
UC-X Macro Assembler Manual
© Copyright 2007 Burnt Wasp and Figment Games

Version 0.7.0 DRAFT

Contents

Contents .. 1
Command Line Arguments ... 2
Addresses... 3

Assembly Address Directives.. 3
Examples... 4

Setting the Clock Mode and Frequency ... 5
Include Files ... 6

Include Search Paths.. 6
Expressions .. 7

Operator Precedence.. 7
Constants and Variables .. 8
Conditional Assembly.. 9

Examples... 9
Macros... 11

Examples... 11
Miscellaneous Directives .. 12
Assembler Defined Symbols ... 13
Compatibility Notes and Caveats ... 14

- 2 -

Command Line Arguments
UCAsm is used from the command line, as follows.

ucasm [options] filename.asm

Command line arguments are case sensitive and must be specified before the filename. Multiple options that
do not require an argument can be combined, for example –qv is the same as specifying –q -v.

The available options are shown in the following table.

Option Purpose
-q Quiet mode
-v Verbose mode
-N Case insensitive labels
-S Do not add system include path to the include search path
-I <path> Add <path> to the include search path. May be used more then once to add multiple paths
-o <filename> Set <filename> as the output filename

Verbose Mode and Quiet Mode
Verbose, Quiet and Quiet Verbose mode allow you to control how much information is displayed while
assembling.

The –q and –v options are interpreted as follows.

• If only -q is specified, display nothing unless there is an error or warning
• If both -q and -v are specified, display only the filename unless there is an error or warning
• If -v is specified, display the filename plus current pass information
• If neither -q nor -v are specified, display only the number of errors / warnings

The version and copyright information is only printed in non-quiet verbose mode, or if no arguments were
provided.

- 3 -

Addresses
UCAsm was designed to give complete control to the programmer over where their code and data ends up in
memory. The only restriction is the automatically generated Spin loader will initialize cog 0 from hub address
$20, thus you must always have some code at $20.

As the Propeller has two separate memory spaces, the assembler maintains two address pointers that
determine where code and data is assembled. The hub address pointer is the current byte address in hub
memory where the data will be in the image. The cog base address pointer is the current base address used
to calculate the correct cog address for the source and destination fields of instructions.

Although you will never need to do so manually, to convert from a hub address and cog base pointer, use the
following formula: (Hub Address – Cog Base Address) / 4.

The assembler never makes any assumptions about which parts of your code form cogs. It simply uses the
above formula to resolve symbols to the, hopefully, correct cog address when needed. This makes it possible
to have overlapping data, an example of which can be found below.

Assembly Address Directives

COG [hub address in bytes]

If the address is specified, set both the cog base address and the hub address to the address. If the address
is not specified, the cog base address will be set to the current hub address.

The COG directive is the main directive you will use for setting the assembly address. It can be thought of as
a hub memory ORG directive that also sets up the assembler state such that you can pass the address to a
COGINIT directive or COGNEW macro call.

Not specifying the address allows you to start a new "cog" continuing on from where the last cog left off. In
this case, you should have a line with a label immediately after the COG directive. You can then use that label
in combination with the @ operator with COGINIT and COGNEW. Note that when using COGNEW, the @ operator
is added automatically for the code address, but is not for the PAR value.

COGBASE hub address in bytes

Set the cog base address independently of the hub address. The COGBASE directive will not change the
current hub address, only symbol resolution.

HUB hub address in bytes

Set the hub address independently of the cog base address. The HUB directive will not change the current cog
base address.

ORG [cog address in longs]

Start assembling at the long at the specified address in cog memory. The cog base address is not affected. If
the address is not specified it defaults to zero.

ORG allows you to change the assembly address from the point of view of the cog without any reliance on the
actual location in hub memory.

FIT [cog address in longs]

FIT checks if the current cog address is below the specified address and throws an assembly time error if it
isn't. If the address is not specified, it defaults to $1F0.

- 4 -

Examples

Minimal Example
A minimal functional example follows. It simply stops the current cog.

 cog $20

Entry cogid __COGADDR
 cogstop __COGADDR – 1
 fit

Overlapped Data
Overlapped data in this instance is the ability to have common data situated at the end of one cog and the
beginning of another. This is a useful technique to minimize wasted memory when you have two cogs that
need to share data. The data can be referred to by label in either cog 1 or cog 2 and will resolve to the
correct address for that cog.

; Need include file for cognew macro
include "p8x32a.inc"

cog $20

; Start cog1 and cog2
cognew cog1, 0
cognew cog2, 0

; Stop cog 0
cogid __COGADDR

 cogstop __COGADDR – 1

; Definition for cog 1
cog

cog1
 ; ... code for cog 1...

 ; $1ed should be $1f0 – size of data in longs - 1
 fit $1ed
 org $1ed

 ; Entry point for cog 2
 ; jmp required to skip data when starting cog 2
cog2 jmp #cogEntry

 ; overlapped data
overlap1 long $deadbeef
overlap2 long $baaabaaa

 ; Definition for cog 2
 cogbase @cog2

cogEntry
 ; ... code for cog 2...
 fit

- 5 -

Setting the Clock Mode and Frequency
Although you can change the clock mode or frequency at run time if you wish, UCAsm also allows you to
specify the default mode and frequency in the binary header. If you try and change the clock mode or
frequency after it has been set, the assembler will throw a warning. The thinking behind this is that if you are
changing the frequency at run time, you probably shouldn't be relying on the __XINFREQ and __CLKFREQ
constants since they are set at assembly time.

CLKMODE clock mode byte

Specify the clock mode. A number of constants are provided in p8x32a.inc for this purpose.

UCAsm Constant Propeller Tool Equivalent
RCFAST RCFAST
RCSLOW RCSLOW
XINPUT XINPUT
XTAL1_PLL1X XTAL1 + PLL1X
XTAL1_PLL2X XTAL1 + PLL2X
XTAL1_PLL4X XTAL1 + PLL4X
XTAL1_PLL8X XTAL1 + PLL8X
XTAL1_PLL16X XTAL1 + PLL16X
XTAL1 XTAL1
XTAL2 XTAL2
XTAL3 XTAL3
XTAL2_PLL1X XTAL2 + PLL1X
XTAL2_PLL2X XTAL2 + PLL2X
XTAL2_PLL4X XTAL2 + PLL4X
XTAL2_PLL8X XTAL2 + PLL8X
XTAL2_PLL16X XTAL2 + PLL16X
XINPUT_PLL1X XINPUT + PLL1X
XINPUT_PLL2X XINPUT + PLL2X
XINPUT_PLL4X XINPUT + PLL4X
XINPUT_PLL8X XINPUT + PLL8X
XINPUT_PLL16X XINPUT + PLL16X
XTAL3_PLL1X XTAL3 + PLL1X
XTAL3_PLL2X XTAL3 + PLL2X
XTAL3_PLL4X XTAL3 + PLL4X
XTAL3_PLL8X XTAL3 + PLL8X
XTAL3_PLL16X XTAL3 + PLL16X

The clock mode must be set before either CLKFREQ or XINFREQ are used. CLKMODE will set the __CLKMODE
constant to the value specified.

CLKFREQ frequency in hertz

XINFREQ frequency in hertz

Set the system clock frequency or input frequency respectively. Only one of CLKFREQ or XINFREQ needs to be
specified, not both. The missing frequency will be calculated based on the clock mode. Both directives set the
__CLKFREQ and __XINFREQ constants to the relevant value.

- 6 -

Include Files

INCLUDE "filename"

Include the contents of another file. Inclusion is done during pass 1. The filename may be relative and will be
checked against all directories in the include search paths. In the case that there are multiple files with the
same name in different directories, UCAsm will use the first file it finds. See the next section for more
information on the search paths.

Path separator characters in the filename will be automatically converted to the OS' native representation.
For example, on Mac OS X and Linux backslashes will be converted to forward slashes and on Windows
forward slashes will be converted to backslashes.

Include Search Paths
The assembler maintains a list of paths it searches for include files. The current directory and the system
include directory are always added to the beginning and end of the search paths respectively. This allows files
in the current directory to always override other directories, and paths specified on the command line to
override the system include directory. Search paths can be specified on the command line with the –I option,
and will be added in the order they are provided; the first having higher priority.

The system include directory is always a directory called Include in the same directory as the Bin directory,
which contains the ucasm executable. This ensures that the include directory can be found without forcing
the user to setup environment variables. If you do not want the system include directory to be included, use
the –S command line option.

- 7 -

Expressions

NOTE: The expression parsing/evaluation code has already changed significantly for version
0.8.0.

UCAsm supports both constant and variable expressions in arguments for most instructions and directives.
The expression evaluator is currently temporary and will be improved in a future version.

Note that all expressions are evaluated by the assembler at assembly time. The Parallax expression syntax is
not supported.

Operator Precedence
Due to the work-in-progress nature of the expression evaluator, this operator precedence table should be
considered a guideline that is subject to change.

<
>
<=
>=
==
!=

Less than
Greater than
Less than or equal
Greater than or equal
Equal
Not equal

- Unary minus
! Unary not
()
*
/
&
<<
>>

Multiply
Divide
Bitwise and
Bitwise shift left
Bitwise shift right

+
-
%
|
^

Add
Subtract
Modulus
Bitwise or
Exclusive or

- 8 -

Constants and Variables
Assembly time constants and variables are supported. It is important to point out that assembly time
constants and variables affect only the operation of the assembler. They are used in expressions and for
controlling conditional assembly, and will be evaluated by the assembler. No code will be generated by these
directives.

Constants are set with the EQU directive, and may only be set once. A constant's value is resolved the first
time it is used, and so forward references are supported.

Variables are set with the SET directive or the synonym =. A variable's value is resolved immediately during
Pass 1 and so forward references are not supported. Variables are most useful in combination with WHILE
loops.

When porting code written for the Propeller Tool, you will come across a lot of constants set with the =
operator. It is tempting to leave them the way they are. However, in UCAsm they will be treated as variables,
not constants. The correct solution is to define all constants using the EQU directive. This ensures that they
will be handled correctly as constants, and will support forward references.

constant EQU expression

The EQU directive declares an assembly time constant. Forward references of constants are permissible. If
you use variables in the expression, their value will be that at the time the expression is resolved. Constants
are only resolved the first time they are used. It is advised that you don't use variables in constant
expressions as this will probably throw an error in a future version.

Recursive definitions are not permitted and will currently cause the assembler to go into an infinite loop.

variable SET expression

variable = expression

The SET directive and it's more natural synonym set an assembly time variable. Variable expressions do not
support forward references. The expression is evaluated whenever the line is processed. Usually this is after
it's tokenized, but when used with conditional assembly it won't be processed until the block is expanded.
With loops, the expression will be evaluated every iteration of the loop.

The = form of the SET directive is simply a convenient synonym. It is not the same as an assignment
operator, and code using it still need to obey the usual formatting rules for the line. The main implication of
this is that there must be whitespace either side of the =.

- 9 -

Conditional Assembly
All conditional assembly directives must be terminated by the END directive. Unlike some other assemblers, in
UCAsm there is only one END directive.

IF expression

If expression evaluates to true, the assembler will output the following block of assembly code. If expression
evaluates to false, no code will be output.

IFDEF symbol

If symbol is defined, the assembler will output the following block of assembly code. If symbol is not defined,
no code will be output. symbol can be any symbol known to the assembler: a label, constant, variable, or
macro.

IFNDEF symbol

If symbol is not defined, the assembler will output the following block of assembly code. If symbol is defined,
no code will be output. symbol can be any symbol known to the assembler: a label, constant, variable, or
macro.

ELSE

If the matching IF, IFDEF or IFNDEF did not output any code, output the following block of assembly code.
Otherwise, no code will be output.

WHILE expression

While expression evaluates to true, output the following block of assembly code. WHILE is usually used in
conjunction with assembler variables, as in the following example.

i = 0
 while i < 5
 mov 0, i
i = i + 1
 end

This would be equivalent to writing the following code.

mov 0, 0
 mov 0, 1
 mov 0, 2
 mov 0, 3
 mov 0, 4

Note that currently it is possible to write code using the WHILE directive that causes an infinite loop.

Examples
Conditional assembly can be useful for generating lookup tables at assembly time. The following code snippet
generates 256 longs forming a CRC32 lookup table for each possible byte value. This table is generated
entirely by the assembler and will not have any affect on run time performance.

crcTable

i = 0
 while i < 256
val = i

j = 0

- 10 -

 while j < 8

 if val & $01
val = 0xedb88320 ^ (val >> 1)
 else
val = val >> 1
 end

j = j + 1
 end

 ; Store data
 long val

i = i + 1
 end

The CRC32 value for a byte stream can be calculated with the following C code:

for(int i = 0; i < strlen(buffer); i++)
{

crcVal = crcTable[(crcVal ^ buffer[i]) & 0xff] ^ (crcVal >> 8);
}

A functioning CRC32 example can be found in the Examples folder.

- 11 -

Macros
Unlike other conditional assembly features, macros do not generate code immediately. A macro must be
instantiated before any code will be generated. Macros may also optionally take any number of arguments.
Arguments are implemented as a text substitution; wherever a macro argument name appears in the
operand of a directive or instruction, it will be replaced with the text supplied as the argument.

macro MACRO [arg1][, arg2][, …][, argN]

Declare a macro with an optional number of arguments. All instructions, directives or data between the
macro directive and the corresponding end directive will form the body of the macro.

LOCAL [label1][, label2][, …][, labelN]

Declare labels as local to a macro. LOCAL is only valid in a macro block. When the macro is instantiated,
macro local labels will be changed to a unique name. This avoids duplicate label definitions when instantiating
a macro multiple times.

Examples

; Macro Definition
stopCurCog macro
 cogid $
 cogstop $ - 1
 end

; Macro Instantiation
 cog $20
SomeLabel cognew SomeWhere, @Wherever

 ; ... code ...

 stopCurCog

The stopCurCog macro is defined in p8x32a.inc and is a useful way to stop a cog. The macro uses self
modifying code to obtain the current cog ID and then stop it.

Also defined in p8x32a.inc is the cognew macro.

cognew macro codeAddr, parValue
 local cogWord

 coginit cogWord

 jmp #cogWord + 1
cogWord long ((parValue & $fffc) << 16) | ((@codeAddr & $fffc) << 2) | %1_000
 end

cognew uses a macro local label to ensure that there are no duplicate labels when it is instantiated multiple
times. The word for the COGINIT instruction is built automatically based on the supplied arguments.

- 12 -

Miscellaneous Directives
These directives don't really fit anywhere else, but are useful none the less.

ERROR "error message"

WARN "warning message"

Throw an assembly time error or warning message. The message occurs during pass 1. These directives can
be useful when combined with conditional assembly. For example:

if __UCASM < 700
error "UCAsm Version 0.7.0 is required to assemble this example"
end

READONLY cog address

The READONLY directive marks a cog register as read only. This is used in p8x32a.inc to specify which
registers are read only. Attempting to use a read only register in the destination field of an instruction will
cause an assembly time error.

- 13 -

Assembler Defined Symbols
The assembler defines a number of constants automatically.

Symbol Description
__UCASM Version number of UCAsm encoded as (Major * 1000) + (Revision * 100) + Minor
__ADDR Hub address of the line being assembled
__COGADDR
$

Cog address of the line being assembled. The $ symbol may be used as a synonym

_CLKMODE Current clock mode word. Defined after the CLKMODE directive is processed
_XINFREQ Current input frequency. Defined after either of the XINFREQ or CLKFREQ directives

are processed
_CLKFREQ Current system clock frequency. Defined after either of the XINFREQ or CLKFREQ

directives are processed

- 14 -

Compatibility Notes and Caveats
These are assorted notes that we assembled during development and early testing. The main aim is to cover
potential issues for users used to the Propeller Tool and any other general gotchas we thought of.

• UCAsm is case sensitive by default. You can pass the –N command line option to make symbols case
insensitive. This is generally required when porting code from the Parallax Object Exchange. Note that
currently macro arguments are always case sensitive regardless of the –N option.

• Instructions, directives, preconditions and effects are always case insensitive.
• Reserved words cannot be used as labels, including local labels. Reserved words are anything that is

an instruction, directive, precondition or effect.
• The res directive always initializes to zero.
• The cog, hub and cogbase directives take a hub memory address in bytes. The org and fit directives

take a cog memory address in longs. This is covered in more detail in the Assembler Basics chapter.
• There is currently no floating point support. This will be addressed in a future version.
• Single quotes (') are not supported as a comment character, use a semi-colon (;) instead. Converting

Propeller Tool code is simply a matter of search and replace. We intend to use single quotes for
character literals in a future build, and so this will not change.

• C++ style // comments are also supported. C style /* */ block comments are not supported, however.
This combined with an editor that supports syntax highlighting can be abused to highlight C++ style
comments in a different color to normal assembler comments. I use // comments to disable code
which will be colored grey, whilst normal comments are colored green. I find this provides a useful
visual distinction when skimming code.

• The end directive ends a block of conditional assembly; it does NOT end assembly like it may do in
other assemblers. There is currently no directive in ucasm to halt assembly.

• Parallax expressions are not supported. Allowances have been made to support multiple expression
evaluators, and so there is a possibility of Parallax expression support being added in the future.
However, this is not currently a priority so it may be a while before it is done, if at all.

	UC-X Macro Assembler Manual
	Contents
	Command Line Arguments
	Addresses
	Assembly Address Directives
	Examples

	Setting the Clock Mode and Frequency
	Include Files
	Include Search Paths

	Expressions
	Operator Precedence

	Constants and Variables
	Conditional Assembly
	Examples

	Macros
	Examples

	Miscellaneous Directives
	Assembler Defined Symbols
	Compatibility Notes and Caveats

