

PBASIC Programming

Program Structure

Humans often think of computers and microcontrollers as “smart” devices and yet, they will do
nothing without a specific set of instructions. This set of instructions is called a program. It is our
job to write the program. Stamp programs are written in a programming language called PBASIC,
a Parallax-specific version of the BASIC (Beginners All-purpose Symbolic Instruction Code)
programming language. BASIC is very popular because of its simplicity and English-like syntax.

A working program can be as simple as a list of statements. Like this:

statement1
statement2
statement3
END

Comments

Comments are included in a program for readability and notes. These statements are not loaded
into the microcontroller and do not take up any program space.

Each comment starts with an apostrophe. Comments can be on lines by themselves, or to the
right of PBASIC programming statements.

Here’s an example of using comments:

' Program 1: LED
' This program lights up an LED

' Hardware Setup:
' Active-low LED connected to Stamp Pin P7

HIGH 7 ' Turn LED on
PAUSE 500 ' for half second
LOW 7 ' Turn LED off

END

Capitalization

PBASIC is not case-sensitive. PBASIC keywords, variables, and constants can be entered in
either upper or lower case, with no change in meaning.

debug “Hello” ‘ All these commands are interpreted the same
DEBUG “Hello”
DeBuG “Hello”
Debug “Hello”

counter VAR Byte

counter = 1 ‘ All these variable names are interpreted the same
Counter = 1
COUNTER = 1

The DEBUG Statement

DEBUG outputdata {, outputdata}

DEBUG "Hello World!"

Output:
Hello World!

DEBUG "Hello World!"
DEBUG "and Hello again”

Output:
Hello World!and Hello again

DEBUG "Hello World!", CR
DEBUG "and Hello again”

Output:
Hello World!
and Hello again

DEBUG "Hello World!", CR, “and hello again”

Output:
Hello World!
and Hello again

DEBUG CR, CR, “Hello World”, CR, “and hello again”

Output:

Hello World!
and Hello again

Debug Control Characters

CR Carriage Return
CLS Clear screen, cursor positioned in upper left
HOME Moves cursor to upper left corner but doesn’t clear screen
BELL Makes a sound
BKSP Backspace
TAB Tab

 Variables

Variable Sizes

The BASIC Stamp supports four variable types. For the most efficient use of the Stamp’s
memory, a variable should be defined based on program requirements. Using a Word variable,
for example, when the value will never exceed 15 is an inefficient use of the Stamp’s variable
memory space.

Type Bits Range

Bit 1 0 .. 1
Nib 4 0 .. 15
Byte 8 0 .. 255
Word 16 0 .. 65,535

Variable Declaration

Variables must be declared before they can be used in a program. All variable declarations are
usually placed together at the top of a program. To declare a variable, enter the name of the
variable, the keyword VAR, and the size of the variable.

Here’s an example of declaring several variables:

flag VAR Bit
counter VAR Nib
status VAR Byte

Printing Variables using DEBUG
x VAR Byte
x = 65

DEBUG “Printing variables”, CR
DEBUG ? x ‘ Shorthand to print “x = “, value, CR
DEBUG x, CR ‘ ASCII value!
DEBUG DEC x, CR ‘ Decimal
DEBUG IBIN x, CR ‘ Indicated Binary, starts with % sign
DEBUG IHEX x, CR ‘ Indicated Hex, starts with $ sign

 ‘ Printing variables along with text
DEBUG “The temperature is “, DEC x, “ degrees”, CR

Debug Formatters

? Shorthand notation. Prints “var = <value>”, CR
DEC Decimal
IHEX Indicated hexadecimal
IBIN Indicated binary
STR String from BYTEARRAY
ASC ASCII
Note: The default is ASCII! To print a number, you must include a formatter.

Using Variables

x VAR Byte
y VAR Byte
result VAR Byte

 x = 25
 y = 2

 result = x – y ' Subtraction
 DEBUG "x – y = ", DEC result, CR

 result = x / y ' Division
 DEBUG "x / y = ", DEC result, CR

 result = x + y * 10 ' Order of operations
 DEBUG "x + y * 10 = ", DEC result, CR

Output:
x – y = 23
x / y = 12
x + y * 10 = 14

Constants

Constants are values that cannot change during the execution of program. Named constants will
usually assist the reader in understanding the nature of the program and, in many cases, assist the
original programmer that has set the program aside for some time. The value of a constant can
only be changed by editing the source code.

Constant Declaration

Named constants must be declared before they can be used in a program. All constant
declarations are usually placed together at the top of a program. To declare a constant, enter the
name of the constant, the keyword CON, and the value of the constant.

Here’s an example of declaring several constants:

MaxTemp CON 212
MidPoint CON 750

Using Constants

ScaleFactor CON 100
degreeF VAR Byte

degreeF = degreeF / ScaleFactor

Declaring Pin Numbers as Constants

One very useful application of constants is to stand for BASIC Stamp pin numbers. This practice
makes a program more understandable.

For example, suppose we have an LED connected to the BASIC Stamp's pin number P8, and a
servo motor connected to pin number P12. Instead of using the numerals "8" and "12" throughout
the program, we can declare them as constants.

Led CON 8 ' LED is connected to Pin P8
Servo CON 12 ' Servo motor connected to Pin P12

Branching – Redirecting the Flow of a Program

A branching command is one that causes the flow of the program to change from its linear path.
In other words, when the program encounters a branching command, it will, in almost all cases,
not be running the next [linear] line of code. The program will usually go somewhere else. There
are two categories of branching commands: unconditional and conditional. PBASIC has two
commands, GOTO and GOSUB that cause unconditional branching.
Here’s an example of an unconditional branch using GOTO:

GOTO and Labels

Greeting:
 DEBUG "Hello World!", CR
 PAUSE 500
 GOTO Greeting

We call this an unconditional branch because it always happens. GOTO redirects the program to
another location. The location is specified as part of the GOTO command and is called an
address. Remember that addresses start a line of code and are followed by a colon (:). You’ll
frequently see GOTO at the end of the main body of code, forcing the program statements to run
again.

Conditional branching will cause the program flow to change under a specific set of
circumstances. The simplest conditional branching is done with IF-THEN construct. The
PBASIC IF-THEN construct is different from other flavors of BASIC. In PBASIC, THEN is
always followed by a valid program address (other BASICs allow a variety of programming
statements to follow THEN). If the condition statement evaluates as TRUE, the program will
branch to the address specified. Otherwise, it will continue with the next line of code.

IF-THEN

General format:

Start:
 statement 1
 statement 2
 statement 3
 IF condition THEN Start

The statements will be run and then the condition is tested. If it evaluates as TRUE, the program
will branch back to the line called Start. If the condition evaluates as FALSE, the program will
continue at the line that follows the IF-THEN construct.

IF condition THEN label

IF (controlVar = 0) THEN Label_0
IF (controlVar = 1) THEN Label_1
IF (controlVar = 2) THEN Label_2

Looping – Running Code Again and Again

GOTO LOOP

Looping causes sections of the program to be repeated. Looping often uses unconditional and
conditional branching to create the various looping structures. Here’s an example of
unconditional looping:

Greeting:
 DEBUG "Hello World!", CR
 PAUSE 500
 GOTO Greeting

By using GOTO the statements are unconditionally repeated, or looped. By using IF-THEN, we
can add a conditional statement to the loop. The next few examples are called conditional
looping. The loops will run under specific conditions. Conditional programming is what gives
microcontrollers their “smarts.”

CONDITIONAL LOOPING WITH IF-THEN

Label:
 statement 1
 statement 2
 statement 3
 IF condition THEN Label

With this loop structure, statements will be run so long as the condition evaluates as TRUE.
When the condition is evaluated as FALSE, the program will continue at the line following the
IF-THEN statement. It’s important to note that in the previous listing the statements will always
run at least once, even if the condition is FALSE.

FOR-NEXT LOOP

The final example of conditional looping is the programmed loop using the FOR-NEXT
construct.

FOR controlVar = startVal TO endVal STEP stepSize
 statement 1
 statement 2
 statement 3
NEXT

The FOR-NEXT construct is used to cause a section of code to execute (loop) a specific number
of times. FOR-NEXT uses a control variable to determine the number of loops. The size of the
variable will determine the upper limit of loop iterations. For example, the upper limit when using
a byte-sized control variable would be 255.

counter VAR Nib

PAUSE 250 ' let DEBUG window open

FOR counter = 1 TO 5
 DEBUG "Loop Number: ", DEC counter
 DEBUG " Hello World!", CR
 PAUSE 500
NEXT

Output:
Loop Number: 1 Hello World!
Loop Number: 2 Hello World!
Loop Number: 3 Hello World!
Loop Number: 4 Hello World!
Loop Number: 5 Hello World!

The STEP option of FOR-NEXT is used when the loop needs to count increments other than
one. If, for example, the loop needed to count even numbers, the code would look something like
this:

FOR controlVar = 2 TO 20 STEP 2
 statement 1
 statement 2
 statement 3
NEXT

Subroutines – Reusable Code that Saves Program Space

The final programming concept we’ll discuss is the subroutine. A subroutine is a section of code
that can be called (run) from anywhere in the program. GOSUB is used to redirect the program to
the subroutine code. The subroutine is terminated with the RETURN command. RETURN
causes the program to jump back to the line of code that follows the calling GOSUB command.

GOSUB and RETURN

PAUSE 250

Main:
 GOSUB Hello
 GOSUB Goodbye
 END

Hello:
 DEBUG "Hello there!", CR
 RETURN

Goodbye:
 DEBUG "Bye now!", CR
 RETURN

BASIC Stamp Memory

The BASIC Stamp has two kinds of memory; RAM (for variables used by your program) and
EEPROM (for storing the program itself). EEPROM may also be used to store long-term data in
much the same way that desktop computers use a hard drive to hold both programs and files.

 An important distinction between RAM and EEPROM is this:

• RAM loses its contents when the BASIC Stamp loses power; when power returns, all
RAM locations are cleared to 0s.

• EEPROM retains the contents of memory, with or without power, until it is overwritten
(such as during the program-downloading process or with a WRITE instruction.)

The BS2, BS2e, BS2sx and BS2p have 32 bytes of Variable RAM space. Of these, the first six
bytes are reserved for input, output, and direction control of the I/O pins. The remaining 26 bytes
are available for general-purpose use as variables.

I/O Registers

• Occupy first 3 words RAM (6 bytes)
• 16-bit registers (Stamp has 16 I/O pins)
• Are all initialized to zero
• All pins set to inputs by default

Names of I/O Registers

• INS Shows state of I/O pins regardless whether input or output
• OUTS Write values into here to make pin high (1) or low (0)
• DIRS 0=Input, 1 = Output

Reserved Names for Referring to I/O Registers

INS REGISTER
Name Size
IN0 - IN15 Bit
INA, INB, INC, IND Nibble
INL, INH Byte
INS Word

INS REGISTER REFERENCE
 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
INA
INB
INC
IND
INL
INH
INS

OUTS REGISTER
Name Size
OUT0 – OUT15 Bit
OUTA, OUTB, OUTC, OUTD Nibble
OUTL, OUTH Byte
OUTS Word

OUTS REGISTER REFERENCE
 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
OUTA
OUTB
OUTC
OUTD
OUTL
OUTH
OUTS

DIRS REGISTER
0 = INPUT, 1 = OUTPUT
Name Size
DIR0 .. DIR15 Bit
DIRA, DIRB, DIRC, DIRD Nibble
DIRL, DIRH Byte
DIRS Word

DIRS REGISTER REFERENCE
 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
DIRA
DIRB
DIRC
DIRD
DIRL
DIRH
DIRS

To Specify a Pin as Output

Since all pins default to inputs, you must specify which pins you wish to use as outputs. There
are a number of ways to do this:

1. Use DIRS register
Write a "1" for "Output"

DIRS = %00110000000000000000 ' Outputs: 13, 12
DIR4 = 1 ' Outputs: 4

2. Use OUTPUT keyword

OUTPUT 7 ' Outputs: 7

3. Use HIGH or LOW keywords

These set the direction, and write a value

HIGH 5 ' Specifies that pin P5 is an output, and sets it high
LOW 3 ' Specifies that pin P3 is an output, and sets it low

4. Use keywords that do it for you
No need to use OUTPUT or DIRS first
FREQOUT, PULSOUT, SEROUT, ...

Examples of I/O Register Usage

DIRS = %0011000000000000 ' Outputs: 13, 12

if (IN1 = 1) THEN Do_Something

Aliases

An alias is an alternate name for an existing variable. One of the most useful applications of
aliases is to create alternate names for the Stamp's built-in variable names used for input and
output. This can greatly increase a program's readability and understandability. To declare an
alias, enter the alias, the keyword VAR, and the name of the existing variable.

Here’s an example of creating two aliases, called "btn" and "LED", which refer to BASIC Stamp
pins P7 and P8, respectively.

btn VAR IN7 ' name (alias) the input
LED VAR OUT8 ' name (alias) the output

