
DESIGN
REVIEW

Cog 0 Cog 1 Cog 2 Cog 3 Cog 4 Cog 5 Cog 6 Cog 7

C
o

u
n

te
r A

 +
 P

P
L

C
o

u
n

te
r

B
 +

 P
P

L

V
id

eo
 G

en
er

at
o

r

I/
O

 O
u

tp
u

t
R

eg
.

I/
O

 D
ir

ec
ti

o
n

 R
eg

.

512 x 32
RAM

Processor

C
o

u
n

te
r A

 +
 P

P
L

C
o

u
n

te
r

B
 +

 P
P

L

V
id

eo
 G

en
er

at
o

r

I/
O

 O
u

tp
u

t
R

eg
.

I/
O

 D
ir

ec
ti

o
n

 R
eg

.

512 x 32
RAM

Processor

C
o

u
n

te
r A

 +
 P

P
L

C
o

u
n

te
r

B
 +

 P
P

L

V
id

eo
 G

en
er

at
o

r

I/
O

 O
u

tp
u

t
R

eg
.

I/
O

 D
ir

ec
ti

o
n

 R
eg

.

512 x 32
RAM

Processor

C
o

u
n

te
r A

 +
 P

P
L

C
o

u
n

te
r

B
 +

 P
P

L

V
id

eo
 G

en
er

at
o

r

I/
O

 O
u

tp
u

t
R

eg
.

I/
O

 D
ir

ec
ti

o
n

 R
eg

.

512 x 32
RAM

Processor

C
o

u
n

te
r A

 +
 P

P
L

C
o

u
n

te
r

B
 +

 P
P

L

V
id

eo
 G

en
er

at
o

r

I/
O

 O
u

tp
u

t
R

eg
.

I/
O

 D
ir

ec
ti

o
n

 R
eg

.

512 x 32
RAM

Processor

C
o

u
n

te
r A

 +
 P

P
L

C
o

u
n

te
r

B
 +

 P
P

L

V
id

eo
 G

en
er

at
o

r

I/
O

 O
u

tp
u

t
R

eg
.

I/
O

 D
ir

ec
ti

o
n

 R
eg

.

512 x 32
RAM

Processor

C
o

u
n

te
r A

 +
 P

P
L

C
o

u
n

te
r

B
 +

 P
P

L

V
id

eo
 G

en
er

at
o

r

I/
O

 O
u

tp
u

t
R

eg
.

I/
O

 D
ir

ec
ti

o
n

 R
eg

.

512 x 32
RAM

Processor

C
o

u
n

te
r A

 +
 P

P
L

C
o

u
n

te
r

B
 +

 P
P

L

V
id

eo
 G

en
er

at
o

r

I/
O

 O
u

tp
u

t
R

eg
.

I/
O

 D
ir

ec
ti

o
n

 R
eg

.
512 x 32

RAM

Processor

I\O
Pins

Pin Direction

Pin Output

Pin Inputs

System Counter

Data Bus

Address Bus

System
CounterCLOCK

32

32

32

16

32

32 32

P31

P30

P29

P28

P27

P26

P25

P24

P23

P22

P21
P20

P19

P18

P17
P16

P15

P14

P13

P12

P11

P10

P9

P8

P7

P6

P5
P4

P3

P2

P1
P0

P4

P5

P6

P7

VSS

BOEn

RESn

VDD

P8

P9

P10

P26

P25

P24

VDD

XO

XI

VSS

P23

P22

P21

P20

P
3

P
2

P
1

P
0

V
D

O

V
S

S

P
31

P
30

P
29

P
28

P
27

P
11

P
12

P
13

P
14

P
15

V
S

S

V
D

D

P
16

P
17

P
18

P
19

VDD

VSS

BOEn

RESn

SOFTRES

XI

XO

OSCENA

OSCMODE
2

PLLENA

CLKSEL

RESET

CLOCK

2

3

SOFTRES

PLLENA

OSCENA

OSCMODE

CLKSEL

1

2

3

4

5

6

7

8

9

10

11

33

32

31

30

29

28

27

26

25

24

23

12 12 14 15 16 17 18 19 20 21 22

44 43 42 41 40 39 38 37 36 35 34

Power Up
Detector
(~10ms)

Brown Out
Detector

Crystal Oscillator
DC 0 80 MHz

(4 - 8 MHz with
Clock PLL)

Reset Delay
(~50 ms)

RC Oscillator
12 MHz / 20 MHz

Clock PLL
1x, 2x, 4x, 8x, 16x,

(16x must be
64 - 128 MHz)

Clock
Selector
(MUX)

3

5

3

Bus Sequencer

8192 x 32 RAM

8192 x 32 ROM

Cog Enables

Lock Bits (8)

Confi guration
Register

Hub

System
Counter

I/O
Pins

Cog
0

Cog
7

Cog
1

Cog
6

Cog
2

Cog
5

Cog
4

Cog
3

Hub

RAM, ROM,
Confi guration,

Control

Hub & Cog Interaction

20 eTech - ISSUE 3

Every now and again something diff erent comes along. microcontroller chip
development has proceeded down the same paths for many years now: either
the same basic ‘core’ processor being surrounded by more and peripherals or
the processor itself being made more and more powerful.

Get into
Parallel Processing
with the Parallax Propeller ™

Fig. 1

By Dr William marshall, RS Components

DESIGN
REVIEW

eTech - ISSUE 3 21

The common feature is a single processor
supported by specialist, dedicated logic
providing features like Pulse Width Modulation
output and pulse- counting input. The Propeller
from Parallax represents a major change in
design philosophy. This device contains eight
32-bit processors or ‘COGs’ with minimal
support logic and only the most basic I/O
hardware (Fig.1). A first reaction to this layout
might be: ‘Great, I can implement that Neural
network project with each COG running
essentially the same program’.

While pure parallel processing may indeed be
a good use for the Propeller, I don’t believe this
was the main driver behind the design. The
idea is to give the engineer maximum control
over the peripheral system in a particular
application. You may still have a single COG
running the top-level program, farming out
lower-level tasks such as serial I/O to another
COG as and when required. This is the really
fascinating feature of this device: the ability
to reconfigure itself under program control
to suit the requirements at a particular time
and then to shut processes down when no
longer needed, perhaps re-assigning processor
resources to a completely different task. The
processor clock is also under program control
so power consumption can be reduced if high
speed is not needed when implementing slow
I/O such as RS-232.

The Starter Kit hardware
The kit contains a very small demonstration
board packed with various I/O sockets, some
rather surprising: VGA output to a monitor, TV
output, PS/2 keyboard and mouse sockets. The
video outputs are provided because the chip
contains as part of its central resource ROM,
the look-up table of a character generator. The
only ‘conventional’ I/O port is USB derived from
the on-board FTDI chip. The UART function that
drives this device is of course implemented
entirely in software and runs on one of the
COGs. All communication with the IDE
software on the PC - Propeller Tool – is via the
USB port. There is a serial EEPROM on-board
which communicates with the Propeller via an
I2C bus which, you guessed it, is implemented
in software run by a COG. It provides non-
volatile memory for user programs. These

I/O routines are loaded from system ROM at
Reset to allow programs to be downloaded
from the PC or from the EEPROM, but are
then shut down before the user’s program
begins execution. If your program requires
these I/O resources, then it will have to load
them and assign COG(s) as appropriate. This
may seem awkward at first, but why have
unwanted resources cluttering up memory
space if you don’t need them?

Propeller Tool
The IDE that comes with the starter kit is
called Propeller Tool and provides program
editing, compilation of the high-level language
Spin, and downloading to the demo board.
You have the option of programming in Spin,
assembly language or a combination of both.
Obviously the assembler produces more
efficient, faster operation and there is the
usual trade-off between faster development
and faster operation.

The editor screen is very colourful and the
automatic assignment of different colours
to code blocks aids understanding of the
program structure. There are two options
for downloading and running: compile and
run in COG RAM, and compile and send
to the external EEPROM from where it is
automatically loaded into RAM by the device
bootloader. The former is best for development,
only transferring to non-volatile memory when
the code works.

Using the Demo Board
To illustrate some of the main features of
Propeller programming, a task was devised
involving the speed control of a small DC
motor using PWM. Two pushbuttons provide
Speed Up and Speed Down inputs. The drive
capability of the I/O ports is insufficient for
the motor used so an H-Bridge circuit was
constructed from half of an L293D quad driver
chip. This was mounted on the breadboard
together with two ‘Tact’ switches, pull-up
resistors and decoupling capacitors (see picture
on page 23). Note the use of the D-variant of
this chip which has built-in protection diodes
for driving inductive loads. Only Ports 0 to 7
of the Propeller are available to the user out
of a possible 32, the others being committed

to EEPROM busses, etc. on this demo board.
The Propeller is a +3.3V device although both
+3.3V and +5V regulated supplies are available.
Hence the logic of the L293D works off the
+3.3V supply, while its separate motor supply
pin is connected to +5V. A small but very
useful feature is the Ground or 0V post which
takes the croc clip from a oscilloscope probe.

Programming in Spin
A possible solution for the program to drive the
motor is given in Listing 1 (see page 22). It is
not presented as an optimal solution but does
illustrate some of the key features of Propeller
programming. The aim is to use two COGs;
one driving the PWM output with a mark/
space ratio set by the global variable Ratio, the
second monitoring two push button inputs and
setting the value of Ratio. The PWM frequency
is to be 1kHz.

The CON statements set up two system
constants and fix the clock speed. We
decided on a 20 MHz clock so the internal
PLL multiplier is set to 4 given the 5 MHz
crystal supplied with the board. Next, the VAR
statements set up global variables: Ratio as
mentioned, Period and Stack which assigns
stack space for the second COG.

The first public method, PUB Main performs
the usual initialization tasks including setting an
initial value of Ratio equivalent to 50% PWM.
Each COG has a simple ‘Count/Capture Unit’
made from some registers and a few bits of
logic. There are two identical counters, A and
B each consisting of three registers CTR, FRQ
and PHS. CTR sets the operational mode, PHS
is the accumulator holding the current value
and FRQ is added to PHS when required.
Counter A is used here. First, the CTRA
register is set to select PWM mode and Bit 31
of PHSA connected to output Port 0. FRQA is
set to 1 so that PHSA is incremented by one
for each cycle of System Clock.

Continued page 22 >

DESIGN
REVIEW

22 eTech - ISSUE 3

‘’ **
‘’ * Simple DC motor speed controller using counters for timing *
‘’ * PWM mark/space ratio from 0 to 100% *
‘’ **

‘’Port 0 = PWM output
‘’Port 1 = Speed Up button input
‘’Port 2 = Speed Down button input

CON
_clkmode = xtal1 + PLL4X
_clkfreq = 20_000_000

VAR
 word Ratio ‘Ratio = PWM pulse width
 word Period ‘Period = PWM period
 long Stack[9] ‘Make stack space for COG 1

PUB Main
‘’Initialisation of ports, counters and program start
 Ratio := 10000 ‘Initial PWM 50%
 Period := 20000 ‘Set PWM period
 ctra[30..26] := %00100 ‘Configure Counter A to NCO/PWM mode
 ctra[5..0] := %00000 ‘Direct Counter APIN to Port 0
 frqa := 1 ‘Set counter increment to 1
 dira[0..2] := %100 ‘Set Ports 0 = output, 1 & 2 = input
 cognew(Buttons, @Stack) ‘Start COG 1 running Buttons routine
 Toggle ‘COG 0 runs PWM generator routine

PUB Toggle | Time
‘’COG 0 produces PWM signal with pulse width set by variable Ratio
 Time := cnt ‘Set base time from System Counter
 repeat ‘Repeat next 3 lines forever
 phsa := -Ratio ‘Load negated Pulse width into PHS
 Time += Period ‘Time = Time + Period
 waitcnt(Time) ‘Wait for interval set by Time

PUB Buttons | Width
‘’COG 1 monitors two pushbuttons to derive value for Ratio
 repeat ‘Repeat next 8 lines forever
 Width := Ratio
 waitpne(%110, %110, 0) ‘Wait for button press
 if ina[1] == 0 ‘If Speed UP button pressed
 Width := Width + 1 <# Period ‘then increment Width to max Period
 else ‘Speed DOWN button pressed
 Width := Width - 1 #> 0 ‘so decrement Width to min 0
 Ratio := Width
 waitcnt(6000 + cnt) ‘Wait before checking buttons again

listing 1. SPIN source code for the PWm demonstration program

DESIGN
REVIEW

eTech - ISSUE 3 23

Now comes the first really interesting
instruction: COGNEW. This is what launches
the second COG. Up to now, COG 0 has been
doing everything, running the boot-loader and
then the first part of our program. COGNEW
tells it to load the public method Buttons into
the next free COG, in this case COG 1, and set
it running. Once it has done that it launches the
Toggle method and runs that from now on. A
feature peculiar to the Propeller is the sharing
of the 32 GPIO port lines by all processors.
Each COG has its own Port Direction register,
each output of which is ‘OR-ed’ with the next
COG’s register (see Fig.1 page 20). A COG
requiring an output port needs to set the
appropriate bit in its Direction register to logic
1. Once set it also enables the corresponding
output from the COG I/O register to drive the
I/O pin. Care must be taken to ensure that two
COGs don’t try and use the same port line for
output, as program operation will not be as
expected! Port input is completely independent
and any COG may read the state of any port
pin at any time. A COG can check its own
output or indeed monitor what other COGs are
doing on port pins they have set as outputs.

The Propeller has no interrupt system so there
are a number of Wait instructions which cause
program execution to pause until some
event takes place. WAITCNT suspends
operation for the specified number of
system clock cycles by checking the
value of a target figure against the
value of the System Counter CNT. In
PUB Toggle PHSA is loaded with the
negative (2’s complement) value of
Ratio. This of course sets Bit 31 or the
‘sign-bit’ of PHSA to logic 1. As this bit
is connected to Port 0, the PWM output
also goes high. PHSA is now automatically
incremented at the System Clock rate by
having FRQA added to it. After Ratio clock
cycles, PHSA reaches zero and Bit 31 changes
to logic 0. That is the end of the PWM pulse.
While all this is happening the COG is sat in the
WAITCNT statement for the duration of Period.
Of course PHSA continues to increment, but
the end of Period will be reached long before
PHSA reaches a value setting Bit 31 high again.
When WAITCNT times out the cycle repeats,
with PHSA being reloaded with –Ratio.
We have thus added some more parallel
operation by having the Counter determine
 the pulse width, while independently the
COG program is setting the period. This is
how the PWM waveform on Port 0 is
generated by Toggle.

The WAITPNE instruction in the Buttons
method waits for Port 1 or Port 2 (or both)
to go to a logic 0. In other words it waits for
a button to be pressed. The beauty of these
Wait instructions is that the COG operation
is suspended with its power consumption
reduced by over 85%. You can see that the
COG running Buttons spends most of its time
‘asleep’, only waking when necessary. The
max (<#) and min (#>) statements in Buttons
provide the upper and lower limits for Ratio.

Speeding it up
You would normally expect programs run by
an on-board interpreter, in this case SPIN, to
be slower than those in native assembler.
The unique architecture of the Propeller
does to some extent widen the speed gap.
This is because user SPIN code is held in
shared central RAM while each COG runs the
interpreter in its own local memory. The hub
provides access to central resources in a strict
time sequence and a particular COG may be
held up waiting its turn. Machine code from
the assembler is stored and run in the COG
local memory resulting in a considerable
increase in throughput.

Essential reading
Programming and Customizing the
Multicore Propeller Microcontroller
Shane Avery et al ISBN 978-0-07-166450-9
McGraw Hill

Component list
 RS Stock No.

32330 Propeller Starter Kit 405-571

L293DNE Quad half-bridge drive 526-868

Tact push button switch 479-1390

RE280 DC motor 238-9709

< Continued from page 21

Get more online...
a fuller version of this review
along with SPIN source code
files is available at
rs-components.com/etech

