words, Longs, and Quads

for
for
for
for

address

Z01
000
Z01
001
000

000
Z11
001
000
Z01

PR R RPR

R R R R R

CCCC
CCCC
Ccccc
CCcC
CCCC

CccC
CCcC
CCcC
CCcC
CccC

DDDDDDDDD
DDDDDDDDD
DDDDDDDDD
110000001
DDDDDDDDD

DDDDDDDDD
DDDDDDDDD
111111101
DDDDDDDDD
DDDDDDDDD

000000000 RDBYTE D,PTRA
111000001 WRWORD D,PTRB++
011111111 RDLONG D,PTRA--
010110001 RDQUAD ++PTRB
010111111 WRBYTE D,--PTRA
100000111 WRWORD D,PTRB[7]
011001111 RDLONGC D,PTRA++[15]
010110000 WRQUAD PTRB--[3]
010000110 WRBYTE D,++PTRA[6]
110110110 RDWORD D, --PTRB[10]

"are addressed as follows:

"read byte at PTRA into D

"write lower word in D at PTRB,
"read long at PTRA into D,

"read quad at PTRB+16 into QUADs,
"write lower byte in D at PTRA-1,

"write lower word

in D to PTRB+7*2

"read cached long at PTRA into D,
"write QUADs at PTRB,

"write lower byte in D to PTRA+6*1,

"read word at PTRB-10*2 into D,

WRBYTE/RDBYTE/RDBYTEC, address = %BXXXXXXXXXXXXXXXXX (bits 16.
WRWORD/RDWORD/RDWORDC, address = %HXXXXXXXXXXXXXXXX- (bits 16.
WRLONG/RDLONG/RDLONGC, address = %XXXXXXXXXXXXXXX-- (bits 16.
WRQUAD/RDQUAD/RDQUADC, address = %XXXXXXXXXXXXX---- (bits 16.
byte word long quad
50 *7250 *706F7250 *0C7CCC03_0C7C2000_20302E32_706F7250
72 7250 706F7250 0C7CCC03_0C7C2000_20302E32_706F7250
6F *706F 706F7250 0C7CCC03_0C7C2000_20302E32_706F7250
70 706F 706F7250 0C7CCC03_0C7C2000_20302E32_706F7250
32 *2E32 *20302E32 0C7CCC03_0C7C2000_20302E32_706F7250
2E 2E32 20302E32 0C7CCC03_0C7C2000_20302E32_706F7250
30 *2030 20302E32 0C7CCC03_0C7C2000_20302E32_706F7250
20 2030 20302E32 0C7CCC03_0C7C2000_20302E32_706F7250
00 *2000 *0C7C2000 0C7CCC03_0C7C2000_20302E32_706F7250
20 2000 0C7C2000 0C7CCC03_0C7C2000_20302E32_706F7250
7C *0C7C 0C7C2000 0C7CCC03_0C7C2000_20302E32_706F7250
ocC 0Cc7C 0C7C2000 0C7CCC03_0C7C2000_20302E32_706F7250
03 *CCO3 *0C7CCCo3 0C7CCC03_0C7C2000_20302E32_706F7250
ccC CCo3 oc7cccos 0C7CCC03_0C7C2000_20302E32_706F7250
7C *0C7C 0Cc7Cccco3 0C7CCC03_0C7C2000_20302E32_706F7250
ocC 0C7C 0C7Ccco3 0C7CCC03_0C7C2000_20302E32_706F7250

.0 are
.1 are
.2 are
.4 are

used)
used)
used)
used)

PTRB
PTRA
PTRB
PTRA

PTRA
PTRB
PTRA
PTRB

+= 6%1

-10-

F:\-Morph-Temp_NANO_\Emulator\Prop2_Docs.txt.spin

den 16 december 2012 17:00

00010- 45 *FE45 *ODC1lFE45 *0D7CC601_0C7CC601_OCFCB6E3_ODC1FE45
00011- FE FE45 ODC1FE45 0OD7CC601_0C7CC601_0OCFCB6E3_ODC1FE45
00012- Cl1 *0DC1 ODC1FE45 0D7CC601_0C7CC601_OCFCB6E3_ODC1FE45
00013- oD 0DC1 ODC1FE45 0OD7CC601_0C7CC601_OCFCB6E3_ODC1FE45
00014- E3 *B6E3 *OCFCB6E3 0D7CC601_0C7CC601_OCFCB6E3_ODC1FE45
00015- B6 B6E3 OCFCB6E3 0OD7CC601_0C7CC601_OCFCB6E3_ODC1FE45
00016- FC *OCFC OCFCB6E3 0D7CC601_0C7CC601_OCFCB6E3_ODC1FE45
00017- oc OCFC OCFCB6E3 0OD7CC601_0C7CC601_OCFCB6E3_ODC1FE45
00018- 01 *Ce01 *0C7CCe601 0D7CC601_0C7CC601_OCFCB6E3_ODC1FE45
00019- C6 C601 0C7CC601 0OD7CC601_0C7CC601_OCFCB6E3_ODC1FE45
0001A- 7C *0C7C 0C7CC601 0D7CC601_0C7CC601_OCFCB6E3_ODC1FE45
0001B- oc oc7C 0C7CC601 0OD7CC601_0C7CC601_OCFCB6E3_ODC1FE45
0001C- 01 *Ce01 *0OD7CC601 0OD7CC601_0C7CC601_OCFCB6E3_ODC1FE45
0001D- C6 C601 0D7CC601 0OD7CC601_0C7CC601_0OCFCB6E3_ODC1FE45
OO001E- 7C *0D7C 0D7CC601 0D7CC601_0C7CC601_OCFCB6E3_ODC1FE45
0001F- oD 0b7C 0D7CC601 0OD7CC601_0C7CC601_OCFCB6E3_ODC1FE45

* new word/long/quad

PTRA/PTRB INSTRUCTIONS

Each COG has two 17-bit pointers, PTRA and PTRB, which can be read, written, modified,
and used to access HUB memory.

At COG startup, the PTRA and PTRB registers are initialized as follows:

PTRA
PTRB

%X XXXXXXXX_XXXXXXXX, data from launching COG, usually a pointer
%X_ XXXXXXXX_XXXXXX00, long address in HUB where COG code was loaded from

when COG starts, PTRA = PAR
PTRB = address of COG image

instructions clocks

000011 ZCR 1 CCCC DDDDDDDDD 000010010 GETPTRA D get PTRA into D, C = PTRA[16] 1

-11-

F:\-Morph-Temp_NANO_\Emulator\Prop2_Docs.txt.spin

000011 ZCR 1 CCCC DDDDDDDDD 000010011

010110010
010110010
010110011
010110011

010110100
010110100
010110101
010110101

010110110
010110110
010110111
010110111

GETPTRB D

SETPTRA D
SETPTRA #n
SETPTRB D
SETPTRB #n

ADDPTRA D
ADDPTRA #n
ADDPTRB D
ADDPTRB #n

SUBPTRA D
SUBPTRA #n
SUBPTRB D
SUBPTRB #n

get

set
set
set
set

add D into
add 0..511
add D into
add 0..511

subtract D

subtract O.

subtract D

subtract O.

PTRA to D
PTRA to 0..511
PTRB to D
PTRB to 0..511

PTRA
into
PTRB
into

from
511
from
.511

PTRB into D, C = PTRB[16]

PTRA

PTRB

PTRA
from PTRA
PTRB
from PTRB

N Y [

I = N = =Y

000011 000 1 cccc DDbbbbDDDD
000011 001 1 CCCC nnnnnnnnn
000011 000 1 cccc DDDDDDDDD
000011 001 1 CCCC nnnnnnnnn
000011 000 1 cccc DDDbDDDDDD
000011 001 1 CCCC nnnnnnnnn
000011 000 1 cccc DDbbbbDDDD
000011 001 1 CCCC nnnnnnnnn
000011 000 1 cccc DDDDDDDDD
000011 001 1 CCCC nnnnnnnnn
000011 000 1 cccc DDbbbbDDDD
000011 001 1 CCCC nnnnnnnnn
QUAD-RELATED INSTRUCTIONS

Each COG has
This conduit
also be used

four QUAD registers which form a 128-bit conduit between the HUB memory and the COG .

can transfer four longs every 8 clocks via the WRQUAD/RDQUAD instructions.

It can

as a 4-long/8-word/16-byte read cache, utilized by RDBYTEC/RDWORDC/RDLONGC/RDQUADC .

Initially hidden, these QUAD registers are mappable into COG register space by using the SETQUAD
instruction to set an address where the base register is to appear, with the other three registers
following. To hide the QUAD registers, use SETQUAD to set an address which is $1F8, or higher.
SETQUAZ works just like SETQUAD, but also clears the four QUAD registers.

den 16 december 2012 17:00

instructions clocks
000011 000 1 CCCC 000000000 000001000 CACHEX invalidate cache 1
000011 701 1 cccC DDDDDDDDD 000010001 GETTOPS D get top bytes of QUADs into D (GETTOPS wc,nr = POLVID wc) 1
000011 000 1 cccc DDbDDDDDDD 011100010 SETQUAD D set QUAD base address to D 1
000011 001 1 CCCC nnnnnnnnn 011100010 SETQUAD #n set QUAD base address to 0..511 1

-12-

F:\-Morph-Temp_NANO_\Emulator\Prop2_Docs.txt.spin

den 16 december 2012 17:00

000011 010 1 cccc DDbDDDDDDD 011100010 SETQUAZ D set QUAD base address to D and clears the QUAD registers.
000011 011 1 CcCCC nnnnnnnnn 011100010 SETQUAZ #n set QUAD base address to 0..511 and clears the QUAD registers.

You can start the QUAD s at any register now and clear them at the same time, if you want.

HUB "CONTROL INSTRUCTIONS

These instructions are used to control HUB circuits and cogs.

HUB instructions must wait for their COG"s HUB cycle, which comes once every 8 clocks. In cases where
there is no result to wait for (ZCR = %000), these instructions complete on the HUB cycle, making
them take 1..8 clocks, depending on where the HUB cycle is in relation to the instruction. In cases
where a result is anticipated (ZCR <> %000), these instructions complete on the 1st clock after the
HUB cycle, making them take 2..9 clocks.

COGINIT D,S

COGINIT is used to start cogs. Any COG can be (re)started, whether it is idle or running. A COG
can even execute a COGINIT to restart itself with a new program.

COGINIT uses D to specify a long address in HUB memory that is the start of the program that is to be
loaded into a COG, while S is a 17-bit parameter (usually an address) that will be conveyed to PTRA
of the started COG . PTRB of the started COG will be set to the start address of its program that was
loaded from HUB memory.

SETCOG must be executed before COGINIT to set the number of the COG to be started (0..7). If SETCOG
sets a value with bit 3 set (%1xxx), this will cause the next idle COG to be started when COGINIT is
executed, with the number of the COG started being returned in D, and the C flag returning 0 if okay,
or 1 if no idle COG was available. Upon COG startup, SETCOG is initialized to %0000.

When a COG is started, $1F8 contiguous longs are read from HUB memory and written to COG registers
$000. .$1F7. The COG will then begin execution at $000. This process takes 1,016 clocks.

Example:

1
1

-13-

F:\-Morph-Temp_NANO_\Emulator\Prop2_Docs.txt.spin

den 16 december 2012 17:00

COGID COGNUM "what COG am 1?
SETCOG COGNUM "set my COG number
COGINIT COGPGM,COGPTR "restart me with the ROM Monitor

COGPGM LONG $0070C "address of the ROM Monitor
COGPTR LONG 90<<9 + 91 "tx = P90, rx = P91
COGNUM RES 1

"If you want to inspect hub memory after your program has run,
* just put the following code at the end of your program:

Code:

coginit monitor_pgm,monitor_ptr "relaunch cog0 with monitor
monitor_pgm long $70C "monitor program address
monitor_ptr long 90<<9 + 91 "monitor parameter (conveys tx/rx pins)

"This will launch the ROM Monitor and let you view what your program did to hub memory.
" The monitor only affects the hub memory when you give it a command to do so. So, when
" the monitor starts up, hub memory is just as your program left it, ready to be inspected.

CLKSET D

CLKSET writes the lower 9 bits of D to the HUB clock register:
%R_MMMM_XX_SS

R = 1 for hardware reset, 0 for continued operation

MMMM = PLL multiplying factor for X1 pin input:

% 0000 for PLL disabled

% 0001..% 1111 for 2..16 multiply (XX must be set for XI input or XI/X0O crystal oscillator)
MMMM = PLL mode:

F:\-Morph-Temp_NANO_\Emulator\Prop2_Docs.txt.spin den 16 december 2012 17:00
% 0000 for disabled, else XX must be set for Xl input or XI/XO crystal oscillator

% 0001 for multiply XI by 2
% 0010 for multiply XI by 3
% 0011 for multiply X1 by 4
% 0100 for multiply XI by 5
% 0101 for multiply XI by 6
% 0110 for multiply XI by 7
% 0111 for multiply XI by 8
% 1000 for multiply XI by 9
% 1001 for multiply X1 by 10
% 1010 for multiply X1 by 11
% 1011 for multiply XI by 12
% 1100 for multiply XI by 13
% 1101 for multiply X1 by 14
% 1110 for multiply X1 by 15
% 1111 for multiply X1 by 16
XX = XI/XO pin mode:
00 for XI reads low, XO floats
01 for XI input, XO floats

10 for XI1/XO crystal oscillator with 15pF internal loading and 1M-ohm feedback
11 for XI1/X0 crystal oscillator with 30pF internal loading and 1M-ohm feedback

SS = Clock selector:
00 for RCFAST (~20MHZz)
01 for RCSLOW (~20KHZz)
10 for XTAL (10MHZz-20MHZz)
11 for PLL

Because the the clock register is cleared to % 0 0000 00 00 on reset, the chip starts up in RCFAST mode
with both the crystal oscillator and the PLL disabled. Before switching to XTAL or PLL mode from RCFAST

or RCSLOW, the crystal oscillator must be enabled and given 10ms to stabilize. The PLL stabilizes within
10us, "so it can be enbled at the sime time as the crystal oscillator. Once the crystal is stabilized, you
can switch between XTAL and RCFAST/RCSLOW without any stability concerns. If the PLL is also enabled, you
can switch freely among PLL, XTAL, and RCFAST/RCSLOW modes. You can change the PLL multiplier while being
in PLL mode, but beware that some frequency overshoot and undershoot will occur as the PLL settles to its
"new frequency. This only poses a hardware problem if you are switching upwards and the resulting overshoot
"might exceed the speed limit of the chip.

-15-

F:\-Morph-Temp_NANO_\Emulator\Prop2_Docs.txt.spin den 16 december 2012 17:00

COGID returns the number of the COG (0..7) into D.

COGSTOP D

COGSTOP stops the COG specified in D (0..7).

LOCKNEW D
LOCKRET D
LOCKSET D
LOCKCLR D

There are eight semaphore locks available in the chip which can be borrowed with LOCKNEW, returned with
LOCKRET, set with LOCKSET, and cleared with LOCKCLR.

While any COG can set or clear any lock without using LOCKNEW or LOCKRET, LOCKNEW and LOCKRET are provided
so that COG programs have a dynamic and simple means of acquiring and relinquishing the locks at run-time.

When a lock is set with LOCKSET, its state is set to 1 and its prior state is returned in C. LOCKCLR works
the same way, but clears the lock®s state to 0. By having the HUB perform the atomic operation of setting/
clearing and reporting the prior state, cogs can utilize locks to insure that only one COG has permission
to do something at once. If a lock starts out cleared and multiple cogs vie for the lock by doing a
"LOCKSET locknum wc", the COG to get C=0 back “wins® and he can have exclusive access to some shared
resource while the other cogs get C=1 back. When the winning COG is done, he can do a "LOCKCLR locknum® to
clear the lock and give another COG the opportunity to get C=0 back.

LOCKNEW returns the next available lock into D, with C=1 if no lock was free.
LOCKRET frees the lock in D so that it can be checked out again by LOCKNEW .

LOCKSET sets the lock in D and returns its prior state in C.

-16-

F:\-Morph-Temp_NANO_\Emulator\Prop2_Docs.txt.spin den 16 december 2012 17:00

LOCKCLR clears the lock in D and returns its prior state in C.

instructions clocks
000011 ZCR O CCCC DDDDDDDDD SSSSSSSSS COGINIT D,S "launch COG at D, COG PTRA = S 1..9
000011 000 1 CccC DDDDDDDDD 000000000 CLKSET D "set clock to D 1..8
000011 001 1 CCCC DDDDDDDDD 000000001 COGID D "get COG number into D 2..9
000011 000 1 cccc DDbDDDDDDD 000000011 COGSTOP D "stop COG in D 1..8
000011 ZzC1 1 CcCCC DDDDDDDDD 000000100 LOCKNEW D "get new lock into D, C = busy 2..9
000011 000 1 cccC DDDDDDDDD 000000101 LOCKRET D "return lock in D 1..8
000011 OCO 1 CCcC DDDDDDDDD 000000110 LOCKSET D "set lock in D, C = prev state 1..9
000011 0OCO 1 cccc DDDDDDDDD 000000111 LOCKCLR D "clear lock in D, C = prev state 1..9

Each COG has two indirect registers: INDA and INDB. They are located at $1F6 and $1F7.

By using INDA or INDB for D or S, the register pointed at by INDA or INDB is addressed.

INDA and INDB each have three hidden 9-bit "registers associated with them: the pointer, the bottom limit, and
“"the top limit. The bottom and top limits are inclusive values which set automatic wrapping boundaries for the
pointer. This way, circular buffers can be established within COG RAM and accessed using simple INDA/INDB
references.

SETINDA/SETINDB/SETINDS is used to set or adjust the pointer value(S) while forcing the associated bottom and
top limit(S) to $000 and $1FF, respectively.

FIXINDA/FIXINDB/FIXINDS sets the pointer(S) to an inital value, while setting the bottom limit(s) to the
lower of the initial and terminal values and the top limit(S) to the higher.

"Because indirect addressing occurs very early in the pipeline and indirect pointers are affected earlier than
the final stage where the conditional bit field (CCCC) normally comes into use, the CCCC field is repurposed
for indirect operations. The top two bits of CCCC are used for indirect D and the bottom two bits are used

-17-

F:\-Morph-Temp_NANO_\Emulator\Prop2_Docs.txt.spin den 16 december 2012 17:00

All

for indirect S .
CCCC T"bits.

"instructions which use indirect registers will execute unconditionally, regardless of the

Here is the INDA/INDB usage scheme which repurposes the CCCC field:

000000 ZCR 1 CCCC DDDDDDDDD SSSSSSSSS

XXXXXX XXX X 00xx 111110110 XXXXXXXXX D = INDA “"use INDA

XXXXXX XXX X 00xx 111110111 XXXXXXXXX D = INDB “"use INDB

XXXXXX XXX X 0I1xx 111110110 XXXXXXXXX D = INDA++ "use INDA, INDA += 1
XXXXXX XXX X 01xxX 111110111 XXXXXXXXX D = INDB++ "use INDB, INDB += 1
XXXXXX XXX X 10xx 111110110 XXXXXXXXX D = INDA-- “"use INDA, INDA -= 1
XXXXXX XXX X 10xx 111110111 XXXXXXXXX D = INDB-- “"use INDB INDB -= 1
XXXXXX XXX X 1IxX 111110110 XXXXXXXXX D = ++INDA “"use INDA+1, INDA += 1
XXXXXX XXX X 11IxX 111110111 XXXXXXXXX D = ++INDB “"use INDB+1, INDB += 1
XXXXXX XXX O XX00 XxXxXxXxxxxx 111110110 S = INDA “"use INDA

XXXXXX XXX 0 XX00 XxXxxxxxxx 111110111 S = INDB “"use INDB

XXXXXX XXX 0 XX01 XXXXXXXxXX 111110110 S = INDA++ “use INDA, INDA += 1
XXXXXX XXX 0 XX01 XxXxxxxxxx 111110111 S = INDB++ “"use INDB, INDB += 1
XXXXXX XXX O XX10 XxXxxxxxxx 111110110 S = INDA-- "use INDA, INDA -= 1
XXXXXX XXX 0 XX10 XXxXxXxxxxx 111110111 S = INDB-- “"use INDB INDB -= 1
XXXXXX XXX 0 XX11 XXXXXXXXX 111110110 S = ++INDA “"use INDA+1, INDA += 1
XXXXXX XXX 0 XX11 XxXxxxxxxx 111110111 S = ++INDB "use INDB+1, INDB += 1

IT both D and S are the same indirect register, the two 2-bit fields in CCCC are OR"d together to get the
post-modifier effect:

INDA += 1
INDB += 1

101000 001 O 0011 111110110 111110110
100000 001 O 1100 111110111 111110111

MOV [INDA, ++INDA
ADD ++INDB, INDB

"Move @INDA+1 into @INDA,
"Add @INDB into @INDB+1,

Note that only "++INDx, INDx"/" INDx,++INDx" combinations can address different registers from the same INDx.

Here are the instructions which are used to set the pointer and limit values for INDA and INDB:

instructions * clocks Descrinption

F:\-Morph-Temp_NANO_\Emulator\Prop2_Docs.txt.spin

den 16 december 2012 17:00

111000
111000

111000
111000

111000
111000
111000
111000

111001
111001
111001

* addrA/addrB/terminal/Zinitial =

000
000

000
000

000
000
000
000

000
000
000

0001
0011

0100
1100

0101
0111
1101
1111

0001
0100
0101

000000000
000000000

BBBBBBBBB
BBBBBBBBB

BBBBBBBBB
BBBBBBBBB
BBBBBBBBB
BBBBBBBBB

TTTTTTTTT
TTTTTTTTT
TTTTTTTTT

AAAAAAAAA
AAAAAAAAA

000000000
000000000

AAAAAAAAA
AAAAAAAAA
AAAAAAAAA
AAAAAAAAA

SETINDA
SETINDA

SETINDB
SETINDB

SETINDS
SETINDS
SETINDS
SETINDS

FIXINDA
FIXINDB
FIXINDS

register address (O..

deltA/deltB = 9-bit signed delta --256..++255

INDIRECT POINTER Examples:

111000
111000
111000
111000

111001
111001
111001

000
000
000
000

000
000
000

0
0
0
0

o

0001
0011
1100
0111

0001
0100
0101

000000000
000000000
111111100
000000111

000001111
000010000
001100011

000000101
000000011
000000000
000001000

000001000
000011111
000110010

SETINDA
SETINDA
SETINDB
SETINDS

FIXINDA
FIXINDB
FIXINDS

#addrA 1 | "Set or adjust the pointer value(s) while forcing
++/--deltA 1 | ° the associated bottom and top limit(s)
| © to $000 and $1FF, respectively.
#addrB 1 | * addrA/addrB/terminal/initial
++/--del tB 1 | ° = register address (0..511),
| ° deltA/deltB = 9-bit signed delta --256..++255
#addrB,#addrA 1 |
#addrB,++/--deltA 1 | AAAAAAAAA addrA
++/--deltB,#addrA 1 | BBBBBBBBB addrB
++/--deltB,++/--deltA 1 | TTTTTTTTT terminal
| (NERRRNRE! initial
#terminal ,#initial 1 |
#terminal ,#initial 1 |
#terminal ,#initial 1 |
511),
#5 "INDA = 5, bottom = 0, top = 511
++3 "INDA += 3, bottom = 0, top = 511
--4 "INDB -= 4, bottom = 0, top = 511
#7,++8 "INDB = 7, INDA += 8, bottoms = 0, tops = 511
#15,#8 "INDA = 8, bottom = 8, top = 15
#16,#31 "INDB = 31, bottom = 16, top = 31
#99,#50 "INDA/ZINDB = 50, bottoms = 50, tops = 99

STACK RAM

When the video generator is not in use the CLUT/RAM may be used as a general-purpose memory scratch space,
or as a 256 Long FIFO buffer, or as a call stack and evaluation stack (at the same time).
The CLUT/RAM has two pointers used to index it called SPA and SPB .

Each COG has a 256-long STACK RAM that is accessible via push and pop operations.

-19-

F:\-Morph-Temp_NANO_\Emulator\Prop2_Docs.txt.spin

den 16 december 2012 17:00

There are two STACK pointers called SPA and SPB which are used to address the STACK memory.

" Aside from automatically incrementing and decrementing on pushes and pops,
SPA and SPB "can be set, added to, subtracted from,

SETSPA
SETSPB
ADDSPA
ADDSPB
SUBSPA
SUBSPB
GETSPA
GETSPB
GETSPD
CHKSPA
CHKSPB
CHKSPD

D/#n
D/#n
D/#n
D/#n
D/#n
D/#n
D
D
D

set SPA

set SPB

add to SPA

add to SPB

subtract from SPA

subtract from SPB

get SPA, SPA==0 into Z, SPA.7 into C

get SPB, SPB==0 into Z, SPB.7 into C

get SPA minus SPB, SPA==SPB into Z, SPA<SPB into C
check SPA, SPA==0 into Z, SPA.7 into C

check SPB, SPB==0 into Z, SPB.7 into C

check SPA minus SPB, SPA==SPB into Z, SPA<SPB into C

"Data can be pushed and popped in both normal and reverse directions:

PUSHA
PUSHB
PUSHAR
PUSHBR
POPA
POPB
POPAR
POPBR

"Aside from data,

CALLA
CALLB
CALLAD
CALLBD
RETA
RETB
RETAD
RETBD

D/#n
D/#n
D/#n
D/#n
D

D
D
D

D/#n
D/#n
D/#n
D/#n

push using SPA

push using SPB

push using SPA, use pop addressing
push using SPB, use pop addressing
pop using SPA

pop using SPB

pop using SPA, use push addressing
pop using SPB, use push addressing

the program counter and flags can be pushed and popped using calls and returns:

call using SPA
call using SPB

call using SPA, "delay branch until three trailing instructions
call using SPB, "delay branch until three trailing instructions

return using SPA
return using SPB

return using SPA, "delay branch until three trailing instructions
return using SPB, “delay branch until three trailing instructions

read back, and checked:

executed
executed

executed
executed

-20-

F:\-Morph-Temp_NANO_\Emulator\Prop2_Docs.txt.spin den 16 december 2012 17:00

The STACK RAM™s contents are undefined at COG start.

instructions (STACK RAM access is shown as [SPx++] and [--SPx]) clocks

000011 ZCO 1 CCCC 000000000 000010101 CHKSPD SPA==SPB into Z, SPA<SPB into C 1
000011 zC1 1 cccc DDbDDDDDDD 000010101 GETSPD SPA-SPB into D, Z/C as CHKSPD 1

"Stores ((SPA - SPB) & Ox7F) in register “D (0-511)”. FOR FIFO MODE.
000011 ZCO 1 CCCC 000000000 000010110 CHKSPA SPA==0 into Z, SPA.7 into C 1
000011 ZzC1 1 cccc DDbDbDDDDDD 000010110 GETSPA SPA into D, Z/C as CHKSPA 1

"Stores SPA in register “D (0-511)".
000011 ZCO 1 CCCC 000000000 000010111 CHKSPB SPB==0 into Z, SPB .7 into C 1
000011 ZC1 1 CCcCC DDDDDDDDD 000010111 GETSPB SPB into D, Z/C as CHKSPB 1

"Stores SPB in register “D (0-511)".
000011 ZzC1 1 cccc DDbbbDDDDD 000011000 POPAR read [SPA++] into D, MSB into C 1

"Store CLUT[SPA] in register “D (0-511)” and then increment SPA.
000011 zC1 1 CCCC DDDDDDDDD 000011001 POPBR read [SPB++] into D, MSB into C 1

"Store CLUT[SPB] in register “D (0-511)” and then increment SPA.
000011 ZC1 1 CCcCC DDDDDDDDD 000011010 POPA read [--SPA] into D, MSB into C 1

"Decrement SPA and then store CLUT[SPA] in register “D (0-511)".
000011 zC1 1 cccc DDbDDDDDDD 000011011 POPB read [--SPB] into D, MSB into C 1

"Decrement SPB and then store CLUT[SPB] in register “D (0-511)".
000011 ZCO 1 CCCC 000000000 000011100 RETA read [--SPA] into zZ/C/PC* 4

"Decrement SPA and then jump to instruction (CLUT[SPA] & Ox1FF).

"Flush pipeline before jump — results In a two-cycle loss.
000011 ZCO 1 CCCC 000000000 000011101 RETB read [--SPB] into Z/C/PC* 4

"Decrement SPB and then jump to instruction (CLUT[SPB] & Ox1FF).

"Flush pipeline before jump — results in a two-cycle loss.
000011 ZCO 1 CCCC 000000000 000011110 RETAD read [--SPA] into Z/C/PC* 1

"Decrement SPA and then jump to instruction (CLUT[SPA] & Ox1FF).

-21-

F:\-Morph-Temp_NANO_\Emulator\Prop2_Docs.txt.spin den 16 december 2012 17:00
"Do not flush pipeline before jump — must be executed two
"instructions before intended jump space.
000011 ZCO 1 CCCC 000000000 000011111 RETBD read [--SPB] into Z/C/PC* 1
"Decrement SPB and then jump to instruction (CLUT[SPB] & Ox1FF).
"Do not flush pipeline before jump — must be executed two
"instructions before intended jump space.

000011 000 1 cccC DDDDDDDDD 010100010 SETSPA D set SPA to D 1
"Set SPA to register “D (0-511)".

000011 001 1 CCCC Onnnnnnnn 010100010 SETSPA #n set SPA to n 1
"Set SPA to register “n (0-511)".

000011 000 1 cccc DDDDDDDDD 010100011 SETSPB D set SPB to D 1
"Set SPB to register “D (0-511)".

000011 001 1 CCCC Onnnnnnnn 010100011 SETSPB #n set SPB to n 1
"Set SPB to register “n (0-511)".

000011 000 1 cccc DDDDDDDDD 010100100 ADDSPA D add D into SPA 1
"Add to SPA register “D (0-511)”

000011 001 1 cCCCC Onnnnnnnn 010100100 ADDSPA #n add n into SPA 1
"Add to SPA register “n (0-511)~

000011 000 1 cccc DDDDDDDDD 010100101 ADDSPB D add D into SPB 1
"Add to SPB register “D (0-511)”

000011 001 1 ccCCC Onnnnnnnn 010100101 ADDSPB #n add n into SPB 1
"Add to SPB register “n (0-511)~

000011 000 1 cccC DDDDDDDDD 010100110 SUBSPA D subtract D from SPA 1
"Subtract from SPA register “D (0-511)”

000011 001 1 ccCC Onnnnnnnn 010100110 SUBSPA #n subtract n from SPA 1
"Subtract from SPA register “n (0-511)~

000011 000 1 cccc DDDDDDDDD 010100111 SUBSPB D subtract D from SPB 1
"Subtract from SPB register “D (0-511)”

000011 001 1 ccCCC Onnnnnnnn 010100111 SUBSPB #n subtract n from SPB 1
"Subtract from SPB register “n (0-511)~

000011 000 1 cccC DDDDDDDDD 010101000 PUSHAR D write D into [--SPA] 1 **
"Decrement SPA and then store register “D (0 511)~

000011 001 1 CCCC nnnnnnnnn 010101000 PUSHAR #n write n into [--SPA] 1 **

"Decrement SPA and then store register “n (0 511)”
000011 000 1 cccc DDbDDDDDDD 010101001 PUSHBR D write D into [--SPB] 1 **

-22-

F:\-Morph-Temp_NANO_\Emulator\Prop2_Docs.txt.spin

den 16 december 2012 17:00

000011 001 1 cCCC nnnnnnnnn 010101001

000011

000011

000011

000011

000011

000011

000011

000011

000011

000011

000011

000011

000

001

000

001

000

001

000

001

000

001

000

001

CCcC

CCCC

CCcC

CCCC

CCCC

CCcC

CCcC

CccC

CCcCC

CccC

CCCC

CCCC

DDDDDDDDD

nnnnnnnnn

DDDDDDDDD

nnnnnnnnn

DDDDDDDDD

nnnnnnnnn

DDDDDDDDD

nnnnnnnnn

DDDDDDDDD

nnnnnnnnn

DDDDDDDDD

nnnnnnnnn

010101010

010101010

010101011

010101011

010101100

010101100

010101101

010101101

010101110

010101110

010101111

010101111

PUSHBR

PUSHA

PUSHA

PUSHB

PUSHB

CALLA

CALLA

CALLB

CALLB

CALLAD

CALLAD

CALLBD

CALLBD

#n

#n

#n

#n

#n

#n

#n

"Decrement SPB and then store register “D (0-511)~
write n into [--SPB] 1 **
"Decrement SPB and then store register “n (0-511)”

write D into [SPA++]
"Store register “D (0-511)” in CLUT[SPA] and then increment SPA.
write n into [SPA++] 1 **
"Store register “n (0-511)" in CLUT[SPA] and then increment SPA.
write D into [SPB++] 1 **
"Store register “D (0-511)” in CLUT[SPB] and then increment SPB.
write n into [SPB++] 1 **
"Store register “n (0-511)" in CLUT[SPB] and then increment SPB.

1**

write Z/C/PC* into [SPA++], PC=D 4 *=*

"Store the program counter (PC) in CLUT[SPA] and then increment
" SPA and then jump to the address in register “D (0-511)~
write Z/C/PC* into [SPA++], PC=n 4 **

"Store the program counter (PC) in CLUT[SPA] and then increment
" SPA and then jump to the address in register “n (0-511)".

* Flush pipeline before jump — results in a two-cycle loss.
write Z/C/PC* into [SPB++], PC=D 4 **

"Store the program counter (PC) in CLUT[SPB] and then increment
" SPB and then jump to the address in register “D (0-511)~
write Z/C/PC* into [SPB++], PC=n 4 **

"Store the program counter (PC) in CLUT[SPB] and then increment
" SPB and then jump to the address in register “n (0-511)".

" Flush pipeline before jump — results in a two-cycle loss.

write Z/C/PC* into [SPA++], PC=D 1 **

"Store the program counter (PC) in CLUT[SPA] and then increment
" SPA and then jump to the address in register “D (0-511)~
write Z/C/PC* into [SPA++], PC=n 1 **

"Store the program counter (PC) in CLUT[SPA] and then increment
" SPA and then jump to the address in register “n (0-511)~
write Z/C/PC* into [SPB++], PC=D 1 **

"Store the program counter (PC) in CLUT[SPB] and then increment
" SPB and then jump to the address in register “D (0-511)~
write Z/C/PC* into [SPB++], PC=n
"Store the program counter (PC) in CLUT[SPB] and then increment

l**

-23-

F:\-Morph-Temp_NANO_\Emulator\Prop2_Docs.txt.spin

den 16 december 2012 17:00

" SPB and then jump to the address in register “n (0-511)~

* bit 10 is Z, bit 9 is C, bits 8..0 are PC, upper bits are ignored or cleared
** §f a STACK RAM write is immediately followed by a STACK RAM read, add one clock

BYTE/WORD FIELD MOVER

Each COG has a field mover that can move a byte or word from any field in S into any field in D . To use
the field mover, you must first configure it using SETF. Then, you can use MOVF to perform the moves.

SETF uses a 9-bit value to configure the field mover:

%W_DDdd_SSss

W = 1 for word mode, O for

DD = D field mode:

dd

SS

SS

D field pointer:

S field mode:

S Ffield pointer:

%00
%01
%10
%11

%00
%01
%10
%11

%0x
%10
%11

%00
%01
%10
%11

byte mode
D field pointer
D field pointer
D field pointer
D field pointer

byte 0 /7 word O
byte 1 /7 word O
byte 2 / word 1
byte 3 / word 1

S field pointer
S field pointer
S field pointer

byte O / word O
byte 1 / word O
byte 2 / word 1
byte 3 / word 1

stays same
stays same
increments
decrements

stays same
increments
decrements

after
after
after
after

after
after
after

MOVF
MOVF, D rotates left by byte/word
MOVF
MOVF

MOVF
MOVF
MOVF

-24-

F:\-Morph-Temp_NANO_\Emulator\Prop2_Docs.txt.spin den 16 december 2012 17:00

On COG startup, SETF is initialized to %0 0100 0000, so that MOVF will rotate D left by 8 bits and
then fill the bottom byte with the lower byte in S.

instructions clocks
000011 000 1 CCCC Wddddssss 011001010 SETF D "Configure field mover with D 1
000011 001 1 CCCC nnnnnnnnn 011001010 SETF #n "Configure field mover with 0..511 1
000101 000 O CCCC DDDDDDDDD SSSSSSSSS MOVF D,S "Move field from S into D 1
000101 000 1 CcCcCC DDDDDDDDD nnnnnnnnn MOVF D,#n "Move field from 0..511 into D 1

MULTI-TASKING

Each COG has four sets of flags and program counters (Z/C/PC), constituting four unique Tasks that
can execute and switch on each instruction cycle.

"At COG startup, the tasks are initialized as follows:

There are 16 rotating time slots in the TASK register that determine TASK sequence. Initially, all
time slots are set to 0, causing TASK O to execute exclusively, starting at address $000:

time slots: 1514 1312 1110 9 8 7 6 5 4 3 2 1 0
I N [NN O [IR NN [AN NN N A N B

-25-

F:\-Morph-Temp_NANO_\Emulator\Prop2_Docs.txt.spin den 16 december 2012 17:00
TASK register: %00 _00_00 00 00 _00 00 00 _00 00 00 00 _00_00 00 00

The two LSB"s of TASK always determine which TASK will execute next. After each instruction cycle,
the TASK register is rotated right by two bits, recycling slot 0 to slot 15 and getting the next TASK
into the 2 LSB"s.

To enable other Tasks, SETTASK is used to set the TASK register:

SETTASK D write D to the TASK register
SETTASK #n write {n[7:0], n[7:0], n[7:0], n[7:0]} to the TASK register

IT a TASK is given no time slot, it doesn"t execute and its flags and PC stay at initial values.

IT a TASK is given a time slot, it will execute and its flags and PC will be updated at every instruction,
or time slot. ITf an active TASK s time slots are all taken away, that TASK's flags and PC remain in the
state where they left off, until it is given another time slot.

To immediately force any of the four PC"s to a new address, JMPTASK can be used.
JMPTASK uses a 4-bit mask to select which PC"s are going to be written. Mask bits 0..3 represent PC"s 0..3.
The mask value %1010 would write PC 3 and PC 1, while %0100 would write PC 2, only.

JMPTASK D, #mask force PC"s in mask to D
JIMPTASK #addr ,#mask force PC"s in mask to #addr

For every PC/TASK affected by a JMPTASK instruction, all affected-TASK instructions currently in the

pipeline are cancelled. This insures that once JMPTASK executes, the next instruction from each
affected TASK will be from the new address.

JMPTASK

"There are 4 program counters in each cog. They are initialized as follows:

PCO = $000
PC1 = $001
PC2 = $002
PC3 = $003

-26-

F:\-Morph-Temp_NANO_\Emulator\Prop2_Docs.txt.spin den 16 december 2012 17:00

"At first, the task register, which is 32 bits (16 two-bit fields), is cleared to O,
" making all time slots execute taskO.

JMPTASK sets up to all four PC"s at once, using a bit field in S and an address in D.

JIMPTASK #substart,#%1111 ...would set all PC"s to substart
IMPTASK #substart,#%1000 ...would set PC3 to substart
JMPTASK #substart,#%0100 ...would set PC2 to substart
JMPTASK #substart,#%0010 ...would set PCl to substart
JMPTASK #substart,#%0001 ...would set PCO to substart

"Until SETTASK is executed (initialized to $00000000), only PCO is running, making the cog seem normal.

SETTASK #%%3210 ..."would enable all tasks. IT no JMPTASK was done,
PC1..PC3 "would begin execution from $001..$003 (better have some
JIMP®s there)

"When you do an immediate SETTASK #, the lower 8 bits of immediate data are replicated four times to Fill 32 bits.
" To get more granularity, you could do a register, instead of an immediate,

" and 32 unique bits would be loaded into the task register, which rotates right after each instruction completion,
with the 2 LSB"s determining which task to execute next.

Here is an example in which all four tasks are started and each TASK toggles an 1/0 pin at a
different rate:

ORG

JMP #taskO "TASK O begins here when the COG starts (this JMP takes 4 clocks)

JMP #taskl "TASK 1 begins here after TASK O executes SETTASK (this JMP takes 1 clock)

JIMP #task2 "TASK 2 begins here after TASK 0 executes SETTASK (this JMP takes 1 clock)

JMP #task3 "TASK 3 begins here after TASK 0 executes SETTASK (this JMP takes 1 clock)
taskO SETTASK #%%3210 "enable all tasks (TASK = %11 10 01 00 11 10 01 00 11 10 01 00_11 10 01_00)
:loop NOTP #0 "TASK 0, toggle pin O (loops every 8 clocks)

JMP #:1oop "(this JVMP takes 1 clock)

F:\-Morph-Temp_NANO_\Emulator\Prop2_Docs.txt.spin

den 16 december 2012 17:00

taskl NOTP #1 "TASK 1, toggle pin 1 (loops every 12 clocks)
NOP
JMP #taskl "(this JMP takes 1 clock)

task2 NOTP #2 "TASK 2, toggle pin 2 (loops every 16 clocks)
NOP
NOP
JIMP #task2 "(this JMP takes 1 clock)

task3 NOTP #3 "TASK 3, toggle pin 3 (loops every 20 clocks)
NOP
NOP
NOP
JMP #task3 "(this JMP takes 1 clock)

NOTE: When a normal branch instruction (JMP, CALL, RET, etc.) executes in the fourth and final stage of the
pipeline, all iInstructions progressing through the lower three stages, which belong to the same TASK as the
"branch instruction, are cancelled. This inhibits execution of incidental data that was trailing the branch
"instruction.

The delayed branch instructions (JMPD, CALLD, RETD, etc.) don"t do any pipeline instruction cancellation and
exist to provide 1-clock branches to Single-Task programs, where the three instructions following the branch
"are allowed to execute before the new instruction stream begins to execute.

For Single-Task programs, normal branches take 4 clocks: 1 clock for the branch and 3 clocks for the
“cancelled instructions to come through the pipeline before the new iInstruction stream begins to execute.

For multi-tasking programs that use all four tasks in sequence (ie SETTASK #%%3210), there are never any
Same-Task instructions in the pipeline that would require cancellation due to branching, so all branches
take just 1 clock.

-28-

F:\-Morph-Temp_NANO_\Emulator\Prop2_Docs.txt.spin den 16 december 2012 17:00

While all tasks in a multi-tasking program can execute atomic instructions without any Inter-Task conflict,
remember that there®s only one of each of the following COG resources and only one TASK can use it at a time:

SPA

SPB

INDA

INDB

PTRA

PTRB

ACCA

ACCB

32x32 multiplier

64/32 divider

64-bit square rooter

CORDIC computer

CTRA

CTRB

VID

PIX (not usable in multi-tasking, requires single-task timing)

XFR

SER

REPS/REPD I got the REPS/REPD working with multitasking now.
Any task can use it, but only one task at a time.

Bitfield mover

Using REPS with 511 for the loop count means loop forever,
so it should only fall out when the repeated section does a jmp/call

When writing multi-task programs, be aware that instructions that take multiple clocks will stall the
pipeline and have a ripple effect on the tasks® timing. This may be impossible to avoid, as some task
might need to access HUB memory, and those instructions are not single-clock.

The WAITCNT/WAITPEQ/WAITPNE instructions should be recoded discretely using l-clock instructions, to
avoid stalling the pipeline for excessive amounts of time.

The following instructions (WC versions) will take 1 clock, instead of potentially many, and return 1 in
C if they were successful:

-29-

F:\-Morph-Temp_NANO_\Emulator\Prop2_Docs.txt.spin

den 16 december 2012 17:00

SNDSER D WC attempt to send serial

RCVSER D WwC attempt to receive serial
000011 ZCR 1 cccC DDDDDDDDD 000110000 GETMULL D WC
000011 ZCR 1 cccC DDDDDDDDD 000110001 GETMULH D WC
000011 ZCR 1 cccC DDDDDDDDD 000110010 GETDIVQ D WC
000011 ZCR 1 CCcCC DDDDDDDDD 000110011 GETDIVR D WC
000011 ZCR 1 cCcCC DDDDDDDDD 000110100 GETSQRT D WC
000011 ZCR 1 cccC DDDDDDDDD 000110101 GETQX D WC
000011 zZCR 1 CCccC DDDDDDDDD 000110110 GETQY D WwWC
000011 ZCR 1 CCCC DDDDDDDDD 000110111 GETQZ D WC

"Other instruction alternatives:

POLCTRA

POLCTRB

POLVID
000011 ZCO 1 CCCC DDDDDDDDD 000001101

wC
wC
wC

returns 1
returns 1
returns 1

in C
in C
in C

PASSC

NT D

use

attempt
attempt
attempt
attempt
attempt
attempt
attempt
attempt

to
to
to
to
to
to
to
to

get
get
get
get
get
get
get
get

lower multiplier result
upper multiplier result
divider quotient result
divider remainder result
square root result
CORDIC X result

CORDIC Y result

CORDIC Z result

if CTRA rolled over, use instead of SYNCTRA
if CTRB rolled over,
if WAITVID is ready, use to execute WAITVID without stalling
(loops if (cnt[31:0] - D) msb set)

Jjumps to itself If some amount of time has

instead of SYNCTRB

The following instructions will not work in a Multi-Tasking program:

GETPIX

instructions

needs steady pipeline delays for perspective divider time - Single-Task only

000011 000 1 cccc DDDDDDDDD 01002mmmm
000011 001 1 CCCC nnnnnnnnn 010021mmmm

000011 000 1 cccc DDDDDDDDD 011001011
000011 001 1 CCCC nnnnnnnnn 011001011

PIPELINE

JMPTASK D, #mask
JIMPTASK #n,#mask

SETTASK D
SETTASK #n

clocks
"Set PC"s in mask to D 1
“Set PC"s in mask to 0..511 1
"Set TASK to D 1
"Set TASK to n[7:0] copied 4x 1

(waits
(waits
(waits
(waits
(waits
(waits
(waits
(waits

for
for
for
for
for
for
for
for

mul i
mul

Twe)
Twe)
div if 'we)
div if twc)
sgrt if lwc)
cordic if 'wc)
cordic if 'wc)
cordic if !wc)

= = =

-

not passed, use instead of WAITCNT

-30-

F:\-Morph-Temp_NANO_\Emulator\Prop2_Docs.txt.spin den 16 december 2012 17:00

Each COG has a 4-stage pipeline which all instructions progress through, in order to execute:

1st stage - Read instruction

2nd stage - Determine indirect/remapped D and S addresses, update INDA/INDB
3rd stage - Read D and S

4th stage - Execute instruction, write D, Z/C/PC, and any other results

On every clock cycle, the instruction in each stage advances to the next stage, unless the instruction
in the 4th stage is stalling the pipeline because it"s waiting for something (i.e. WRBYTE waits for
the HUB).

To keep D and S data current within the pipeline, the resultant D from the 4th stage is passed back to
the 3rd stage to substitute for any obsoleted data being read from the COG register RAM. The same is
done for instruction data in the 1st stage, but there is still a two-stage gap between when a register
is modified and when it can be executed:

MOVD sinst,top9 "modify instruction

NOP "1...

NOP "2... at least two instructions in-between
sinst ADD A,B "modified iInstruction executes

Tasks that execute in at least every 3rd time slot don"t need to observe this 2-instruction rule
because their instructions will always be sufficiently spread apart in the pipeline.

When a branch instruction executes, all instructions in the pipeline belonging to that same task are
cancelled, as the program counter has changed, rendering those instructions that were following the
branch instruction invalid. A new instruction stream, beginning at the new PC value, must make its
way through the pipeline before another instruction from that task will execute. For single-task
programs, this means that branches take 4 clocks: 1 for the branch, and 3 for the cancelled
instructions in stages 1..3 to make their way through the pipeline before the new instruction stream
reaches the execution stage. For multi-tasking programs, branch delays are a function of time slot
allocation.

-31-

F:\-Morph-Temp_NANO_\Emulator\Prop2_Docs.txt.spin

den 16 december 2012 17:00

INSTRUCTION-BLOCK REPEATING

Each cog has an instruction-block repeater that can variably repeat up to 64 instructions without
any clock-cycle overhead.

REPD and REPS are used to initiate block repeats. These instructions specify how many times the
trailing instruction block will be executed and how many instructions are in the block:

REPD #i execute 1..64 instructions infinitely, requires 3 spacer instructions *
REPD D,#i execute 1..64 instructions D+1 times, requires 3 spacer instructions *
REPD #n,#1 execute 1..64 instructions 1..512 times, requires 3 spacer instructions *

REPS #n,#i execute 1..64 instructions 1..16384 times, requires 1 spacer instruction *
REPS differs from REPD by executing at the 2nd stage of the pipeline, instead of the 4th. By
executing two stages early, it needs only one spacer instruction *. Because of its earliness,
no conditional execution is possible, so it always executes, allowing the CCCC bits to be
repurposed, along with Z, to provide a 14-bit constant for the repeat count.

The instruction-block repeater will quit repeating the block if a branch instruction executes
within the block. This rule does not currently apply to a JMPTASK which affects the task using the
repeater - this will be fixed at the earliest opportunity.

* Spacer instructions are required in 1l-task applications to allow the pipeline to prime before
repeating can commence. If REPD is used by a task that uses no more than every 4th time slot, no
spacers are needed, as three intervening instructions will be provided by the other task(s). If
REPS is used by a task that uses no more than every 2nd time slot, no spacers are needed.

Example (1-task):

REPD D,#1 "execute 1 instruction D+1 times

NOP "3 spacer instructions needed (could do something useful)
NOP

NOP

-32-

F:\-Morph-Temp_NANO_\Emulator\Prop2_Docs.txt.spin

den 16 december 2012 17:00

NOTP

#0 "toggle PO, block repeats every 1 clock

Example (1-task):

REPS

NOP

NOTP
NOTP
NOTP
NOTP

#20_000,#4 "execute 4 instructions 20,000 times

"1 spacer instruction needed (make the most of it)

#0 "toggle PO
#1 "toggle P1
#2 "toggle P2
#3 "toggle P3, block repeats every 4 clocks

Example (4-task, SETTASK #%%3210 timing):

taskO REPD #1 "taskO will own the block repeater (no need for spacers)

NOTP #0 "toggle PO every 4 clocks
taskl NOTP #1 "toggle P1 every 8 clocks

JIMP #taskl
task2 NOTP #2 “toggle P2 every 8 clocks

JMP #task2
task3 NOTP #3 "toggle P3 every 8 clocks

JMP #task3
instructions (ifiiii = #i-1, nnnnnnnnn/n nnnn_nnnnnnnnn = #n-1) clocks
000011 000 1 CCCC 111111111 OOliiaimii REPD #i "execute 1..64 inst"s infintely 1
000011 000 1 CCCC nnnnnnnnn OOliiibii REPD D, #i "execute 1..64 inst"s D+1 times 1
000011 001 1 CCCC nnnnnnnnn OOliiibii REPD #n,#i "execute 1..64 inst"s 1x..512x 1
000011 n11 1 nnnn nnnnnnnnn OOliiibii REPS #n,#1 "execute 1..64 inst"s 1x..16384x 1

Note that the %iiiiii Ffield represents 1..64 instructions, not the encoded 0..63. The %nnnnnnnnn/

-33-

F:\-Morph-Temp_NANO_\Emulator\Prop2_Docs.txt.spin den 16 december 2012 17:00

% n nnnn_nnnnnnnnn Ffields are +1-based, too.

Propeller2DetailedPreliminaryFeatureList-v2.0.pdf

Miscel laneous Hardware

Each COG has a free running LFSR (Linear Feedback Shift Register) and System Counter that change every clock cycle.
Each access of the LFSR taps into a 32 bit wide sequence of numbers that is traversed in a pseudo random order, for a 232 .
The system counter counts the number of clock ticks since power up — it is a 64-bit counter, the LFSR is 32 Bits.

Table 8: "System Counter Instructions

Machine Code | Mnemonic | Operand | Operation

000011 zC1 1 cccC DDDDDDDDD 000001101 | GETCNT | D | (gets cnt[31:0], then cntl if same thread)
| Store the bottom 32 Bits of the System Counter (CNT)

| in register “D (0-511)". If executed again

| (no instruction in between previous execution)

| store the top 32 Bits of the System Counter in register
| “D (0-511)".
|
|
|
|
|
|

If a roll over occurs between accesses TOP-1 is stored.

000011 ZCR 1 cccc DDbDDDDDDD 000001100 | SUBCNT | D Subtracts the system count value when the GETCNT
instruction was last executed from the current system
count value. Results are stored in the register
referenced by “D (0-511)".

000011 ZCR 1 cccc DDbDDDDDDD 000010000 | GETLFSR | D Store the LSFR value in register “D (0-511)".

Each COG additionally has a single cycle 24-bit hardware multiplier capable of unsigned and signed multiplications.
The multiplication also adds into a 64-bit register for MAC ops.

-34-

F:\-Morph-Temp_NANO_\Emulator\Prop2_Docs.txt.spin

den 16 december 2012 17:00

Table 9:

Machine Code

000100

000100

000101

000011
000011
000011
000011

000011

000101
000101
000101

000100

000100

110

ZC1

ZC1

zcr
zcr
zcr
ZCR

ZCR

010
100
110

000

010

[= = =

CccC

CCCC

CCCC

ccce
ccce
ccce
CCCC

CCcC

CCcCC
CCCC
Ccccc

CCCC

CCcCC

DDDDDDDDD

DDDDDDDDD

DDDDDDDDD

DDDDDDDDD

000000001
000000010
000000011
DDDDDDDDD

DDDDDDDDD

DDDDDDDDD
DDDDDDDDD
DDDDDDDDD

DDDDDDDDD

DDDDDDDDD

SSSSSSSSS

SSSSSSSSS

SSSSSSSSS

SSSSSSSSS

000001000
000001000
000001000
000001110

000001111

SSSSSSSSS
SSSSSSSSS
SSSSSSSSS

SSSSSSSSS

SSSSSSSSS

"Multiply and Accumulate Instructions

Mnemonic

MACB

MUL

SCL

CLRACCA
CLRACCB
CLRACCS
GETACCA

GETACCB

QSINCOS
QARCTAN
QROTATE

SETACCA

SETACCB

O O O
nu nu n

| Operand |

000100 100 1

| D,S#n

| D,S#n

| D,S#n

| D,S#n

Operation

Multiply unsigned register “D (0-511)” and unsigned
register “S (0-511)” or an immediate value n(0-511)

and add to the 64-bit accumulator A.

Multiply unsigned register “D (0-511)” and unsigned
register “S (0-511)” or an immediate value n(0-511)

and add to the 64-bit accumulator B.

Multiply unsigned register “D (0-511)” and unsigned
register “S (0-511)” or an immediate value n(0-511)

and store in register D . (waits one clock)

Scale the result of the multiplication of two 24 bit

numbers (D,S) to fit into the 32 bit destination

register specified by “D (0-512)”. (waits one clock)

Zero Multiply Accumulator A (ACCA).

Zero Multiply Accumulator B (ACCB).

Zero both multiply accumulators (accumulator A and B).
(gets ACCA[31:0], then ACCA[63:32], waits for mac)

Store the bottom 32 Bits of the A accumulator in register

“D (0-511)". If executed again (no instruction in between

previous execution) store the top 32 Bits of the

A accumulator in register “D (0-511)".

(gets ACCB[31:0], then ACCB[63:32], waits for mac)

Store the bottom 32 Bits of the A accumulator in register

“D (0-511). ITf executed again (no instruction in between

previous execution) store the top 32 Bits of the

B accumulator in register “D (0-511)".
PP??7?9777

the 64 bit accumulator A.

“D (0-511)" sets the low long
(0-512)” sets the high long.
the 64 bit accumulator B.

“D (0-511)" sets the low long
(0-512)” sets the high long.

Sets the high and low values of
The value contained in register
while the value contained In “S
Sets the high and low values of
The value contained in register
while the value contained iIn “S

F:\-Morph-Temp_NANO_\Emulator\Prop2_Docs.txt.spin

den 16 december 2012 17:00

000011 ZCR 1 CCCC 000000101 000001000

000011 ZCR 1 CCCC 000000110 000001000

000011 ZCR 1 CCCC 000000111 000001000

Miscellaneous Instructions:

FITACCA

FITACCB

FITACCS

Shifts accumulator A’s high long right into the low long so that
the high long is MSB justified (discarding the low bits).
Accumulator A’s high long is then replaced with the number of
bit places required to MSB justify Accumulator A’s

original value.(waits for mac)

Shifts accumulator B’s high long right into the low long so that

the high long is MSB justified (discarding the low bits).

Accumulator B’s high long is then replaced with the number of

bit places required to MSB justify Accumulator B’s

original value. (waits for mac)

Similar operation to FITACCA/FITACCB. Examines both accumulator
A and B and right shifts both accumulators so that the greater
value of the two accumulators is MSB justified. The number of

bits shifted is written to both accumulator’s high long.

This has the effect of scaling both accumulators equally.

(waits for mac)

Each cog additionally features a number of new instructions to make many common operations much easier to perform than before.
Most of the new instructions are in the extended instruction set while a few of the new instruction are in the original set.

Table 10: "Extended Miscellaneous Instructions

Machine Code

Mnemonic

Operand |

Operation

000011 ZCR 1 CccC DDDDDDDDD 000100011

000011 ZCR 1 CCCC DDDDDDDDD 000100010

000011 ZCR 1 CCCC DDDDDDDDD 000100001

000011 ZCR 1 CCCC DDDDDDDDD 000100000

DECOD5S

DECOD4

DECOD3

DECOD2

Overwrite register “D (0-511)” with decoded D[4:0] repeated
1 time. (e.g- $00000001 << D[4:0])

DECOD5 decodes the 5 LSB"s.

Overwrite register “D (0-511)" with decoded D[3:0] repeated
2 times. (e.g- $00010001 << D[3:0])

DECOD4 decodes the 4 LSB"s, replicating the result twice to
fill 32 bits.

Overwrite register “D (0-511)” with decoded

D[2:0] repeated 4 times. (e.g. $01010101 << D[2:0])

DECOD3 decodes the 3 LSB"s, replicating the result four times
to Fill 32 bits.

Overwrite register “D (0-511)” with decoded

F:\-Morph-Temp_NANO_\Emulator\Prop2_Docs.txt.spin

den 16 december 2012 17:00

000011

000011

000011

000011

000011

000011

000011

000011

000011

000011

000011
seeded

000011
seeded

ZCR 1 CCCC

ZCR 1 CCCC

ZCR 1 CCCC

ZCR 1 CCCC

ZCR 1 CCCC

ZCR 1 CCCC

ZCR 1 CCCC

ZCR 1 CCCC

ZCR 1 CCCC

ZCR 1 CCCC

ZCR 1 CCcCC
from the

ZCR 1 CCCC
from the

DDDDDDDDD

DDDDDDDDD

DDDDDDDDD

DDDDDDDDD

DDDDDDDDD

DDDDDDDDD

DDDDDDDDD

DDDDDDDDD

DDDDDDDDD

DDDDDDDDD

DDDDDDDDD

DDDDDDDDD

000100100

000100101

000100110

000100111

000101000

000101001

000101010

000101011

000101100

000101101

000101110

000101111

BLMASK

NOT

ONECNT

ZERCNT

INCPAT

DECPAT

BINGRY

GRYBIN

MERGEW

SPLITW

SEUSSF

SEUSSR

D[1:0] repeated 8 times. (e.g-. $11111111 << D[1:0D)

DECOD2 decodes the 2 LSB"s, replicating the result eight times
to Fill 32 bits.

Overwrite register “D (0-511)” with a bit length mask
specified by D[5:0].

Overwrite register “D (0-511)” with the bitwise inverted
register “D (0-511)".

Overwrite register “D (0-511)” with the count of ones in
register D (waits one clock)

Overwrite register “D (0-511)" with the count of zeros in
register D (waits one clock)

Overwrite register “D (0-511)” with the next bit pattern that
keeps the number of ones and zeros the same in register D.
(waits three clocks)

Overwrite register “D (0-511)” with the previous bit pattern
that keeps the number of ones and zeros the same in register D.
(waits three clocks)

Overwrite the binary pattern in register “D (0-511)”"

with Its gray code pattern.

Overwrite the grey code pattern in register “D (0-511)~”

with 1ts binary pattern. (waits one clock)

Merge the high word and the low word of register “D (0-511)~
into each other and overwrite register D with the new value.
Bits of the low word occupy bit spaces 0, 2, 4, etc.

Bits of the high word occupy bit spaces 1, 3, 5,

etc. (Interleave)

Split the bits of register “D (0-511) into a high word and
low word and overwrite register D with the new value.

Bits of the low word come from bit spaces 0, 2, 4,

etc. Bits of the high word come from bit spaces 1, 3, 5,

etc. (De-interleave)

Overwrite register “D (0-511)” with a pseudo random bit pattern

| value in register D. After 32 forward iterations, the original
bit pattern is returned.
| Overwrite register “D (0-511)” with a pseudo random bit pattern

| value in register D. After 32 reversed iterations, the original
bit pattern is returned.

-37-

F:\-Morph-Temp_NANO_\Emulator\Prop2_Docs.txt.spin den 16 december 2012 17:00

000011 ZCR 1 CCCC DDDDDDDDD 1000bbbbb | 1SOB | D.b | Isolate bit “b (0-31)” of register “D (0-511).~
000011 ZCR 1 CCCC DDDDDDDDD 1001bbbbb | NOTB | D.b | Invert bit “b (0-31)” of register “D (0-511).~
000011 ZCR 1 CCCC DDDDDDDDD 1010bbbbb | CLRB | D.b | Clear bit “b (0-31)” of register “D (0-511).”
000011 ZCR 1 CCCC DDDDDDDDD 1011bbbbb | SETB | D.b | Set bit “b (0-31)” of register “D (0-511).~
000011 ZCR 1 CCCC DDDDDDDDD 1100bbbbb | SETBC | D.b | Set bit “b (0-31)” of register “D (0-511) to C.”
000011 ZCR 1 CCCC DDDDDDDDD 1101bbbbb | SETBNC | D.b | Set bit “b (0-31)” of register “D (0-511) to NC.”
000011 ZCR 1 CCCC DDDDDDDDD 1110bbbbb | SETBZ | D.b | Set bit “b (0-31)” of register “D (0-511) to Z.”
000011 ZCR 1 CCCC DDDDDDDDD 1111bbbbb | SETBNZ | D.b | Set bit “b (0-31)” of register “D (0-511) to Nz.”

Table 11: "Extended Miscellaneous Flag Manipulation Instructions

Machine Code | Mnemonic | Operand | Operation
000011 ZCR 1 ccCC DDDDDDDDD 000001010 | PUSHzC | D | Push the Z and C flags into D[1:0] and pop D[31:30]
| into Z and C through WZ and WC.
000011 ZCR 1 CCcCC DDDDDDDDD 000001011 | POPZC | D | Pop D[1:0] into the Z and C flags and push D[31:30]
| into Z and C through WZ and WC.
| Set the Z and C flags with D[1:0] through WZ and WC effects.
| (d[1:0] into z/c via wz/wc)

000011 ZCN 1 CCCC nnnnnnnnn 010100001 | SETZC | D/#n

Table 12: "Extended Miscellaneous Flow Control Instructions

Machine Code | Mnemonic | Operand | Operation
000011 z0O 1 CCCC 111111111 OOliiiiii | REPD | #i "execute 1..64 inst’s infintely 1
000011 Z0O 1 CCCC nnnnnnnnn OOliiiiii | REPD | D,i "execute 1..64 inst’s D+1 times

The pipeline causes a delay of three instructions before
the repeated set of instructions begins to execute

Delayed repeat of the following “i (0-31)” instructions the
value in register “D(0-511)" or “n(0-511)" times.

The pipeline causes a delay of three instructions before

|
|
|
|
000011 z01 1 CCCC nnnnnnnnn OOliiiiii | REPD | #n,10 |
|
|
| the repeated set of instructions begins to execute
|
|
|
|
|
|

000011 nl11 1 nnnn nnnnnnnnn OOliiibii | REPS | #n, Repeat of the following “i (0-31)” instructions the

value in register “n(0-511)" times.
000011 ZCN 1 CCCC nnnnnnnnn 010100000 | NOPX | D/#n Repeat the NOP instruction the value in register “D(0-511)"
or “n(0-511)" times. (Time delay)

000011 ZCN 1 CCCC DDDnnnnnn 011101011 | SETSKIP | D/#n Executes up to the next 32 instructions as NOPs described by the

F:\-Morph-Temp_NANO_\Emulator\Prop2_Docs.txt.spin den 16 december 2012 17:00
| set bit pattern of a register “D(0-511)” or literal “N(0-63)".

I"m going to try to write the documentation for this right now and post it in an hour, or so.

As of now, PNUT.EXE doesn®"t support the "REPD #i" syntax for infinite repeat, so you must type "REPD $1FF,#i".

There are two repeat instructions:

REPS #loops,#ins - executes early in the pipeline, uses a 14-bit constant, needs only one spacer instruction
REPD D,#ins - executes late in the pipeline, uses D or a 9-bit constant, needs three spacer instructions,
if D is $1FF then infinite repeat

IT REPS is used by a task that has at least one other task(s) between its own time slots, no spacers are needed.
IT REPD is used by a task that has at least three other task(s) between its own time slots, no spacers are needed.

For infinite repeat, you must do REPD $1FF,#x. When the hardware sees register address $1FF, that means infinite.
When a D register is given in REPD, the number of repeats will be O if D=0, which still means the code executes ONCE.
IT D=1, it will repeat once, making TWO executions of the looped code.

In all cases of REPS/REPD, all values (constants and register contents) are such that 0 means 1, on upwards.
IT you put %000000 in the instructions-to-repeat field, It means 1. %111111 means 64.

Same deal with the loop counts: 0 means 1 (because of the initial fall-through),

while $FFFF_FFFF would mean $1_0000_0000 block executions.

Code:

Fast loading from HUB to COG ram can be done with just a few instructions:

Load 64 longs from HUB memory (@PTRA) into COG-$100
REPS #64,#1
SETINDA #3$100
RDLONGC INDA++,PTRA++

This way, you can load as much or as little as you please, to wherever in the COG you d like.
Then, you can jump to it.

Table 13: Miscellaneous Instructions

-30-

F:\-Morph-Temp_NANO_\Emulator\Prop2_Docs.txt.spin

den 16 december 2012 17:00

Machine Code D S Mnemonic Operand | Operation
000000 000 O 0000 000000000 000000000 NOP Efective NO Operation PC+1
111010 001 1 1111 OO0OOOO0OOO 000000000 RET
000111 001 1 1111 DDDDDDDDD SSSSSSSSS CALL
000111 000 1 1111 000000000 SSSSSSSSS JMP
000110 ZCR 1 CCCC DDDDDDDDD SSSSSSSSS | ENC | D,S | Store encoded S in D.
000111 ZCR 1 CCCC DDDDDDDDD SSSSSSSSS | JMPRET | D,S | Jump to address with intention to “return” to another address.
001000 ZCR I CCCC DDDDDDDDD SSSSSSSSS | ROR | D,S | Rotate value right by specified number of bits.
001001 ZCR I CCCC DDDDDDDDD SSSSSSSSS | ROL | D,S | Rotate value left by specified number of bits.
001010 ZCR 1 CCCC DDDDDDDDD SSSSSSSSS | SHR | D,S | Shift value right by specified number of bits.
001011 ZCR 1 CCCC DDDDDDDDD SSSSSSSSS | SHL | D,S | Shift value left by specified number of bits.
001100 ZCR I CCCC DDDDDDDDD SSSSSSSSS | RCR | D,S | Rotate C right into value by specified number of bits.
001101 ZCR I CCCC DDDDDDDDD SSSSSSSSS | RCL | D,S | Rotate C left into value by specified number of bits.
001110 ZCR 1 CCCC DDDDDDDDD SSSSSSSSS | SAR | D,S | Shift value arithmetically right by specified number of bits.
001111 ZCR 1 CCCC DDDDDDDDD SSSSSSSSS | REV | D,S | Reverse LSBs of value and zero-extend.
010000 ZCR I CCCC DDDDDDDDD SSSSSSSSS | MINS | D,S | Limit minimum of signed value to another signed value.
010001 ZCR 1 CCCC DDDDDDDDD SSSSSSSSS | MAXS | D,S | Limit maximum of signed value to another signed value.
010010 ZCR 1 CCCC DDDDDDDDD SSSSSSSSS | MIN | D,S | Limit minimum of unsigned value to another unsigned value.
010011 ZCR 1 CCCC DDDDDDDDD SSSSSSSSS | MAX | D,S | Limit maximum of unsigned value to another unsigned value.
010100 ZCR I CCCC DDDDDDDDD SSSSSSSSS | MOVS | D,S | Set register’s source field to a value.
010101 ZCR I CCCC DDDDDDDDD SSSSSSSSS | MOVD | D,S | Set register’s destination field to a value.
010110 ZCR 1 CCCC DDDDDDDDD SSSSSSSSS | MOVI | D,S | Set register’s instruction field to a value.
010111 ZCR 1 CCCC DDDDDDDDD SSSSSSSSS | JMPRETD | D,S | Jump to address with intention to “return” to another address.
| Do not flush pipeline before jump — must be executed
| two instructions before intended jump space
011000 ZCR 1 CCCC DDDDDDDDD SSSSSSSSS | AND | D,S | Bitwise AND values.
011001 ZCR 1 CCCC DDDDDDDDD SSSSSSSSS | ANDN | D,S | Bitwise AND value with NOT of another.
011010 ZCR I CCCC DDDDDDDDD SSSSSSSSS | OR | D,S | Bitwise OR values.
011011 ZCR I CCCC DDDDDDDDD SSSSSSSSS | XOR | D,S | Bitwise XOR values.
011100 ZCR 1 CCCC DDDDDDDDD SSSSSSSSS | MUXC | D,S | Set discrete bits of value to state of C.
011101 ZCR 1 CCCC DDDDDDDDD SSSSSSSSS | MUXNC | D,S | Set discrete bits of value to state of IC.
011110 ZCR I CCCC DDDDDDDDD SSSSSSSSS | MUXZ | D,S | Set discrete bits of value to state of Z.
011111 ZCR I CCCC DDDDDDDDD SSSSSSSSS | MUXNZ | D,S | Set discrete bits of value to state of 1Z.
100000 ZCR I CcCCC DDDDDDDDD SSSSSSSSS | ADD | D,S | Add unsigned values.
100001 zZCR I CCCC DDDDDDDDD SSSSSSSSS | SuUB | D,S | Subtract unsigned values.
100010 ZCR 1 CCCC DDDDDDDDD SSSSSSSSS | ADDABS | D,S | Add absolute value to another value.
100011 zZCR 1 CCCC DDDDDDDDD SSSSSSSSS | SUBABS | D,S | Subtract absolute value from another value.

-40-

F:\-Morph-Temp_NANO_\Emulator\Prop2_Docs.txt.spin

den 16 december 2012 17:00

100100
100101
100110
100111
101000
101001
101010
101011
101100
101101
101110
101111
110000
110001
110010
110011
110100
110101
110110
110111
111000

111001
111010
111011

111100
111100

111100
111100

111101
111101

111101

ZCR
ZCR
ZCR
ZCR
ZCR
ZCR
ZCR
ZCR
ZCR
ZCR
ZCR
ZCR
ZCR
ZCR
ZCR
ZCR
ZCR
ZCR
ZCR
ZCR
ZCR

ZCR
ZCR
ZCR

OOR
O1R

10R
11R

OOR
O1R

10R

CCcC
CCcC
CCcC
CccC
CCcC
CCcC
CCcC
CccC
CCcC
CCcC
CCcC
CccC
CCcCC
CCcC
CCcC
CccC
CCcC
CCcC
CCcC
CccC
CCcC

CCCC
CCcC
CCCC

CCcC
Ccccce

CCcC
Ccccc

CCcC
Ccccce

CCCC

DDDDDDDDD
DDDDDDDDD
DDDDDDDDD
DDDDDDDDD
DDDDDDDDD
DDDDDDDDD
DDDDDDDDD
DDDDDDDDD
DDDDDDDDD
DDDDDDDDD
DDDDDDDDD
DDDDDDDDD
DDDDDDDDD
DDDDDDDDD
DDDDDDDDD
DDDDDDDDD
DDDDDDDDD
DDDDDDDDD
DDDDDDDDD
DDDDDDDDD
DDDDDDDDD

DDDDDDDDD
DDDDDDDDD
DDDDDDDDD

DDDDDDDDD
DDDDDDDDD

DDDDDDDDD
DDDDDDDDD

DDDDDDDDD
DDDDDDDDD

DDDDDDDDD

SSSSSSSSS
SSSSSSSSS
SSSSSSSSS
SSSSSSSSS
SSSSSSSSS
SSSSSSSSS
SSSSSSSSS
SSSSSSSSS
SSSSSSSSS
SSSSSSSSS
SSSSSSSSS
SSSSSSSSS
SSSSSSSSS
SSSSSSSSS
SSSSSSSSS
SSSSSSSSS
SSSSSSSSS
SSSSSSSSS
SSSSSSSSS
SSSSSSSSS
SSSSSSSSS

SSSSSSSSS
SSSSSSSSS
SSSSSSSSS

SSSSSSSSS
SSSSSSSSS

SSSSSSSSS
SSSSSSSSS

SSSSSSSSS
SSSSSSSSS

SSSSSSSSS

SUMC
SUMNC
SUMZ
SUMNZ
MOV
NEG
ABS
ABSNEG
NEGC
NEGNC
NEGZ
NEGNZ
CMPS
CMPSX
ADDX
SUBX
ADDS
SUBS
ADDSX
SUBSX
SUBR

CMPSUB
INCMOD
DECMOD

132
132D

1INZ
1INZD

DJz
DJZD

DJINZ

O 0000000000000 0o0o0ooooo
DU mumnmuomwmuoumomounmuounomununomounumomonmuonuonuon

W)
wn

Sum signed value with
Sum signed value with
Sum signed value with
Sum signed value with
Set register to a value.

Get negative of a number.

Get absolute value of a number
Get the negative of a number’s
Get value, or its additive
Get value, or its additive
Get value, or its additive
Get value, or its additive
Compare signed values.
Compare signed values plus C.
Add unsigned values plus C.
Subtract unsigned value plus C
Add signed values.

Subtract signed values

Add signed values plus C.

another whose sign
another whose sign
another whose sign
another whose sign

inverted based on C.
inverted based on IC.
inverted based on Z.
inverted based on 1Z.

nw n onon

absolute value.

inverse, based on C.
inverse, based on IC.
inverse, based on Z.
inverse, based on 1Z.

from another unsigned value.

Subtract signed value plus C from another signed value.

Subtract D from S and store in
D =S - D, while normal SUB is
Compare unsigned values,

D. (is subtract reverse:
D =D - S Ariba)

subtract second if it is lesser or equal.

Increment D
Decrement D
Increment D and jump to S if D
Increment D and jump to S if D
before jump — must be executed
Jump space

Increment D and jump to S if D
Increment D and jump to S if D
pipeline before jump — must be
before intended jump space.
Decrement D and jump to S if D
Decrement D and jump to S if D
before jump — must be executed
Jjump space.

Decrement D and jump to S if D

between 0 and S. Wraps around to O when above S.
between S and 0. Wraps around to S when below O.

is zero.
is zero. Do not flush pipeline
two instructions before intended

is not zero.
is not zero. Do not flush
executed two instructions

is zero.
is zero. Do not flush pipeline

two instructions before intended

is not zero.

-41-

F:\-Morph-Temp_NANO_\Emulator\Prop2_Docs.txt.spin

den 16 december 2012 17:00

111101 11R I CCCC DDDDDDDDD SSSSSSSSS

111110
111110

111110
111110

111110
111110
111110
111110

111000

111000

111011
111111

111111

111111

000
010

100
110

001
011
101
111

000

000

000
OCR

1CO

1C1

Table 15:

Machine Code

Ccccc
CCcC

Ccccc
CCcC

Cccc
CCcC
CCcC
Ccccc

BBAA

BBAA

CCCC
CCCC

CCCC

CCcC

DDDDDDDDD
DDDDDDDDD

DDDDDDDDD
DDDDDDDDD

DDDDDDDDD
DDDDDDDDD
DDDDDDDDD
DDDDDDDDD

DDDDDDDDD

DDDDDDDDD

DDDDDDDDD
DDDDDDDDD

DDDDDDDDD

DDDDDDDDD

SSSSSSSSS
SSSSSSSSS

SSSSSSSSS
SSSSSSSSS

SSSSSSSSS
SSSSSSSSS
SSSSSSSSS
SSSSSSSSS

SSSSSSSSS

SSSSSSSSS

SSSSSSSSS
SSSSSSSSS

SSSSSSSSS

SSSSSSSSS

"Port Access Instructions

DJINZD

TJZ
TJZD

TINZ
TINZD

JP
JPD
JNP
JNPD

SETINDA

SETINDB

WAITVID
WAITCNT

WAITPEQ

WAITPNE

Mnemonic

D,S

DINZ D,#$ loops until done, use instead of NOP D/#n

Decrement D and jump to S if D
pipeline before jump — must be
before intended jump space.
Test value and jump to address
Test value and jump to address
before jump — must be executed
before intended jump space.
Test value and jump to address
Test value and jump to address
pipeline before jump — must be
before intended jump space.
Jumps based on pin states, use
Jjumps based on pin states, (if
Jjumps based on pin states, (if
jumps based on pin states,

Setup
where

is not zero. Do not flush
executed two instructions

if zero.
if zero.Do not Fflush pipeline
two instructions

if not zero.
if not zero. Do not flush
executed two instructions

instead of WAITPEQ/WAITPNE
Pin D <> 0 jump to S /7 #S Ariba)
Pin D == O jump to S / #S Ariba)

indirection register address A bottom range and top range
D is the top of the range and S is the bottom range.

The indirection register will allow access to COG registers

in this range.

Setup indirection register address B bottom range and top range
where D is the top of the range and S is the bottom range.
The indirection register will allow access to cog registers

in this range.

Wait to pass pixels to the video generator. (waits for vid)
Wait for the CNT[31:0] register to equal D and then add S to D

and store in D.
to equal D .

| (waits for cnt32, +cnt64 if wc)

D,S I

| (waits for pins,

D,S I

| (waits for pins,

Operand |

until
+cnt32 if we)
until
+cnt32 if we)

Pause execution

Pause execution

Operation

IT WC is specified then wait for CNT[63:32]

1/0 pin(s) match designated state(s).

1/0 pin(s) don’t match designated state(s).

-42-

F:\-Morph-Temp_NANO_\Emulator\Prop2_Docs.txt.spin

den 16 december 2012 17:00

000011 zcn 1 cccc ddnnddddd

000011 zcn 1 cccc ddnnddddd

000011 zcn 1 cccc ddnnddddd

000011 zcn 1 cccc ddnnddddd

Table 16: "Pin State Access

Machine Code

011100100

011100101

011100110

011100111

Instructions

SETPORA

SETPORB

SETPORC

SETPORD

Mnemonic

Operand

Assign PORTA to physical 1/0 ports (0-2) or internal 1/0 port 3

given register “D (0-511)" or number “n (0-3)”.

Assign PORTB to physical 1/0 ports (0-2) or internal 1/0 port 3

given register “D (0-511)" or number “n (0-3)”.

Assign PORTC to physical 1/0 ports (0-2) or internal 1/0 port 3

given register “D (0-511)" or number “n (0-3)”.

Assign PORTD to physical 1/0 ports (0-2) or internal 1/0 port 3

given register “D (0-511)” or number “n (0-3)”.

Operation

000011 ZCN 1 CCCC DDnnnnnnn

000011 ZCN 1 CCCC DDnnnnnnn

000011 ZCN 1 CCCC DDnnnnnnn

000011 ZCN 1 CCCC DDnnnnnnn

000011 ZCN 1 CCCC DDnnnnnnn

000011 ZCN 1 CCCC DDnnnnnnn

000011 ZCN 1 CCCC DDnnnnnnn

000011 ZCN 1 CCCC DDnnnnnnn

000011 ZCN 1 CCCC DDnnnnnnn

000011 ZCN 1 CCCC DDnnnnnnn

011010110

011010111

011011000

011011001

011011010

011011011

011011100

011011101

011011110

011011111

GETNP

OFFP

NOTP

CLRP

SETP

SETPC

SETPNC

SETPZ

SETPNZ

D/#n

D/#n

D/#n

D/#n

D/#n

D/#n

D/#n

D/#n

D/#n

Get pin number given by register “D (0-511)~"

or “n (0-127)”into 1'Z or C flags. (pin into !'z/c via wz/wc)
(pin into !'z/c via wz/wc)

Get pin number given by register “D (0-511)”

or “n (0-127)”into Z or IC flags. (pin into z/!c via wz/wc)
(pin into z/!'c via wz/wc)

Toggle pin number given by register “D (0-511)"

or “n (0-127)” off or on. DIR

Invert pin number given by the value in register “D (0-511)”
or “n (0-127)”. OUT

Clear pin number given by the value in register “D (0-511)~
or “n (0-127)”. OUT

Set pin number given by the value in register “D (0-511)~
or “n (0-127)”. OUT

Set pin number given by the value in register “D (0-511)”"
or “n (0-127)” to C.

Set pin number given by the value in register “D (0-511)~
or “n (0-127)” to IC

Set pin number given by the value in register “D (0-511)”"
or “n (0-127)” to 1Z.

Set pin number given by the value in register “D (0-511)~
or “n (0-127)” Z.

-43-

F:\-Morph-Temp_NANO_\Emulator\Prop2_Docs.txt.spin

den 16 december 2012 17:00

External RAM

Each cog now features the ability, with the help of the 1/0 pins, to quickly stream parallel data in or out of the

1/0 pins aligned to a clock source. Data is streamed to/from the CLUT or WRQUAD overlay.
From there it can be quickly feed to the video generator or to the internal HUB RAM.
XFR feeds data 16 Bits or 32 Bits at a time at the system clock speed.

Table 17: "External RAM Instruction

Machine Code | Mnemonic | Operand | Operation

000011 ZCN 1 CCCC DDDnnnnnn 011101001 | SETXFR | D/#n | Setup the direction of the data stream, the source and
| destination of the data stream, and the size of the data

| stream given D or “n (0-63)".

Chip-To-Chip Communication

Each cog now also features high-speed serial transfer and receive hardware for chip-to-chip communication.

The hardware requires three 1/0 pins (SO, SlI, CLK).

Table 18: "Chip-To-Chip Communication Instructions

Machine Code | Mnemonic | Operand | Operation

000011 zCO 1 CCCC DDDDDDDDD 000001001 | SNDSER | D | (waits for tx if lwc)
|
|

000011 zC1 1 cccC DDDDDDDDD 000001001 | RCVSER | D | (waits for rx if lwc)
|
|

000011 ZCN 1 CcCcC DDDDDDDDD 011101010 | SETSER | D/#n |
|

Cog Memory "Remapping

Cogs now have the ability to remap their internal memory to help facilitate context switching between register banks.
Instead of having to save a bunch of internal register to switch running programs all references to a set of register

can be changed instantaneously.

Sends a long (D) out of the special chip-to-chip serial port.
Blocks until the long is sent. Use C flag to avoid blocking.

Receives a long (D) in from the special chip-to-chip serial port.
Blocks until the long is received. Use C flag to avoid blocking.
Sets up the serial port 1/0 pins to use for SO, SI,

and CLK given D or “n (0-63)”.

-44-

F:\-Morph-Temp_NANO_\Emulator\Prop2_Docs.txt.spin den 16 december 2012 17:00

Table 19: Cog Memory "Remapping Instruction

Machine Code | Mnemonic | Operand | Operation
000011 ZCN 1 CCCC DDDnnnnnn 011100001 | SETMAP | D/#n | Remap one cog register space to another
| COG register space given D or n.

Cog-To-Cog “Communication
Cogs now have the ability to communicate directly to each other using the internal 1/0 Port D,
which connects each cog to every other cog.

Table 20: Cog-To-Cog “Communication Instruction

Machine Code | Mnemonic | Operand | Operation
000011 ZCN 1 CCCC nnnnnnnnn 011101000 | SETXCH | D/#n | Reconfigure Port D 1/0 masks given D or n
| to select which COG"s to listen to.

"Pin Modes
Each 1/0 pin is now capable of setting itself into many different modes to more easily interface with the analog world.
By default, each 1/0 starts up in the basic robust digital 1/0 state. However, once configured the

1/0 pin can be used for external RAM memory transfer, as an ADC, as a DAC, a Schmitt trigger, or a comparator, etc.
See Figure 2 for a table of pin modes and their associated properties.

Table 21: "Pin Mode Access Instructions

Machine Code | Mnemonic | Operand | Operation

000011 ZCN 1 CCCC DDnnDDDDD 011100011 | SETPORT | D/#n | Assign which port the CFGPINS instruction will configure
| given register “D (0-511)" or number “n (0-3)”.

111010 000 1 CCCC DDDDDDDDD SSSSSSSSS | CFGPINS | D/#n | Setup pins masked by register “D (0-511)" to register
| “S (0-511)”. The pin configuration modes are below.
|

(waits for alt)

NOTE: PinA is the pin being set. PiIinB is its neighbor (All 1/0 pins have a cross coupled neighbor).

Input is the Boolean statement for what the pin returns when read. Output is the statement for what the

pins outputs when it is an output (Some modes output their input to make feedback relaxation oscillators, etc).
Each pin’s high and low drivers can be configured to work in many different modes. Pins can also re-clock data
sent to them locally to remove jitter in data. Every pin is setup by a 13-bit configuration value.

-45-

F:\-Morph-Temp_NANO_\Emulator\Prop2_Docs.txt.spin

den 16 december 2012 17:00

Compare

Figure 2: "Pin Modes:

Code:

CCcCcC | Mode

0000 CIOHHHLLL | General 1/0

0001 CIOHHHLLL | DIR=0
0010 CIOHHHLLL | Float
0011 CIOHHHLLL] CJOUT/IN DIR=1
0100 CIOHHHLLL | OJLive HHH

0101 CIOHHHLLL | 1|]Clocked LLL|Drive
0110 CIOHHHLLL | 000|]Fast
0111 CIOHHHLLL | IJIN 001]Slow
1000 CIOHHHLLL | O]True 010]1500R
1001 CIOHHHLLL | 1]Inverted 011]10k
1010 CIOHHHLLL | 100]100k
1011 CIOHHHLLL | OJOutput 101]100uA
1100 CIOHHHLLL | O]True 110]10uA
1101 CIOHHHLLL | 1]lInvert 111]Float
1110 CIOHHHLLL |

1111 OLLLLLLLL] Compare Level

1111 1000xxxxx | ADC Diff, 100k

1111 10010xxxx | ADC Precise, DIR/0OUT=Cal
1111 10011xxxx | ADC Fast, DIR/0OUT=Cal
1111 101vxxCCC | DAC 75R, V=Video, C,COG
1111 110HHHLLL | SDRAM Data

1111 111HHHLLL | SDRAM Clock Out

Logic

Schmitt
Schmitt
Schmitt
Schmitt

>

V10/2
V10/2
V10/2
VIO/2
PinB
PinB
PinB

VI10/256*L
VI10/2 10k

Logic

10k VI0/2

1M PinA

1M PinA

10k VI0/2

Fast
Fast
Fast
Fast |
Precise]
Precise]
Precise]

Precise]
Fast
Fast
Fast

Video Generator

Each cog has a video generator capable of generating composite, component, s-video, and VGA video.
The video generator is fed pixel data through the waitvid instruction and uses the pixel data to

-46-

F:\-Morph-Temp_NANO_\Emulator\Prop2_Docs.txt.spin

den 16 december 2012 17:00

look up colors to output from the CLUT. The video generator understands R.G.B.A.X color grouping
and can handle RGB565/555/444/etc formatted data.

Table 22:

"Video Generator Access

Machine Code

Operand |

Operation

000011 ZCN

000011 ZCN

000011 ZCN

000011 ZCN

1 CCCC nnnnnnnnn

1 CCCC nnnnnnnnn

1 CCCC nnnnnnnnn

1 CCCC nnnnnnnnn

DAC Hardware
Each cog has four DACs capable of SIN/COS wave output, saw tooth wave output, triangle wave output,
and square wave output. Additionally, the video generator, when operational, will use the

four DACs to produce video output. Please refer to the information below.

NN

CFGDAC — 00 = 9-bit level
CFGDAC — 01 = 9-bit level from counter with 9-bit dither from counter.

Instructions
| Mnemonic
011101100 | SETVID
011101101 | SETVIDY
011101110 | SETVIDI
011101111 | SETVIDQ

with 9-bit dither.

Setup the video generator according to D or n to
output video from the CLUT .

"Setup the video generator color matrix transform
term Y according to D or n .

"Setup the video generator color matrix transform
term | according to D or n .

"Setup the video generator color matrix transform
term Q according to D or n .

o DACO = CTRASIN, DAC1 = CTRACOS, DAC2 = CTRBSIN, DAC3 = CTRBCOS
? CFGDAC — 10 = 9-bit level from counter with 9-bit dither from counter.
o DACO/2 = CTRASIN + CTRBSIN, DAC1.3 = CTRACOS + CTRBCOS
? CFGDAC — 11 = Video generator controlled.

o DACO = SYNC, DAC1 = Q/B, DAC2 = I1/G, DAC3 = Y/R

Table 23: DAC Hardware Access

Machine Code

Instructions

Mnemonic

Operand |

000011 ZCN
000011 ZCN
000011 ZCN
000011 ZCN
000011 ZCN

1 CCCC DDDDDDDNn
1 CCCC DDDDDDDNn
1 CCCC DDDDDDDNn
1 CCCC DDDDDDDNn
1 CCCC nnnnnnnnn

011001100
011001101
011001110
011001111
011010000

CFGDACO
CFGDAC1
CFGDAC2
CFGDAC3
SETDACO

Operation
Configure DACO to D or n . See above.
Configure DAC1 to D or n . See above.
Configure DAC2 to D or n . See above.
Configure DAC3 to D or n . See above.

Set DACO to top 18 bits of D/n .

F:\-Morph-Temp_NANO_\Emulator\Prop2_Docs.txt.spin

den 16 december 2012 17:00

000011 ZCN
000011 ZCN
000011 ZCN
000011 ZCN
000011 ZCN

1
1
1
1
1

CCcC
CCcC
CCcC
CccC
CCcC

"Texture Mapping
Each cog has texture mapping hardware to assist the video generator with displaying textures and performing
color blending on screen.

Table 24:

Machine Code

nnnnnnnnn
nnnnnnnnn
nnnnnnnnn
Dnnnnnnnn
nnnnnnnnn

011010001
011010010
011010011
011010100
011010101

"Texture Mapping Instructions

SETDAC1
SETDAC2
SETDAC3
CFGDACS
SETDACS

Mnemonic

D/#n
D/#n
D/#n
D/#n
D/#n

Operand

Set DAC1 to top 18 bits of D/n .
Set DAC2 to top 18 bits of D/n .
Set DAC3 to top 18 bits of D/n .
Configure DACs to D or n . See above.
Set DACs to top 18 bits of D/n .

Operation

000011
000011
000011
000011
000011
000011
000011
000011
000011

PR R RRRRERER

"Counter Modules

Each cog has two counter modules — CTRA and CTRB. Each counter module has
The counter modules control the SIN and COS registers to track the phase

DDDDDDDDD
nnnnnnnnn
nnnnnnnnn
nnnnnnnnn
nnnnnnnnn
nnnnnnnnn
nnnnnnnnn
nnnnnnnnn
nnnnnnnnn

000010100
010111000
010111001
010111010
010111011
010111101
010111110
010111111
010111100

GETPIX

SETPIX

SETPIXU
SETPIXV
SETPIXZ
SETPIXR
SETPIXG
SETPIXB
SETPIXA

Store texture pointer address in D (waits two clocks)

Set texture size and address to D/n

Set texture pointer x address to D/n
Set texture pointer y address to D/n
Set texture pointer z address to D/n
Set texture pointer R blending to D/n
Set texture pointer G blending to D/n
Set texture pointer B blending to D/n
Set texture pointer A blending to D/n

a FRQ, PHS, SIN, and COS register.
and power of a signal. The FRQ and PHS

registers work the same. Each counter module also has logic modes, which allow it to accumulate given different
logic equations involving a selected pin A and pin B — see P8X32A. The counter modes now also feature quadrature
encoder accumulation and automatic PWM generation.

Table 25:

Machine Code

"Counter Hardware Access

Instructions

Mnemonic

Operand

Operation

000011 ZCR 1 CCCC DDDDDDDDD 000111000
000011 ZCR 1 CCCC DDDDDDDDD 000111001

GETPHSA
GETPHZA

Store PHSA in D (GETPHSA wc,nr = POLCTRA wc)
Store PHSA in D and zero PHSA (clears phsa)

-48-

F:\-Morph-Temp_NANO_\Emulator\Prop2_Docs.txt.spin

den 16 december 2012 17:00

000011
000011
000011
000011
000011
000011
000011
000011
000011
000011
000011
000011
000011
000011
000011
000011
000011
000011
000011
000011
000011
000011

ZCR
ZCR
ZCR
ZCR
ZCR
ZCR
ZCN
ZCN
ZCN
ZCN
ZCN
ZCN
ZCN
ZCN
ZCN
ZCN
ZCN
ZCN
ZCN
ZCN
ZCN
ZCN

Table 26:

=

PR RPRRPRRRPRRPREPRPRPRRRRPREPREPRRRR

Machine Code

Ccccc
CCcC
CCcC
Ccccce
Ccccc
CCcC
CCcC
Ccccce
Ccccc
CCcC
CCcC
Ccccce
Cccc
CCcC
CCcC
Ccccc
Ccccc
CCcC
CCcC
Ccccc
Cccc
CCcC

DDDDDDDDD
DDDDDDDDD
DDDDDDDDD
DDDDDDDDD
DDDDDDDDD
DDDDDDDDD
nnnnnnnnn
nnnnnnnnn
nnnnnnnnn
nnnnnnnnn
nnnnnnnnn
nnnnnnnnn
nnnnnnnnn
nnnnnnnnn
nnnnnnnnn
nnnnnnnnn
nnnnnnnnn
nnnnnnnnn
nnnnnnnnn
nnnnnnnnn
nnnnnnnnn
nnnnnnnnn

000111010
000111011
000111100
000111101
000111110
000111111
011110000
011110001
011110010
011110011
011110100
011110101
011110110
011110111
011111000
011111001
011111010
011111011
011111100
011111101
011111110
011111111

"Match acces instructions

GETCOSA
GETSINA
GETPHSB
GETPHZB
GETCOSB
GETSINB
SETCTRA
SETWAVA
SETFRQA
SETPHSA
ADDPHSA
SUBPHSA
SYNCTRA
CAPCTRA
SETCTRB
SETWAVB
SETFRQB
SETPHSB
ADDPHSB
SUBPHSB
SYNCTRB
CAPCTRB

Mnemonic

O O O O O O

D/#n
D/#n
D/#n
D/#n
D/#n
D/#n

D/#n
D/#n
D/#n
D/#n
D/#n
D/#n

Operand

Store COSA in D

Store SINA in D

Store PHSB in D (GETPHSB wc,nr = POLCTRB wc)
Store PHSB in D and zero PHSB (clears phsb)
Store COSB in D

Store SINB in D

Set CTRA mode to D/n

Set CTRA wave mode to D/n

Set FRQA to D/n

Set PHSA to D/n

Add D/n to PHSA

Subtract D/n from PHSA

Wait for PHSA to overflow. (waits for ctra)
Remove current sum from PHSA

Set CTRB mode to D/n

Set CTRB wave mode to D/n

Set FRQB to D/n

Set PHSB to D/n

Add D/n to PHSB

Subtract D/n from PHSB

Wait for PHSB to overflow. (waits for ctrb)
Remove current sum from PHSB

Operation

000011
000011
000011
000011
000011
000011
000011
000011
000011
000011
000011
000011

PR RPRRPRRRRPRERRERPRPR

nnnnnnnnn
nnnnnnnnn
nnnnnnnnn
nnnnnnnnn
nnnnnnnnn
nnnnnnnnn
nnnnnnnnn
nnnnnnnnn
nnnnnnnnn
nnnnnnnnn
nnnnnnnnn
nnnnnnnnn

011000000
011000000
011000001
011000010
011000010
011000011
011000100
011000101
011000110
011000111
011001000
011001001

SETMULU
SETMULA
SETMULB
SETDIVU
SETDIVA
SETDIVB
SETSQRH
SETSQRL
SETQI
SETQZ
QLOG
QEXP

F:\-Morph-Temp_NANO_\Emulator\Prop2_Docs.txt.spin

den 16 december 2012 17:00

Condition |

Assembly Conditions
Instruction Executes

Condition

Instruction Executes

IF_ALWAYS |
IF._NEVER |
IFE I
IF_NE I
IF_A I
IF. B I
IF_AE I
IF_BE I
IF.C |
IF_NC I
IF 7 I
IF_NZ I
IFCEQZ |
IFCNE Z |
IF.C_AND_Z |
IF_C_AND_NZ|

CCcCC condition

0001 nc
0010 nc
0011 nc
0100 c
0101 nz
0110 C
0111 nc
1000 c
1001 C
1010 z
1011 nc
1100 c
1101 c
1110 C

never
if equal (2)

if not equal (12)

if above (IC & 12)

if below (C)

if above/equal (10)

ifT below/equal (C | 2)

if C set

if C clear

if Z set

if Z clear

if C equal to Z

if C not equal to Z
if C set and Z set
if C set and Z clear

IF_NC_AND_Z
IF_NC_AND_NZ
IF._ C_OR Z
IF_C_OR_NZ
IF_NC_OR_Z
IF_NC_OR_NZ
IF. Z EQC
IF._Z NE_C
IF._Z AND C
IF_Z_AND_NC
IF_NZ_AND_C
IF_NZ_AND_NC
IF.Z OR C
IF_Z OR_NC
IF_NZ_OR_C
IF_NZ_OR_NC

C clear and Z set
C clear and Z clear
C set or Z set

C set or Z clear
C clear or Z set
C clear or Z clear
Z equal to C

Z not equal to C
Z

Z

Z

Z

Z

Z

Z

Z

set and C set

set and C clear
clear and C set
clear and C clear
set or C set

set or C clear
clear or C set
clear or C clear

o o=h =h =h =h =h =h =h =h =h =h =h =h = = =

nz

nz

nz

if c and nz
if nc and z
if_nc_and nz
if cor z
if c or nz
if nc or z
if_nc_or nz
if c eqz
if c ne z

(default)

if z and_c
if nz and c
if z and nc
if_nz_and _nc
if z or_c
if nz or c
if z or nc
if_nz_or_nc
if z eq c
if z ne c

F:\-Morph-Temp_NANO_\Emulator\Prop2_Docs.txt.spin den 16 december 2012 17:00
1111 always 0000 never

Effects and Condition Codes

Every assembly instruction can conditionally update the Z and/or C flag with WC and Wz effects. Additionally,
the result can conditionally be written using the NR and WR flags. In addition, instructions can be
conditionally executed given the Z and/or C flag—see P8X32A.

-51-

