
Realtimesystems

Character recognition using an artifical neural

network in a multiprocessor environment

Marcus Ekerhult

December 6, 2006

Abstract

In this paper I will describe the use of Artificial Neural Networks
(ANNs) and how they efficiently can be used to emulate human thinking
in the domain of artificial intelligence. As an example I have built a char-
acter recognition system, using the multi-processing Parallax Propeller
microcontroller. As this is a new controller (2006) I will also describe
its functionallity. The outcome of the project is a complete embedded
system with a PS/2 mouse driver, a VGA driver and an implementation
of a simple artificial neural network. The system can recognize up to 4
different characters provided via mouse input, and is scalable with more
memory attached.

Contents

1 Distributed parallel processing 1
1.1 Introduction and motivation . 1
1.2 Structures . 2

1.2.1 Linear array of processors 2
1.2.2 Binary tree of processors 3
1.2.3 Two-dimensional mesh of processors 3
1.2.4 Multiple processors with shared variables 3

2 Artificial Neural Networks 4
2.1 Introduction and motivation . 4
2.2 Why use neural networks? . 4
2.3 Two approaches . 5

2.3.1 Feed-forward networks . 5
2.3.2 Feedback networks . 5

3 The Propeller controller 5
3.1 Introduction . 5

3.1.1 Cogs . 6
3.1.2 Clock . 6
3.1.3 Hub . 6
3.1.4 Semaphores . 6

4 Project - Character Recognition 7
4.1 Introduction . 7
4.2 Network architecture . 8
4.3 Implementation . 9

5 Conclusions 11

List of Figures

1 Flynn’s Taxonomy. 1
2 Serial computation. 1
3 Parallel computation. 2
4 Example of a linear array of processors. 2
5 Ring variant of a linear array of processors. 2
6 A balanced (but incomplete) binary tree of nine processors. . . . 3
7 A 2D mesh of nine processors. 3
8 A shared-variable architecture modeled as a complete graph. . . 4
9 The Propeller architecture. 7
10 The developed Feed-forward network. 8
11 Discretization of the sampled character (I-box) 8
12 The development board that was used. 9
13 Cog usage. 10
14 The GUI displayed on a VGA screen. 10

1 DISTRIBUTED PARALLEL PROCESSING

1 Distributed parallel processing

1.1 Introduction and motivation

In 1966, a man named Michael J. Flynn came up with a four-way classification
of computer architectures [Figure 1]. Flynn’s taxonomy distinguishes single
and multi-processor computer architectures according to the number of con-
current instruction and data streams available in the architecture. The four
combinations are SISD (single instruction stream, single data stream), SIMD
(single instruction stream, multiple data streams), MISD (multiple instruction
streams, single data stream), and MIMD (multiple instruction streams, mul-
tiple data streams). Flynns classification has become standard and is today
widely used.

Figure 1: Flynn’s Taxonomy.

Traditionally, software has been written for serial computation (SISD). This
technique is to be run on a single computer having a single Central Processing
Unit (CPU). A problem is broken into a discrete series of instructions, the
CPU gets these instructions and/or data from memory, decodes the instructions
and then sequentially performs them [Figure2]. Only one instruction may be
executed at any moment in time. This is how the majority of todays processors
work, even though multicore processors are growing rapidly.

Figure 2: Serial computation.

In the simplest sense, parallel computing is the simultaneous use of multiple
processors to solve a computational problem (SIMD, MISD or MIMD). A prob-
lem is broken into discrete parts that can be solved concurrently. Each part is
further broken down to a series of instructions where each part can be executed
simultaneously on different CPUs. This is illustrated in Figure3.

The motivations for parallel processing can be summarized as follows:

• Higher speed, or solving problems faster. This is important when appli-
cations have ”hard” or ”soft” deadlines. For example, we have at most
a few hours of computation time to do 24-hour weather forecasting or to
produce timely tsunami warnings.

Marcus Ekerhult — page 1 — Elektroteknik

1 DISTRIBUTED PARALLEL PROCESSING

Figure 3: Parallel computation.

• Higher throughput, or solving more instances of given problems. This
is important when many similar tasks must be performed. For exam-
ple, banks and airlines, among others, use transaction processing systems
which handle large volumes of data.

• Keeping the throughput, while lowering the clockspeed and thus also the
power consumption. This is important in handheld devices and also on
a broader scale in the upcoming trend, sustainable and environmental
friendly design.

1.2 Structures

There are today a large number of differnet structures for parallel computer
systems. In the following sections I will describe four simple approaches. To be
able to compare these approaches, two properties have to be defined:

• The diameter (D) of a parallel computer system is defined as the longest
of the shortest distances between pairs of processors (p).

• The maximum node degree (d) is defined as the largest number of links
or communication channels associated with a processor (p).

1.2.1 Linear array of processors

The basic linear array [Figure 4] has D = p-1, and d=2. The ring variant, shown
in [Figure 5], has the same node degree of 2 but a smaller diameter of D = �p

2�.

Figure 4: Example of a linear array of processors.

Figure 5: Ring variant of a linear array of processors.

Marcus Ekerhult — page 2 — Elektroteknik

1 DISTRIBUTED PARALLEL PROCESSING

1.2.2 Binary tree of processors

The binary tree in [Figure 6] is balanced in that the leaf levels differ by at most
1. If all leaf levels are identical and every nonleaf processor has two children,
the binary tree is said to be complete. The diameter of a p-processor complete
binary tree is 2log2(p + 1) − 2. More generally, the diameter of a p-processor
balanced binary tree architecture is 2�log2p� or 2�log2p� − 1, depending on the
placement of leaf nodes at the last level. Unlike linear arrays, several different
p-processor binary tree architectures may exist. This is usually not a problem
as we almost always deal with complete binary trees. The (maximum) node
degree in a binary tree is; d = 3.

Figure 6: A balanced (but incomplete) binary tree of nine processors.

1.2.3 Two-dimensional mesh of processors

The diameter of a p-processor square mesh, like the one in [Figure 7], is 2
√

p−2.
More generally, the mesh does not have to be square. The diameter of a p-
processor r × (p

r) mesh is D = r + p
r − 2. Again, multiple 2D meshes may exist

for the same number p of processors, e.g., 2 × 8 or 4 × 4. Square meshes are
usually preferred because they minimize the diameter. The node degree for the
mesh is d = 4.

Figure 7: A 2D mesh of nine processors.

1.2.4 Multiple processors with shared variables

A shared-memory multiprocessor can be modeled as a complete graph, in which
every node is connected to every other node, as shown in [Figure 8] for p=9. In
the 2D mesh of [Figure 7], CPU0 can send/receive data directly to/from CPU1

Marcus Ekerhult — page 3 — Elektroteknik

2 ARTIFICIAL NEURAL NETWORKS

and CPU3. However, it has to go through an intermediary to send/receive
data to/from CPU4. For a shared-memory multiprocessor, every piece of data
is directly accessible to every processor (we assume that each processor can
simultaneously send/receive data over all of its p-1 links). The diameter D=1
of a complete graph is an indicator of this direct access.

Figure 8: A shared-variable architecture modeled as a complete graph.

2 Artificial Neural Networks

2.1 Introduction and motivation

Artifcial neural networks (ANNs) can be most adequately characterised as ’com-
putational models’ with particular properties such as the ability to adapt or
learn, to generalise, or to cluster or organise data, and which operation is based
on parallel processing. Artificial neural networks can also be seen as simplfied
electrical models of the biological nervous systems. They are built up by a very
large number of processing elements (neurones), all working together to solve
specific problems.

The first artificial neuron was produced in 1943 by the neurophysiologist
Warren McCulloch and the logician Walter Pits [3]. But the technology available
at that time did not allow them to do much. Today on the other hand we are able
to implement very large networks, mostly due to a higher device density of VLSI
chips. Still due to the fact that we know very little about the nervous system
our models are necessarily gross idealisations of real networks of neurones.

2.2 Why use neural networks?

Neural networks have a remarkable ability to derive a meaning from complicated
or imprecise data. They can be used to extract patterns and detect trends that
are too complex to be noticed by either humans or other computer techniques.
A trained neural network can be thought of as an ”expert” in the category of
information it has been given to analyse. This expert can then be used to provide
projections given new situations of interest and answer ”what if” questions.

The motivations for artificial neural networks can be summarized as follows:

Marcus Ekerhult — page 4 — Elektroteknik

3 THE PROPELLER CONTROLLER

• Adaptive learning: An ability to learn how to do tasks based on the data
given for training or initial experience.

• Real Time Operation: Artificial neural network computations may be
carried out in parallel and carry out computations very fast.

• Fault Tolerance via Redundant Information Coding: Partial destruction
of a network leads to the corresponding degradation of performance. How-
ever, some network capabilities may be retained even with major network
damage.

2.3 Two approaches

During the years various of different network models have been developed. In
this chapter I briefely describe two commonly used models.

2.3.1 Feed-forward networks

Feed-forward ANNs allow signals to travel one way only; from input to output.
There is no feedback (loops) i.e. the output of any computational unit (node)
does not affect that same node. Feed-forward ANNs tend to be straight for-
ward networks that associate inputs with outputs. They are extensively used in
pattern recognition.

2.3.2 Feedback networks

Feedback networks can have signals travelling in both directions by introducing
loops in the network. Feedback networks are very powerful and can be extremely
complicated. Feedback networks are dynamic; their state is changing contin-
uously until they reach an equilibrium point. They remain at the equilibrium
point until the input changes and a new equilibrium needs to be found.

3 The Propeller controller

3.1 Introduction

Parallax is a company that in the end of 2005 changed the market for embedded
applications when they introduced the Propeller ”super-microcontroller” with
eight high speed 32-bit microcontrollers inside. Each internal microcontroller
(cog) has access to the Propeller chips 32 I/O pins and 32 KB of global RAM.
Each cog also has its own 2 KB of RAM that can either run a so called Spin
code interpreter or an assembly language program.

The Spin language is the high-level programming language created by Paral-
lax explicitly for the Propeller chip. Cogs executing Spin code do so by loading
a Spin interpreter from the Propeller chips ROM. This interpreter fetches and
executes Spin command codes that get stored in the Propeller chips global
RAM. Propeller cogs can also be programmed in low-level assembly language.
Whereas high-level Spin tells a cog what to do, low-level assembly language tells
a cog how to do it. Assembly language generates machine codes that reside in a
cogs RAM and get executed directly by the cog. Assembly language programs

Marcus Ekerhult — page 5 — Elektroteknik

3 THE PROPELLER CONTROLLER

make it possible to write code that optimizes a cogs performance (a speed fac-
tor of around 250); however, it requires a more in-depth understanding of the
Propeller chips architecture.

3.1.1 Cogs

All cogs (numbered 0 to 7) contain the same components [Figure 9]: a Proces-
sor block, local 2 KB RAM configured as 512 longs (512 x 32 bits), two I/O
Assistants with PLLs, a Video Generator, I/O Output Register, I/O Direction
Register, and other registers not shown in the diagram. Each cog is designed
exactly the same and can run tasks independently from the others. They also
all have access to the same shared resources, like I/O pins, Main RAM, and the
System Counter. One can most likely view the internal structure as a shared
variable architecture.

Cogs can be started and stopped at run time and can be programmed to per-
form tasks simultaneously, either independently or with coordination from other
cogs through Main RAM. Regardless of the nature of their use, the Propeller
application designer has full control over how and when each cog is employed;
there is no compiler-driven or operating system-driven splitting of tasks between
multiple cogs. This method empowers the developer to deliver absolutely deter-
ministic timing, power consumption, and response to the embedded application.

3.1.2 Clock

All eight cogs are driven from the same clock source, the System Clock, so they
each maintain the same time reference and all active cogs execute instructions
simultaneously. The chip includes an internal PLL which allows the cogs to run
at a maximum speed of 80MHz. The architecture is unfortunately not pipelined
so the clockspeed and throughput is not 1:1, but 4:1. This gives a maximum
throughput of 160MIPS when all cogs are up and running.

3.1.3 Hub

To maintain system integrity, mutually-exclusive resources must not be accessed
by more than one cog at a time. The Hub maintains this integrity by controlling
access to mutually-exclusive resources, giving each cog an opportunity to access
the resources in a round robin fashion from Cog 0 through Cog 7 and back
to Cog 0 again. The Hub, and the bus it controls, runs at half the System
Clock rate. This means that the Hub gives a cog access to mutually-exclusive
resources once every 16 System Clock cycle. This a rather big bottleneck which
slows down the execution time.

3.1.4 Semaphores

There are eight lock bits (also known as semaphores) available to facilitate
exclusive access to user-defined resources among multiple cogs. If a block of
memory is to be used by two or more cogs at the same time and that block
consists of more than one long (four bytes), the cogs will each have to perform
multiple reads and writes to retrieve or update that memory block. This leads
to the likely possibility of read/write contention on that memory block where
one cog may be writing while another is reading, resulting in misreads and/or

Marcus Ekerhult — page 6 — Elektroteknik

4 PROJECT - CHARACTER RECOGNITION

miswrites. Because locks are accessed only through the Hub, only one cog at
a time can affect them, making this an effective control mechanism. The Hub
maintains an inventory of which locks are in use and their current states, and
cogs can check out, return, set, and clear locks as needed during run time.

Figure 9: The Propeller architecture.

4 Project - Character Recognition

4.1 Introduction

IBM has through an anlysis shown that for a character recognition system (CRS)
to be considered acceptable by most users, an accuracy of 97% or more is a must
[4]. To develop a CRS that is both reliable and natural enough to be comfortable,
the system must be highly adaptable. Creating software that is as adaptable
as its users are unique is a very challenging problem for conventional computer
algorithms. This is why many people in the field of handwriting recognition are
turning to neural networks to perform the recognition processing.

In this chapter a complete CRS is implemented in the earlier described Pro-
peller microcontroller. The system is based on a simple feed-forward neural net-
work [Figure 10], and incapsulates a hidden layer with four nodes, thus capable

Marcus Ekerhult — page 7 — Elektroteknik

4 PROJECT - CHARACTER RECOGNITION

of recognize up to for characters. There are two software switches (S1&S2),
where S1 determines the network state; either learning or working, and S2 de-
termines what character to gather information about. The ”SELECTOR” is
basically just a max function, giving the max of Q1...Q4.

Figure 10: The developed Feed-forward network.

4.2 Network architecture

Here I will present a functional description over the developed network. Let
us start with an empty system, which means that we first have to learn the
system characters before trying to recognize them. The setup will start with
S1 connected to the M-box (learning mode) and S2 connected to W1. The I-
box gets as input a 128*128 matrix of the sampled character [Figure 11]. It
discretizes it into a 16*16 matrix due to memory requierments, and sends it
into the M-box, which only transforms the zeroes to negative ones. S2 makes
the matrix flow into W1 where it is added to the W1 internal matrix. This
procedure has to be repeated a couple of times to get a good estimation of the
character.

Figure 11: Discretization of the sampled character (I-box)

When we want the system to recognize characters we connect S1 with the
four nodes (working mode). The I-box will work just as when we used it in
learning-mode, hence the four nodes will in parallel recieve the I-matrix. The

Marcus Ekerhult — page 8 — Elektroteknik

4 PROJECT - CHARACTER RECOGNITION

Wk nodes include both the matrix defining a character and also a computational
algorithm, defining its output:

Qk =

∑x
i=1

∑y
j=1 Wk(i, j) ∗ I(i, j)

∑x
i=1

∑y
j=1 {Wk(i, j) > 0}

This gives a measure of how well the recognition system identifies an input
pattern as a matching candidate for one of its learnt patterns. The greater the
value of Qk, the more confident does the system bestow on the input pattern
as being similar to a pattern already known to it.

4.3 Implementation

The network described in the previous chapter were implemented on a develop-
ment board from Parallax [Figure 12]. The application is written in SPIN with
some additional assembly code for hardware drivers (VGA & PS2). The main
code runs in a big neverending loop that includes a statemachine for defining
what the program should do; learning or working mode.

One of my goals was to run all four nodes in there own processors, making
the network completely parallel. I didn’t realize that the hardware drivers would
in the end consume four cogs, which made that goal not achievable. Instead I
let the mouse sampling and drawing functions reside in its own processor, which
gives a much smoother graphical line when inputing a character. The total cog
usage can be seen in [Figure 13].

The VGA and graphic driver was originally devloped by the Parallax devel-
opment team, and can be fetched through the forum [5]. It has been optimized
and slimmed down to a minimum to be able to fit in my project. When drawing
a character, one is drawing into a (global) memory area (8 kB), from which the
I-box gets its input. In [Figure 14] an ”A” has been drawn and also recognized
by the system.

Figure 12: The development board that was used.

Marcus Ekerhult — page 9 — Elektroteknik

4 PROJECT - CHARACTER RECOGNITION

Figure 13: Cog usage.

Figure 14: The GUI displayed on a VGA screen.

Marcus Ekerhult — page 10 — Elektroteknik

5 CONCLUSIONS

5 Conclusions

Artificial neural networks are very well suited for real time systems due to their
fast response and computational speed which are due to their parallel archi-
tecture. Neural networks and conventional algorithmic computers are not in
competition but complement each other. There are tasks that are more suited
to an algorithmic approach like arithmetic operations and tasks that are more
suited to neural networks. Even more, a large number of tasks, require systems
that use a combination of the two approaches (normally a conventional com-
puter is used to supervise the neural network) in order to perform at maximum
efficiency. The implementation described in this report was succesfull and will
hopefully help others in their understanding of ANNs.

Marcus Ekerhult — page 11 — Elektroteknik

REFERENCES

References

[1] Dave Prochnow, Experiment with Artificial Neural Networks,
Tab Books, 1988

[2] Behrooz Parhami, Introduction to Parallel Processing,
Kluwer Academic Publishers, 2002

[3] Ben Krose Patrick & van der Smagt, An introduction to Neu-
ral Networks, The University of Amsterdam, Eighth edition
November 1996

[4] Alexander J. Faaborg, Using Neural Networks to Create an
Adaptive Character Recognition System, Cornell University
May 2002
December 2006 avaliable at: http://alumni.media.mit.
edu/~faaborg/research/cornell/hci_neuralnetwork_
finalPaper.pdf

[5] Parallax Propeller Forum
http://forums.parallax.com/forums/default.aspx?f=
25

Marcus Ekerhult — page 12 — Elektroteknik

