
Copyright © Parallax Inc. ● Fundamentals: I/O and Timing Basics v1.0 ● 12/7/2006 ● Page 20 of 29

 Add the pipe | symbol to the right of the method block declaration followed by the two
variable names separated by commas, then test the program verify it still functions properly.

PUB ShiftLedsLeft | pattern, divide

Aside from the fact that the pattern and divide variables are now local, meaning other methods in
the object could not use them; since our object has just one method this is of no consequence here.
There is one other difference. When we used the VAR block syntax, we had the option of defining our
global variables as byte, word, or long in size. However, local variables are automatically defined as
longs and there is no option for byte or word size local variables.

Timekeeping Applications
For clock and timekeeping applications, it’s important to eliminate all possible errors, except for the
accuracy of the crystal oscillator. Take a look at the two objects that perform timekeeping.
Assuming you have a very accurate crystal, the program on the left has a serious problem! The
problem is that each time the loop is repeated, the clock ticks elapsed during the execution of the
commands in the loop are not accounted for, and this unknown delay accumulates along with clkfreq
+ cnt. So, the number of seconds the seconds variable will be off by will grow each day and will be
significantly more than just the error introduced by the crystal’s rated +/- PPM.

The program on the right solves this problem with two additional variables: T and dT. A time
increment is set with dT := clkfreq which makes dT equal to one second with the precision of the
crystal. A particular starting time is marked with T := cnt. Then, inside the loop, it recalculates the
next cnt value that waitcnt will have to wait for with T += dT. This use of the add assignment
operator += allows us to create a precise offset from original marked value of T. With this system,
each new target value for waitcnt is exactly 1 second’s worth of clock ticks from the previous. It no
longer matters how many tasks get performed between waitcnt command executions, the program on
the right will never lose any clock ticks and maintain a constant 1 s time base that’s as good as the
signal that the Propeller chip is getting from the external crystal oscillator.

 Try running both objects. Without an oscilloscope, there should be no noticeable difference.

''File: TimekeepingBad.spin

CON

 _xinfreq = 5_000_000
 _clkmode = xtal1 + pll1x

VAR

 long seconds

PUB BadTimeCount

 dira[4]~~

 repeat
 waitcnt(clkfreq + cnt)
 seconds ++
 ! outa[4]

''File: TimekeepingGood.spin

CON

 _xinfreq = 5_000_000

 _clkmode = xtal1 + pll1x

VAR

 long seconds, dT, T

PUB GoodTimeCount

 dira[9..4]~~

 dT := clkfreq
 T := cnt

 repeat
 T += dT
 waitcnt(T)
 seconds ++
 outa[9..4] := seconds

