
Bresenham type fast algorithm for 3−D linear and helical

movement in CNC machines

Muhammad Saad Saleem
Research Assistant

∗K.I.C.S., U.E.T., Lahore
saad@khwarzimic.org

Prof. Dr. Mian Muhammad Saleem
Department of Electrical Engineering

U.E.T., Lahore
drmsaleem@hotmail.com

March 10, 2004

Abstract

Many of commercially available circuits for CNC ma-
chines have digitized input so there is a need to map
continuous motions onto discrete planes. This pa-
per appreciates the efficiency of Bresenham algorithm
and extends this concept to 3−D linear and helical
movements.

1 Introduction

When writing a control program for CNC machines,
there are two basic motions that needs to be catered.
One of them is linear motion represented by G00 and
G01 and other one is circular motion represented
by G02 (clockwise direction) and G03 (counter
clockwise direction) in 1G-Code notation. Stepper
motors move in discrete steps and servo motors
depend on the output of encoders which is also
discrete. So in both cases we need to deal with
planes which are pixel based. One of the approaches
to draw circle in X−Y plane is to calculate different
values of y for given x from standard circle equation
with center at the origin.

∗I want to thank Prof. Dr. Noor M. Sheikh (Director,
K.I.C.S., Dean, Electrical Engg. Deptt., U.E.T., Lahore), his
support made it possible for me to complete this paper

1RS-274D is a recommended standard for NC machines de-
veloped by Electronic Industry Association in the early 1960’s

y = ±
√

r2 − x2

There are two basic flaws in this approach:

1. Due to curvature in circle, there will be spaces
between different values of y for consecutive val-
ues of x

2. We need to evaluate square root which takes a
lot of time to process

One elegant approach to solve this problem is
through Bresenham algorithm that involves only in-
tegers. We will first discuss that how Bresenham al-
gorithm is implemented in 2 − D and then how we
can extend this concept to 3−D to make 3−D lines
and helical structures.

2 Bresenham line algorithm

The basic idea behind Bresenham algorithm is to di-
vide the whole plane into octants. In each octant, the
total displacement along one axis will be greater than
the total displacement along the other axis. Figure
(1) shows octants in a 2−D plane.

For example if we are moving linearly in the first
octant, we will move along x− axis more than along
y−axis. So we can say that in every iteration, we will
always move one step along x-axis. The only thing
we have to decide whether to take step along y-axis

1

Figure 1: Octants in X-Y plane

or not. So we have reduced eight possible moves to
only two.

Now we will derive a mathematical expression
that can tell us whether to increase y or not when
we are moving in along a line in first octant. We
know that the basic line equation in X − Y plane
with slope m is given by:

y = mx + c

This can be rewritten as:

∆y = m∆x (1)

Equation 1 tells us that if ∆x is 1 unit, then ∆y
will be the slop of the line. ∆y can be seen as an
error. This error accumulates after every iteration.
Hence

εy = εy + m (2)

If

εy > 1/2 (3)

We will increase y by 1 unit and decrease εy by
1. Equation (2) contains m, which is a float. In
order to change the whole equation into integers, we
rewrite the equation as:

εy = εy + ∆y/∆x

Multiplying whole equation with 2∆x, we get

2∆xεy = 2∆xεy + 2∆y (4)

Similarly, equation (3) contains a fraction, so we
multiply whole equation by 2∆x, we get

2∆xεy > ∆x (5)

Left handside of equation (4) and equation (5) is
same, so we only need to compute 2∆xεy. And we
also know that initially εy is 0. So initial value of
2∆xεy is also 0. We only need to compare the values
of 2∆xεy without any multiplication but only addi-
tion with 2∆y. We compare its value with ∆x and if
it is greater than ∆x then we will take one step in y
direction and decreases 2∆xεy by ∆x.

During this iteration process, we will only check
current value of x with final value of x because to-
tal displacement along x− axis is greater than total
displacement along y − axis. Pseudo-code for this
algorithm can be written as:

linear(2int x1, int y1, int x2, int y2);
begin
DeltaY = y2 - y1;
DeltaX = x2 - x1;
2DeltaY = DeltaY + DeltaY;
2DeltaXErrorY = 0;
3int currentX = x1;
int currentY = y1;
while(currentX 6= x2);
begin
currentX += 1;
2DeltaXErrorY += 2DeltaY;
if(2DeltaXErrorY > DeltaX);
begin
currentY += 1;
2DeltaXErrorY -= DeltaX;
moveY(1); 4

end
moveX(1); 5

2(x1, y1) is initial point and (x2, y2) is final point
3Initialzing with initial values
4moves along y − axis by 1 unit
5x− axis will always move by 1 unit

2

end
endProcedure

This concept can be utilized for movement in other
octants. For example, if we are in 3rd octant,
the currentY will increase in every iteration and
currentX will decrease when 2∆yεx will be greater
than ∆y. So before any linear movement, we will
have to find in which octant this line lies and call the
correct procedure to move to our desired point.

Movement in 8th octant can be seen in the figure
(2).

Figure 2: Linear movement from left to right in 8th

octant

3 Extension of Bresenham line
algorithm for 3−D linear mo-
tion

We can use the basic concept of Bresenham algorithm
to make 3 − D linear movements. We will empha-
size on the basic concept of Bresenham algorithm and
that is to first find such axis along which there is to-
tal maximum displacement. If, for example, the total
maximum displacement is along y − axis. Then we
will transform a 3−D line into two 2−D lines with
y − axis as common axis. One line will lie in X − Y
and other will lie in Y − Z plane. In every iteration,
there will always be a movement along y−axis. The
only question remains that whether there will be dis-
placement along x − axis or along z − axis. So we

need to make 2 choices out of 4 options rather than
making 2 choices from 26 possible moves.

In this approach we will deal with lines in X − Y
plane and Y − Z plane as separate lines. This whole
algorithm can be generalized for any octant. We will
first determine the axis along which there is maxi-
mum movement. Then we will find the octants of
these two lines separately and apply our previous
knowledge of 2 − D lines. Pseudo-code for this al-
gorithm can be written as:

3DLinear(int x1, int y1, int z1, int x2,
int y2, int z2);

begin
6int incY = 1;
int incX = 1;
int incZ = 1;
DeltaX = x2 - x1;
DeltaY = y2 - y1;
DeltaZ = z2 - z1;
2DeltaX = DeltaX + DeltaX;
2DeltaY = DeltaY + DeltaY;
2DeltaZ = DeltaZ + DeltaZ;
int currentX = x1;
int currentY = y1;
int currentZ = z1;
7int ErrorY = 0;
int ErrorX = 0;
int ErrorZ = 0;
if(DeltaX < 0);
begin
incX = -1;
DeltaX = -DeltaX;
2DeltaX = -2DeltaX;

end
if(DeltaY < 0);
begin
incY = -1;
DeltaY = -DeltaY;
2DeltaY = -2DeltaY;

end

6These variables will tell whether to increase or decrease
during iterations

7Initializing error parameter, just like in 2−D linear move-
ment

3

if(DeltaZ < 0);
begin
incZ = -1;
DeltaZ = -DeltaZ;
2DelatZ = -2DeltaZ;

end
if(DeltaZ > DeltaX & DeltaZ > DeltaY)
begin

8while(currentZ 6= z2);
begin

9currentZ += incZ;
10 ErrorX += 2DeltaX;
ErrorY += 2DeltaY;
11 if(ErrorX > DeltaZ);
begin
currentX += incX;
errorX -= 2DeltaZ;
moveX(incX);

end
if(ErrorY > DeltaZ);
begin
currentY += incremenetY;
errorY -= 2DeltaZ;
moveY(incY);

end
end
...

{Other two cases can be implemented in
similar way}

...
end

endProcedure

8Because DeltaZ will have the maximum total displace-
ment, so we will only check currentZ that whether it has
reached final point or not

9currentZ will increase in every iteration
10Calculating error for two separate lines like we have found

in 2−D linear movement
11Checking whether we will make movement along x− axis

4 Bresenham Circle Algorithm

Bresenham circle algorithm works in similar fashion.
We divide the whole plane into octants. In G-Code,
G02 is used for clockwise and G03 is used for counter-
clockwise motions. Lets suppose that we want to
move along a counter-clockwise circular arc with cen-
ter at origin, with radius r and our motion lies in first
octant, so our limits are from (r, 0) to (r/

√
2, r/

√
2),

where x = y. In first octant, we can see that move-
ment along y−axis is more than the movement along
x− axis. So we can say that during each iteration y
will always increase, but the only question, we need
to answer is that whether x will decrease or not. We
find answer to this question through mathematical
manipulation.

We know that the basic circle equation with center
at origin is given as:

x2 + y2 = r2

We can rewrite this equation as:

x2 + y2 − r2 = 0

If this is not true then it means that we are devi-
ating from the circular trajectory. So we can call it
an error, hence:

error(x, y) = |x2 + y2 − r2| (6)

In the next iteration, there will be a movement
along y−axis but we will have to decide whether we
will move along x−axis or not. We will find error for
x−1 and for x. If the error for the latter will be less,
then we will not move, and if not, we will move along
x − axis. Let the two errors be error(x − 1, y + 1)
and error(x, y + 1). We will decrement x and move
along x− axis if and only if:

|error(x− 1, y + 1)| < |error(x, y + 1)| (7)

if and only if

|(x− 1)2 + (y + 1)2 − r2| < |x2 + (y + 1)2 − r2| (8)

4

if and only if

{(x−1)2+(y+1)2−r2}2 < {x2+(y+1)2−r2}2 (9)

if and only if

2(1−2x)(x2+y2−r2+(1+2y))+(1−2x)2 < 0 (10)

If (1− 2x) < 0, then inequality sign will change to
> and we will eliminate (1−2x) from above equation.
Similarly, we can determine equation for 3rd octant.
It can be written as:

2(1−2y)(y2+x2−r2+(1−2x))+(1−2y)2 < 0 (11)

Here we will eliminate (1 − 2y). If we examine
equation (10) , equation (11) and equations in other
octants, we find that sign with x and y shows that
this quantity is increasing or decreasing in a partic-
ular octant. So before we actually implement this
algorithm, we will first find that whether x and y
are increasing or decreasing. If our circular arc lies
in 1st, 4th, 5th or 8th octant, we will follow equation
(10) format and if it lies in 2nd, 3rd, 6th and 7th oc-
tant, we will follow, equation (11) format. Figure (3)
shows a circular arc in first octant.

Figure 3: Circular movement in first octant

Pseudo-code for this algorithm can be written as:

arc(int x1,int y1,int x2,int y2,int r);
int x = x1;
int y = y1;
while(!complete(x, y, x2, y2))
nextStep(x, y, r);

endProcedure

nextStep(int x, int y, int r);
begin
int incX = 1;
int incY = 1;
int incZ = 1;
if(y > 0)
incX = -1;

else
incX = 1;

if(x>0)
incY = 1;

else
incY = -1;

if(|x| > |y|)
begin
if(incX*x>0)
if(2*(1+incX*2*x)*(x*x+y*y-r*r+1+incY*2*y)
+(1+incX*2*x)<0)

begin
x += incX;
moveX(incX);

end
else if(incX*x<0)
if(2*(1+incX*2*x1)*(x*x+y*y-r*r
+1+incY*2*y1) +(1+incX*2*x1)>0)

begin
x += incX;
moveX(incX);

end
y += incY;
moveY(incY);
end
if(|x| < |y|)
begin
if(incY*y>0)
if(2*(1+incY*2*y)*(x*x+y*y-r*r
+1+incX*2*x) +(1+incY*2*y)<0)

begin
y += incY;

5

moveY(incY);
end

else if(incY*y<0)
if(2*(1+incY*2*y)*(x*x+y*y-r*r
+1+incX*2*x) +(1+incY*2*y)>0)

begin
y += incY;
moveY(incY);

end
x1 += incX;
moveX(incX);

end

endProcedure

12bool complete(int x,int y,int x2,int y2);
begin
if(13check(x, y, x2, y2));
if(|x| > |y|);
if(y = y2);
return true;

else
if(x = x2);
return true;

else
return false;

endProcedure;

bool check(x, y, x2, y2);
begin
if((x>0&x2>0)||(x<0&x2<0);
if((y>0&y2>0)||(y<0&y2<0);
if(((|x|>|y|)&(|x2|>|y2|))||
((|x|<|y|)&(|x2|<|y2|)));
return true;

else
return false;

endProcedure

The procedure ”complete” informs the program,
when to stop. It might be possible that due to even
very small error, the final point might not lie on the

12this procedure returns a boolean
13checking whether current and final points lie in same oc-

tant

circular arc and program iterates for ever. But this
procedure forces the program to stop to the near-
est point. In first octant, (1 − 2x) decreases by two
units in every iteration, so we can simply calculate its
initial value and decrease it by two units in every it-
eration instead of actually calculating its value. This
way we can make this algorithm efficient just like we
did in Bresenham Line Algorithm. But one of the
major difference between Bresenham Line Algorithm
and Bresenham Circle Algorithm is that in circle al-
gorithm, we have to calculate in every iteration that
in which octant current point lies but in line algo-
rithm we need to calculate octant in the beginning
only.

5 Extending Bresenham Circle
and Line algorithms to gen-
erate helical motion

Helical structure can be considered as a 2 − D line.
One of the axis is along z direction and other one
is along the circular arc. First we need to know
that along which axis, there is maximum total
displacement. To find number of steps along circular
arc, we will make a dummy procedure, that works
just like our previous circle algorithm except it does
not generate any movement. Let nc be the total
number of iterations required to make a circular arc,
and let nz be the total number of iterations required
to make displacement along z− axis. If nz is greater
than nc then during every iteration, we will take
a step along z − axis but we will have to calculate
whether we will take a step along circular arc or not.
Similarly, if nc is greater than nz, then we will take a
step along circular arc in every iteration. This line is
treated as a normal line, and we will find its octant
and then proceed further with normal operations.
Pseudo-code for this algorithm can be written as:

helical(int x1, int y1, int z1, int x2,
int y2, int z2, int r);

begin

6

14integer nc = dummy(x1, y1, x2, y2, r);
int nz = z2 - z1;
int 2nc = nc + nc;
int 2nz = nz + nz;
int currentZ = z1;
int currentCircleStep = 0;
int errorCircle = 0;
int errorZ = 0;
int incZ = 1;
if(nz < 0);
begin
incZ = -1;
nz = -nz;
2nz= -2nz;

end
if(nz > nc);
begin
currentZ += incZ;
errorCircle += 2nc;
if(errorCircle > nz);
begin
currentCircleStep += 1;
errorCircle -= 2nz;
15nextStep(currentX, currentY, r);

end
moveZ(incZ);

end
else
begin
currentCircleStep += 1;
errorZ += 2nz;
if(errorZ > nc);
begin
currentZ += incZ;
errorZ -= 2nc;
moveZ(incZ);

end
nextStep(currentX, currentY, r);

end
endProcedure

Above mathematics is developed with the as-
sumption that circle has its center at origin, which

14dummy procedure calculates total steps required to draw
a circular arc

15same procedure which we used in circle algorithm

is usually not true. But above algorithms can still
be applied with little change.

If (xi, yi) is current coordinate of a circle, then we
simply subtract the center from these coordinates and
apply above algorithm without any further change.
If (xc, yc) is center of a circle, then it can be written
that:

x = xi − xc (12)
y = yi − yc (13)

6 Conclusion

Bresenham algorithm is an efficient algorithm for
mapping continuous motions onto discrete plane.
This solution can easily be implemented in micro
controllers and other processors in which there is
no floating point unit. So by using Bresenham al-
gorithms for 3 − D motions, we can save cost and
improve performance of CNC machines.

References

[1] Kennedy, John, Bresenham integer Only
Line Drawing Algorithm, (Santa Mon-
ica College, Santa Monica, CA 90405,
rkennedy@ix.netcom.com)

[2] Kennedy, John, A Fast Bresenham Type
Algorithm For Drawing Circles, (Santa
Monica College, Santa Monica, CA 90405,
rkennedy@ix.netcom.com)

[3] Glenn, Rowe, Computer Graphics with JAVA

7

