Two Wire UART Control of Parallax Data logger

To help better understand the commands to and from the logger it would be useful to have a copy of the VDAP firmware commands close by while working through these examples

Logger connections

Pin 1 to VSS

Pin 2 not connected

Pin 3 to VDD

Pin 4 to Stamp P0

Pin 5 to Stamp P1

Pin 6 to VSS

Pin 7 not connected

Pin 8 not connected

Memory Stick Format

Before using any memory stick I advise that you format it. I also advise that you take control of the way the memory stick is formatted by using the following procedure (Win XP)

Control Panel- Administrative Tools Computer Management - Disk Management

Select the memory sticks drive letter and right click, select Format and format the drive as FAT 32 with an allocation unit size of 512

The following highlighted text can be copied and pasted into the Stamp editor

The VDAP firmware is very specific about the commands the logger expects and the commands it returns. This means our code has to be very precise or we are going to lock the logger or corrupt the memory stick.

The BS2 is limited on the amount of serial data it can receive and handle; this situation can be eased if we run the data logger in Shortened Command Set. This means that the information returned from the logger is in an abbreviated form making it easier for the Stamp to deal with.

If you take a look at the VDAP commands under the Response column you will see that most of the commands reply with <prompt>$0D, in shortened command set what we would see is ‘>’ CR.

The arrow prompt (‘>’) plays a crucial part in our code, receiving the arrow is confirmation that the previously transmitted command was carried out successfully. If we don’t receive the arrow then we know there was an error and we can take action accordingly.

The default baud rate for the Datalogger is 9600, I personally have found that the plain BS2 cannot reliably communicate with the logger at that rate even using the CTS/RTS flow control and that efforts to compensate for erroneous communications will slow the logger to an unacceptable level. Therefore part of the initialization code in this document is to set communications to 4800 baud. Even at this rate it is possible to log in excess of 14 10 byte packets per second

Step 1. Initialize and Detect

Our program is going to consist of a Main section that will sequentially call 5 subroutines

to detect , open for writing , write , close and finally report the file size in bytes

First we need our declarations we will start with the three constants that define the communications. These values can be changed to suit your design.

TX CON 0 'P0 assigned TO SEROUT

RX CON 1 'P1 assigned TO SERIN

Baud CON 188 'A baud rate of 4800

Next declare the variables.

GP_VAR VAR Word ‘A general-purpose variable

FILESIZE VAR Word ‘Used to measure file size

GP_STRING VAR Byte (12) ’A general-purpose array of 12 bytes

FILENAME VAR Byte (7) ’A 7-byte array used to hold the file name

Initialization and memory detection code is short and sweet, most of the code for this part is DEBUG statements that provide us with instructions and inform us of what’s going on. This is the case for most of the sub routines. Lets work through the code for the subroutines.

Below is the code for initialization

'***********[INITIALISE LOGGER & DETECT MEMORY STICK]*********

LOW TX

DEBUG HOME," Remove Memory and Press 0 ",CR

DEBUGIN DEC1 GP_WORD

DEBUG CLS

SEROUT TX, 84, ["IPA", CR]

PAUSE 200

SEROUT TX, 84, ["SCS", CR]

PAUSE 200

SEROUT TX,84, [$14,$20,$71,$02,$00,$0D] 'SET BAUD TO 4800

SERIN RX,baud,5000,ERROR,[WAIT(">")]

DEBUG "Initialized ",CR

PAUSE 1000

The DETECT sub routine provides a safe place to remove or insert a memory stick.

'****************[DETECT MEMORY STICK]*********************

DETECT:

 DEBUG CLS, HOME, "It is safe Insert or Remove Memory", CR,"(Remove and re-insert to go again)"

 SERIN RX, Baud,[WAIT ("DD")]

 DEBUG CLS, "Device Detected Please Wait...", CR

 SERIN RX, Baud,[WAIT("No Up"),WAIT ("grade")]

 DEBUG "Logger is ready...", CR

 PAUSE 1500

RETURN

When a memory stick is inserted into the logger the logger goes through a sequence that must be completed before we can start to read or write data. First it sends back to the Stamp that a device was detected, “DD” in shortened command set, so our first SERIN waits for the characters “DD”. Secondly the logger examines the memory stick to see if it contains a firmware upgrade, when it has finished it reports back “No Upgrade” followed by a prompt “>” and that is the purpose of our second SERIN. If both of those steps are successful we can proceed.

Step 2. Open and Close

Our next two sub routines deal with opening and closing a file.

The sub routine OPEN_WRITE will create and open a file if it does not exist, if it does exist the file will be opened and new data will be appended to the existing data.

'****************[OPEN FOR WRITE]*****************

OPEN_WRITE:

DEBUG CLS

SEROUT TX, Baud,[$9,$20,”Log.txt", CR]

SERIN RX, Baud,[WAIT (">")]

DEBUG "File Log.txt open", CR

RETURN

Finally after we have finished with any open file we MUST close it.

'****************[CLOSE FILE]*********************

CLOSE:

SEROUT TX, Baud,[$0A,$20,”Log.txt", CR]

SERIN RX, Baud, [WAIT (">")]

RETURN

Before we can use these subroutines we need to be able to write some data. In the next section we will build a write sub routine.

Step 3. Write

The write routine is where you will probably have to give most thought. The write command has the number of bytes to write as a parameter, if you try and write more or less than the number you tell it to write the logger will lock up and possibly corrupt data on the memory stick. Depending on what you want to write or log governs the way you code the write sub routine.

The first example writes the contents of the array GP_STRING

'****************[MEMORY WRITE]*******************

MEMORY_WRITE:

 DEBUG "Writing ",CR

 FOR idx =0 TO 10

 GOSUB Get_Time

 SEROUT TX, Baud, [$8,$20,$0,$0,$0,$0A,CR,HEX2 GP_STRING(2),":",HEX2 GP_STRING(1),":",HEX2 GP_STRING(0),CR,$0A,CR]

 SERIN RX, Baud,[WAIT (">")]

 DEBUG "."

 NEXT

 DEBUG CR

RETURN

The sub routine prompts for a file name that is contained in the FILENAME array, it then calls the OPEN_WRITE sub routine and opens a file with the name contained in FILENAME

The Do-Loop takes our keystrokes into the variable array GP_STRING, because of the backslash 1 (\1) it only reads one character at a time from the keyboard. If the ESC key is pressed (ASCII 27) then we exit the routine.

The SEROUT instruction writes the characters to the open file, we know we are writing only one character at a time so DEC 1 is used as the number of bytes to write parameter

Before the sub routine is exited the open file is closed using the CLOSE sub routine we coded earlier. Finally the RETURN instruction takes us back to the menu.

To try out what we have so far all we need to do is be able to access the USER_WRITE sub routine from the menu. Make the following additions in the MAIN loop or just copy this one and paste it over the old one. If everything is well you should be able to write text to the logger. Place the memory stick in a computer to see the file containing the text you wrote.

'****************[MAIN LOOP]**********************

MAIN:

DEBUG "Press Enter to Continue"

DEBUGIN GP_VAR

DEBUG CLS, “ 0. Remove Memory", CR, “1. User Write”

DEBUGIN DEC1 GP_VAR

ON GP_VAR GOSUB DETECT, USER_WRITE

GOTO MAIN

Step 4. File size and Reading

It becomes tedious removing and inserting the memory stick from logger to computer to read our files so what we need is a sub routine that can read our files for us, Reading is another file operation we must give careful thought to. The BS2 is limited on how much data it can receive on the serial line so it is impractical to try and read a file in one go. What we need to do is to read the file in small pieces and use the VDAP SEEK instruction to keep track of our position. Ideally before we read a file we need to know the file size, which will be the first sub routine we will cover. The file size sub routine has another benefit, it can be used to check if the file exists or not preventing errors down the line.

'****************[FILE SIZE]**********************

SIZE:

GP_VAR=0

SEROUT TX, Baud, [$01, $20,STR FILENAME, ".txt", $0D]

SERIN RX, Baud, 5000, NF, [WAIT (" "), HEX2 FILESIZE.LOWBYTE, HEX2 FILESIZE.HIGHBYTE]

SERIN RX, Baud, [WAIT (">")]

DEBUG "File size ", DEC FILESIZE," Bytes", CR

RETURN

NF:

GP_VAR=1

DEBUG CR, "File not found..."

RETURN

If the first SERIN times out then it is assumed the file does not exist and the program jumps to NF: (not found) and GP_VAR is set to 1 which flags to say the file does not exist. If the file does exist the GP_VAR returns with a value of 0 and allows us to continue with the file read. Notice the sub routine has two return statements, one for success and one for fail.

 The SEEK ROUTINE reads 10 bytes at a time in a loop keeping track of the position in the file using FILESIZE.

When FILESIZE drops below 10 bytes the remaining bytes are read outside loop.

'****************[SEEK & READ]**********************

SEEK:

DEBUG "Reading ", STR FILENAME, ".txt", CR

GP_VAR=0

DO WHILE FILESIZE>9

 SEROUT TX, Baud,[$28,$20,0,0,0,DEC GP_VAR,CR]

 SERIN RX, Baud, [WAIT (">")]

 SEROUT TX, Baud,[$0B,$20,0,0,0,DEC 10,CR]

 SERIN RX, Baud, [STR GP_STRING\10]

 DEBUG STR GP_STRING\10

 GP_VAR=GP_VAR+10

FILESIZE=FILESIZE-10

LOOP

SEROUT TX, Baud,[$28,$20,0,0,0,DEC GP_VAR,CR]

 SERIN RX, Baud, [WAIT (">")]

 SEROUT TX, Baud,[$0B,$20,0,0,0,DEC FILESIZE,CR]

 SERIN RX, Baud, [STR GP_STRING\FILESIZE]

 DEBUG STR GP_STRING\FILESIZE

 DEBUG CR

RETURN

Step 5. Menu Items

To use the File size and the Seek subroutines from our menu we again need to modify the MAIN loop. We also need to add another two subroutines (Menu item 3 and Menu item 4) that will allow us to use SIZE and SEEK.

'****************[MAIN LOOP]**********************

MAIN:

DEBUG "Press Enter to Continue"

DEBUGIN GP_VAR

DEBUG CLS, “ 0. Remove Memory", CR, “1. User Write”, CR,”2. File size”, CR, ”3. Read File”

DEBUGIN DEC1 GP_VAR

ON GP_VAR GOSUB DETECT, USER_WRITE, Menu_3, Menu_4

GOTO MAIN

One of the main reasons for using the menu sub routines is to allow for the input of a file name but it also serves as a place we can call other routines.

Menu item 3 takes us directly to the size sub routine.

'****************[Menu_item_3]********************

Menu_3:

DEBUG CR, "Enter filename", CR

DEBUGIN STR FILENAME\7\CR

GOSUB SIZE

RETURN

Menu item 4 calls four of the sub routines we have already written, SIZE, OPEN_READ, SEEK and CLOSE.

SIZE checks the file exists, if it does not then we abort the read and return to the main menu, this prevents locking the logger.

'****************[Menu_item_4]********************

Menu_4:

DEBUG CR, "Enter filename to read", CR

DEBUGIN STR FILENAME\7\CR

GOSUB SIZE

IF GP_VAR>0 THEN RETURN

GOSUB OPEN_READ

GOSUB SEEK

DEBUG "Closing", CR

GOSUB CLOSE

RETURN

Step 6. Delete

We have one more sub routine and menu item to code and that is the DELETE routine.

'****************[Menu_item_5]********************

Menu_5:

DEBUG CR, "Enter filename to delete", CR

DEBUGIN STR FILENAME\7\CR

GOSUB DELETE

RETURN

'****************[DELETE FILE]*********************

DELETE:

DEBUG "Deleting", CR

SEROUT TX, Baud, [$07, $20,STR FILENAME, ".txt", CR]

SERIN RX, Baud, [STR GP_STRING\2\CR]

IF GP_STRING (0)=62 THEN RETURN

DEBUG "File not found ", STR FILENAME, ".txt", CR

RETURN

The very last thing to do is include DELETE and Menu_5 in the main loop

'****************[MAIN LOOP]**********************

MAIN:

DEBUG "Press Enter to Continue"

DEBUGIN GP_VAR

DEBUG CLS, “ 0. Remove Memory", CR, “1. User Write”, CR,”2. File size”, CR, ”3. Read File”, CR, “4. Delete”

DEBUGIN DEC1 GP_VAR

ON GP_VAR GOSUB DETECT, USER_WRITE, Menu_3, Menu_4,Menu_5

GOTO MAIN

That’s the whole of our example program built entirely around sub routines that we can call and use in any order.

You probably won’t use every sub routine in every program you will have to decide which ones you need. The USER_WRITE routine is just an example and not really that useful, but it is this routine that with modification that will certainly be in most of your applications. The important thing to remember is that the number of bytes you say your going to write and the actual number of bytes you write must match.

The write instruction:

SEROUT TX, Baud, [$8, $20,0,0,0,DEC value, CR, STR GP_STRING, CR]

