
Column #103: Stamping on Down the Road

The Nuts & Volts of BASIC Stamps (Volume 4) • Page 175

Column #103 November 2003 by Jon Williams:

Stamping on Down the Road

Summertime is vacation time, and I – like so many others around the world – hit the road for
a few days out of the office for some fun and relaxation. The thing is, my job isn't usually very
stressful (sometimes magazine deadlines can be tough...) so I rarely feel like I need a
vacation. That said, it's still nice to take a vacation every once in a while, especially when I
can see friends and family that don't live near me in Dallas.

This year I decided to pack up the SUV and drive to my brother's house in Columbus, Ohio.
And, as I often do, I made it a working vacation by taking a bunch of Stamp goodies to work
with while I was away from my office. One of my projects actually helped me drive door-to-
door to my brother's house without hiccups. If you're guessing we're going to work with GPS
again, you guessed correctly.

The reason for my renewed interest in GPS has more to do with my boss than me. You see,
my boss Ken is the commander of the Parallax model air force. If you ever visit our facility
in California you'll find several gas-powered model airplanes in our warehouse. When the
weather is good (a frequent occurrence in northern California) a small group of Parallax flyers
will head to the local model airport and fly planes.

Of course, many of the Parallax planes are equipped with BASIC Stamp projects. Ken created
a little flight recovery system using the Stamp and an accelerometer. One of our senior

Column #103: Stamping on Down the Road

Page 176 • The Nuts & Volts of BASIC Stamps (Volume 4)

engineers, John, created a dual-engine synchronizer for one of his big airplanes. So where do
I fit in? Well, Ken wanted to track his plane's flight path and speed, and asked me to come up
with a method of doing it. The solution was to strap a small GPS receiver (Garmin eTrex)
onto the plane with a BS2p acting as a data logger. I wrote about the methods used in our
airplane data logger back in March of 2002.

The program has served us well, but Ken has been asking for better resolution in the data.
You see, the old program uses standard NMEA 0183 strings from the GPS receiver that are
spit out at 4800 baud. With the bulk of information dumped by the receiver at this baud rate
we only get updates every two seconds. For a model airplane traveling around 80 mph, this
isn't great. What to do?

While reviewing the eTrex manual I found that it has a simple text output method that can be
set to 9600 baud. This is a good start as it doubles the communication speed. The other nice
thing about this method is that it uses fixed-position fields. This will help make parsing data
easier as we know exactly where everything is within the string. When using the $GPMRC
string, some fields are variable-width which complicates the location of data.

Building a Digital Dash

Before tackling Ken's airplane code I decided to experiment with the Garmin text output by
creating a supplementary digital dash for my SUV. This would give me the opportunity to
work with the text output in a useful manner – and help me get to my brother's house without
having to call for directions.

The specs, then, for my digital dash are to display speed (in mph), current time, direction of
travel (in degrees), direction as a compass point (i.e. "NW"), and current segment distance (a
secondary trip odometer). This all sounds very simple – until you look at the output from the
Garmin GPS receiver when set to simple text output.

Simple Text – Not So Simple

For the benefits of speed when using the simple text output, we're strapped with a couple of
tricky conversions to display the data as required for my digital dash project. The simple text
output looks like this:

 @020202183142N3251129W09701159G008+00165E0000N0000D0001

Column #103: Stamping on Down the Road

The Nuts & Volts of BASIC Stamps (Volume 4) • Page 177

For details on all the field positions, please have a look at this URL:

 www.garmin.com/support/text_out.html

Here's the tricky bit: speed and direction – both very important to my project – are not directly
available. This information is actually derived from two vectors. The first vector represents
North/South speed in meters-per-second; the second represents East-West speed in meters-
per-second. Sounds like a bit of trigonometry is going to be required.... You got it.

Figure 103.1: PBASIC Unit Circle (Brads / Degrees)

Column #103: Stamping on Down the Road

Page 178 • The Nuts & Volts of BASIC Stamps (Volume 4)

Column #103: Stamping on Down the Road

The Nuts & Volts of BASIC Stamps (Volume 4) • Page 179

Hey, Look What I Found!

An interesting thing happened when our compiler engineer, Jeff, ported the BASIC Stamp
tokenizer from assembly language (not written by him) to C so that it could be compiled for
other operating systems... he found two previously-undocumented functions: ATN and HYP.

The first function, ATN (Arctangent), returns the angle, in brads, to the vector represented by
X and Y. Wow, that was a mouthful, so let's go through it. Take a look at Figure 103.1 – a
PBASIC unit circle. The difference between a PBASIC unit circle and that we'd use in our
trig class is that it is divided into 256 units instead of the 360 units we're accustomed to.
These units are called binary radians, or brads. Each brad is about 1.4 degrees. When
expressing the vector, X and Y are limited to values between -127 and 127 (signed bytes).

The other newly-found function is HYP. As you'd expect, this function returns the hypotenuse
of a right-triangle with the sides represented by X and Y. And, like ATN, the X and Y values
for HYP must be limited to -127 to 127.

Okay, then, let's get to it.

Code for the Road

Something that new programmers frequently run up against is the frightening feeling that their
goals are bigger greater than their programming skills. We've all been there – don't sweat it if
you're in that state now. An easy way to overcome this fear is to write an outline program,
then flesh it out as you go. The reason for this is that it gets you going, and frees you from the
details that you will ultimately work out later.

Let me show you a real example. After thinking about my digital dash program, I wrote this
chuck of code and it stuck:

Main:
 DO
 SERIN GPS, N9600, 3750, No_GPS, [WAIT("@"), SPSTR 50]
 GOSUB Parse_GPS
 GOSUB Calc_Speed
 GOSUB Show_Speed
 GOSUB Show_Time
 GOSUB Show_Vector
 GOSUB Show_Compass
 GOSUB Show_Miles_Acc
 LOOP

Column #103: Stamping on Down the Road

Page 180 • The Nuts & Volts of BASIC Stamps (Volume 4)

Figure 103.2: Stamping on Down the Road Schematic

There's only one *real* line of code (SERIN), and that wasn't a problem since I lifted it from a
previous GPS program. The rest are calls to subroutines. The next step, of course, is to create
empty subroutines (just a label and RETURN) so that the program will compile without
problems. Nothing will happen, except that we'll know we have a structure that works. After
that we flesh out each subroutine – testing as we go – until the program is complete.

Let's have a look at the SERIN line, since it does quite a bit of work. The first thing to note is
that it will timeout if no data is received within 1.5 seconds (the timeout units on the BS2p are
400 microseconds). Assuming a signal does show up, the function will wait for the "@"

Column #103: Stamping on Down the Road

The Nuts & Volts of BASIC Stamps (Volume 4) • Page 181

character which is the string header. Once it arrives, the next fifty characters will be buffered
into the BS2p's scratchpad RAM so we can deal with them later.

The next step is to pull the fields we're interested in; this is done with the Parse_GPS
subroutine. Here's a section of that code:

Parse_GPS:
 idx = 6 : fldWidth = 2
 GOSUB Parse_Field
 hr = workVal + UtcAdj // 24

You'll see when you download the full listing that Parse_GPS routine is filled with calls like
this. The purpose is to send the proper control values to Parse_Field and then store what
gets lands in workVal in the target variable. The variable idx is used to point to the start of a
field, and fldWidth defines how wide that field is. After returning from Parse_Field,
workVal holds the field value.

The hours field in the GPS string starts at position six and is two characters wide. The value
returned will actually be UTC time (aka Greenwich Mean Time) – not Central Daylight Time
as I needed. The constant UtcAdj allows us to adjust for the difference between our local
position and GMT.

The real work, of course, takes place in the Parse_Field subroutine. Let's have a look:

Parse_Field:
 workVal = 0
 IF (fldWidth < 6) THEN
 DO WHILE (fldWidth > 0)
 workVal = workVal * 10
 GET idx, char
 workVal = workVal + (char - "0")
 fldWidth = fldWidth - 1
 idx = idx + 1
 LOOP
 ENDIF
 RETURN

On entering Parse_Field the variable workVal gets cleared. The reason for this is that
zero will be returned if a bad field width is passed to it. This seems like a better choice than
returning the value from the last legal field access. Assuming the field width is between one
and five, it grabs a character from the string, converts it from ASCII to decimal, then shifts it
left (remember, we're dealing with decimal numbers so a left-shift is a multiply by 10) if there

Column #103: Stamping on Down the Road

Page 182 • The Nuts & Volts of BASIC Stamps (Volume 4)

are more digits in the string. Each pass through the loop decrements the width value and
updates the character pointer.

Okay, I know what you're thinking: "Why did you shift first?" The reason is that it simplifies
the code. One the first pass, no harm is done because workVal is zero. If we waited, we'd
have to insert a line of code that tests fldWidth for zero before shifting. I know this seems a
bit odd, but once you run it through your head a couple times it will make sense. To help out,
let's look at a three character field that holds "123" and run through the value of workVal:

0 - entry
1 - first pass; fldWidth = 2
12 - second pass; fldWidth = 1
123 - third pass; fldWidth = 0 (loop terminates)

Now that we have our numbers, it's time to crunch them and put them onto an LCD. The first
calculated value is the trickiest: speed in miles per hour.

As I told you earlier, speed is derived from two vectors: North/South speed in meters-per-
second, and East-West speed in meters-per-second. The HYP function is perfect for this –
with one caveat. Since the limit for HYP is 127 we may have to scale the vectors before using
the function. The reason for scaling is that 12.7 meters per second is about 28 miles per hour
– and I was certainly planning to drive faster than that on my way to Ohio (otherwise it would
have been a very long trip....).

Calc_Speed:
 IF (velEW > velNS) THEN
 workVal = velEW
 ELSE
 workVal = velNS
 ENDIF

 LOOKDOWN workVal, <[128,255,382,509], workVal
 workVal = workVal + 1
 velEW = velEW / workVal
 velNS = velNS / workVal
 speed = velEW HYP velNS
 speed = speed * (workVal * 10) ** 14660 + 5 / 10

 mtr10 = mtr10 + ((velEW HYP velNS) * workVal)
 RETURN

The Calc_Speed subroutine starts by finding the larger of the two speed vectors. This value
is used in a LOOKDOWN table to create a scaling factor (1 to 4). Each vector is divided by the

Column #103: Stamping on Down the Road

The Nuts & Volts of BASIC Stamps (Volume 4) • Page 183

scaling factor and the speed is calculated with HYP. The next step involves a bit more math
than we're used to. We have to scale the speed back up and convert to miles per hour. Notice
that all the elements are scaled by 10 so that we can add five and divide by 10 to round up.
Remember that we can multiply by fractional values with the ** operator. The term for **
in this case is 14660 – the same as multiplying by 0.2236 (the conversion factor for going
from 0.1 mps to 1 mph).

Before we finish this routine there is one last bit. Part of the project is to accumulate segment
distance and that is done in mtr10 (0.1 meters). This is actually quite simple since the speed
vectors are returned in tenths of a meter per second. Since we update once per second, we
simply need add our speed value to the accumulator. We'll convert it to tenths of miles later.

Displaying speed is so trivial that I'm not going to go through it. Why so easy? Because my
old pal, Scott Edwards, thoughtfully added a "big characters" function to his 4-line LCD
controllers. You can see how this looks in Figure 103.3 which shows the project in use.

Now that we know how fast we're going it would be nice to know the direction we're headed.
This information, like speed, is derived from the two direction vectors. This time we'll use
the ATN function. Keep in mind that ATN returns brads, not degrees, so we'll have to
convert. And there's another thing to deal with. Take a look again at Figure 103.1. Notice
how brads and degrees in the polar coordinate system start at the three o'clock position and
increase as we rotate counter-clockwise. Now look at a standard magnetic compass. Notice
how zero degrees is at the twelve o'clock position and increase while rotating in the clockwise
direction. We'll have to deal with this. Don't worry though, it's not difficult. The code that
handles this is the Show_Vector subroutine:

Show_Vector:
 IF (speed > 0) THEN
 GET 39, char
 IF (char = "W") THEN velEW = -velEW
 GET 44, char
 IF (char = "S") THEN velNS = -velNS
 vector = velEW ATN velNS
 vector = vector */ 360
 vector = 360 - vector + 90 // 360

 SEROUT LCD, N9600, [PosCmd, 35 + 64, RtAlign,
 "3", DEC vector,
 PosCmd, 35 + 64, DegSym]
 ELSE
 SEROUT LCD, N9600, [PosCmd, 32 + 64, "---"]
 ENDIF
 RETURN

Column #103: Stamping on Down the Road

Page 184 • The Nuts & Volts of BASIC Stamps (Volume 4)

Figure 103.3: GPS Tracker In Use on Jon’s Dashboard

All you math wizards recognize that the ATN function actually converts Cartesian coordinates
to a polar (rotational) value. One adjustment that may be required to the vectors is to place
them in the proper quadrants so that we get the correct angle from ATN. If we overlay a
compass onto a Cartesian graph we'll see that the south and west sides of the compass
bearings fall into negative graph values. The Garmin GPS doesn't tell us this – it simply tells
us North or South, East or West. So we do a quick check. If the North/South vector is south,
we take the negative value of the speed vector; we do the same for the East/West vector.

Column #103: Stamping on Down the Road

The Nuts & Volts of BASIC Stamps (Volume 4) • Page 185

Again, the ATN function returns brads. To convert to degrees we will multiply by 1.4. (*/
360). Finally, we have to reverse the direction by subtracting our direction from 360, then
add 90 degrees to reorient zero to the correct (12 o'clock) position.

Notice that we don't actually go through this trouble if we're not moving. You see, we can't
tell which direction we're pointed unless the GPS receiver is moving. If we pass zero speed
vectors to this routine it will tell us we're pointed East (90 degrees). This will usually not be
the case so we'll simply display dashes when the vehicle is stopped.

You may be wondering why we didn't scale the vector values as when we calculated the
speed. The reason is that the vectors were scaled by the Calc_Speed subroutine and not
modified after – so they are already scaled appropriately for the ATN function.

The next step in the program is to convert the direction of travel to a more useful string; "-N-"
when we're traveling on a heading of zero degrees, for example. The subroutine that handles
this is called Show_Compass:

Show_Compass:
 SEROUT LCD, N9600, [PosCmd, 52 + 64]
 IF (speed > 0) THEN
 eePntr = vector * 100 + 1125 / 2250 // 16
 eePntr = eePntr * 3
 FOR idx = 0 TO 2
 READ eePntr + idx, char
 SEROUT LCD, N9600, [char]
 NEXT
 ELSE
 SEROUT LCD, N9600, ["---"]
 ENDIF
 RETURN

As with direction in degrees, we'll only show this value if moving. What this routine does is
create a pointer to one of sixteen strings. If we divide the compass face of 360 degrees by 16
we get 22.5. Since we want our pointer to be right in the middle of a 22.5 degree segment, we
divide the segment width by two to get 11.25. The BASIC Stamp doesn't do floating point, so
we multiply everything by 100 before doing the pointer math.

A simple loop handles pulling the string from a DATA table and printing it on the LCD. This
is actually quite useful. While driving to my brother's house I was watching the display to
make sure that I was generally traveling in a north-easterly direction will driving. That was
actually quite comforting across some very long, flat stretches of road.

Column #103: Stamping on Down the Road

Page 186 • The Nuts & Volts of BASIC Stamps (Volume 4)

We're almost there. The last thing to discuss is the trip meter built into the code. What I did
before leaving home was go to one of the many Internet mapping sites and downloaded door-
to-door directions to my brother's house. The directions basically told me to get on a specific
road and travel a given distance. As you'll see in the schematic, I've got a button on P0 so that
I can reset the meter. What I did while driving was get on a road, press the segment reset
button, then watch for it to increment to the distance given in my directions. Since the display
was sitting on the dashboard right above the steering wheel, it was very easy to see and
monitor. Without fail, every new junction was within a tenth of a mile of where it should
have been.

Let's have a look at the segment code.

Show_Miles_Acc:
 IF (FuncBtn = Pressed) THEN
 mtr10 = 0
 mi10 = 0
 ENDIF

 IF (mtr10 >= 1609) THEN
 mi10 = mi10 + 1 // 10000
 mtr10 = mtr10 - 1609
 ENDIF

 SEROUT LCD, N9600, [PosCmd, 75 + 64,
 RtAlign, "3",
 DEC (mi10 / 10),
 PosCmd, 75 + 64, ".",
 DEC1 mi10, " mi"]
 RETURN

On entering this subroutine we check to see if the button is being pressed. If it is, we clear the
segment accumulators. Keep in mind that this routine – like all routines – only gets called
once per second so you may need to hold the button for a moment. Most of the time the
button will not be pressed. In this case we will look at the tenths-of-meters accumulator and
compare it to 1609 (the conversion factor to go from tenths-of-meters to tenths-of-miles).

Let me go back and review some logic. The speed output values in the GPS string are in
tenths-of-meters per second. Since we're checking every second, the speed value becomes
our distance traveled between GPS scans. The Calc_Speed subroutine took care of
accumulating distance in tenths-of-meters. We can convert this value to tenths-of-miles by
dividing by 1609. Finally, we put it up on the display taking advantage of another nice
feature or SEETRON displays: the ability to right-justify numbers.

Column #103: Stamping on Down the Road

The Nuts & Volts of BASIC Stamps (Volume 4) • Page 187

The Need For Speed Monitoring

This code was a bit more complicated than the projects I usually present here but I think it
was fun and was certainly a good learning experience for me. Be sure to download the full
listing and go through it slowly – it should all make sense once you've studied it a while.

The cool thing about this project is that it provides non-contact speed and distance
monitoring. Since it uses GPS it can be put on anything that moves: a car, a boat, a scooter, a
go-kart. Do you want to know how fast your soapbox derby car goes? Now you can.

Before I sign-off this month let me give you one more web link. While working on this
program, I found the following conversion site to be useful:

 www.sciencemadesimple.com/conversions.html

Stamps in the Shack!

Finally, for those of you who read this column but haven't actually started with Stamps, or
those of you who might want to get a friend or youngster started ... good news. Parallax has
teamed with Radio Shack to put a great starter kit in select Radio Shack stores (those in major
population centers). The kit includes the Parallax HomeWork board and the "What's a
Microcontroller?" text and components. It's a great way to get started and at a fantastic price
– and you can pick it up at your local Radio Shack. Look for the starter kits to hitting shelves
this holiday season.

That's all for now. Happy Thanksgiving to you and yours ... and as always, Happy Stamping.

Column #103: Stamping on Down the Road

Page 188 • The Nuts & Volts of BASIC Stamps (Volume 4)

' ===
'
' File...... Stamp_Dash.BSP
' Purpose... Digital Instrumentation for Moving Vehicle
' Author.... Jon Williams
' E-mail.... jwilliams@parallax.com
' Started...
' Updated... 21 SEP 2003
'
' {$STAMP BS2p}
' {$PBASIC 2.5}
'
' ===

' -----[Program Description]---
'
' This program accepts text data from a Garmin GPS receiver using the
' Garmin text output at 9600 baud. The advantage over NMEA 183 for this
' application is speed (2x) and fixed field positions and widths.
'
' String:
'
' @020202183142N3251129W09701159G008+00165E0000N0000D0001 <-- GPS data
' |
' | 1 2 3 4 5
' 012345678901234567890123456789012345678901234567890123 <-- SPRAM addr
'
'
' @ header
' 020202 UTC date (yr [2], mo, dy)
' 183142 UTC time (hr, mn, sc)
' N lat hemisphere
' 32 lat degrees
' 51 lat minutes
' 129 lat frac minutes (1/1000)
' W long hemisphere
' 097 long degrees
' 01 long minutes
' 159 long frac minutes (1/1000)
' G position status
' 008 horizontal position error (meters)
' + altitude sign
' 00165 altitude above/below sea level (meters)
' E E/W velocity direction
' 0000 E/W velocity (meters per sec - tenths xxx.x)
' N N/S velocity direction
' 0000 N/S E/W velocity (meters per sec - tenths xxx.x)
' D vertical velocity direction (Up / Down)
' 0001 vertical velocity (meters per sec - hundredths xx.xx)

Column #103: Stamping on Down the Road

The Nuts & Volts of BASIC Stamps (Volume 4) • Page 189

'
'
' For additional details see: http://www.garmin.com/support/text_out.html

' -----[Revision History]--

' -----[I/O Definitions]---

LCD PIN 15 ' serial to 4x20 LCD
GPS PIN 14 ' serial in from GPS
FuncBtn PIN 0 ' function btn (active low)

' -----[Constants]---

N9600 CON $40F0

Null CON 0 ' null = 1 ms delay
CrsrHm CON 1 ' cursor home
BigOn CON 2 ' big characters
BigOff CON 3 ' -- off
NoCrsr CON 4 ' no cursor
ULCrsr CON 5 ' underline cursor
BlnkCrsr CON 6 ' blinking cursor
ClrLcd CON 12 ' clear LCD
BLOn CON 14 ' backlight on
BLOff CON 15 ' -- off
PosCmd CON 16 ' positioning command
ClrCol CON 17 ' clear column
RtAlign CON 18 ' right align
Esc CON 27

DegSym CON 223
Pressed CON 0 ' button is active-low

UtcAdj CON 24 - 5 ' adjust UTC for CDT

' -----[Variables]---

idx VAR Byte ' loop counter
fldWidth VAR Nib ' width of data field
workVal VAR Word ' temp value from parsing

hr VAR Byte ' adjusted hours
mn VAR Byte ' minutes
sc VAR Byte ' seconds

velEW VAR Word ' velocity E/W

Column #103: Stamping on Down the Road

Page 190 • The Nuts & Volts of BASIC Stamps (Volume 4)

velNS VAR Word ' velocity E/W
speed VAR Word
vector VAR Word ' direction vector

eePntr VAR Word ' eeprom pointer
char VAR Byte ' display character

mtr10 VAR Word ' meters x 0.1
mi10 VAR Word ' miles x 0.1

' -----[EEPROM Data]---

CPoints DATA "-N-", "NNE", "N-E", "ENE"
 DATA "-E-", "ESE", "S-E", "SSE"
 DATA "-S-", "SSW", "S-W", "WSW"
 DATA "-W-", "WNW", "N-W", "NNW"

' -----[Initialization]--

Setup:
 PAUSE 500 ' let LCD initialize
 SEROUT LCD, N9600, [ClrLcd] ' clear screen
 IF (FuncBtn = Pressed) THEN
 SEROUT LCD, N9600, [BLOn] ' backlight on
 ENDIF

' -----[Program Code]--

Main:
 DO
 SERIN GPS, N9600, 3750, No_GPS, [WAIT("@"), SPSTR 50]
 GOSUB Parse_GPS
 GOSUB Calc_Speed
 GOSUB Show_Speed
 GOSUB Show_Time
 GOSUB Show_Vector
 GOSUB Show_Compass
 GOSUB Show_Miles_Acc
 LOOP

 END

' -----[Subroutines]---

' Signal lost -- or receiver set to wrong output

No_GPS:

Column #103: Stamping on Down the Road

The Nuts & Volts of BASIC Stamps (Volume 4) • Page 191

 SEROUT LCD, N9600, [ClrLCD, CR,
 "- GPS SIGNAL ERROR -"]
 PAUSE 1000
 SEROUT LCD, N9600, [ClrLcd]
 GOTO Main

' Grab fields from GPS string

Parse_GPS:
 idx = 6 : fldWidth = 2 ' hours
 GOSUB Parse_Field
 hr = workVal + UtcAdj // 24 ' update for local position

 ' 12 hour mode
 hr = hr // 12
 IF (hr = 0) THEN hr = 12

 idx = 8 : fldWidth = 2 ' minutes
 GOSUB Parse_Field
 mn = workVal

 idx = 10 : fldWidth = 2 ' seconds
 GOSUB Parse_Field
 sc = workVal

 idx = 40 : fldWidth = 4 ' east/west velocity
 GOSUB Parse_Field
 velEW = workVal

 idx = 45 : fldWidth = 4 ' north/south velocity
 GOSUB Parse_Field
 velNS = workVal

 RETURN

' Parses numeric data field from GPS string in ScratchPad
' -- pass digits in field in "fldWidth"
' -- value returned in "workVal"

Parse_Field:
 workVal = 0 ' clear return value
 IF (fldWidth < 6) THEN ' valid fldWidth?
 DO WHILE (fldWidth > 0)
 workVal = workVal * 10 ' shift result digits left
 GET idx, char ' get digit from field
 workVal = workVal + (char - "0") ' convert, add into value
 fldWidth = fldWidth - 1 ' decrement field width
 idx = idx + 1 ' point to next digit
 LOOP

Column #103: Stamping on Down the Road

Page 192 • The Nuts & Volts of BASIC Stamps (Volume 4)

 ENDIF
 RETURN

' Show time on LCD
' -- HH:MM:SS

Show_Time:
 SEROUT LCD, N9600, [PosCmd, 12 + 64,
 DEC2 hr, ":", DEC2 mn, ":", DEC2 sc]
 RETURN

' Calculate speed from E/W and N/W velocities
' -- values are scaled to fit 0 - 127 range
' -- derived value scaled back
' -- saves direction vector
' -- accumulates meters traveled
'
' Note: This routine divides down the velocity values so that they
' will fit within the constraints of HYP and ATN functions.

Calc_Speed:
 ' find biggest vector
 IF (velEW > velNS) THEN
 workVal = velEW
 ELSE
 workVal = velNS
 ENDIF

 ' create scaling factor (1 to 4)
 LOOKDOWN workVal, <[128,255,382,509], workVal
 workVal = workVal + 1
 velEW = velEW / workVal ' scale to < 127
 velNS = velNS / workVal
 speed = velEW HYP velNS ' calculate speed (mps)

 ' speed (mph) = meters/sec (tenths) * 0.223694
 speed = speed * (workVal * 10) ** 14660 + 5 / 10

 mtr10 = mtr10 + ((velEW HYP velNS) * workVal) ' accumulate meters moved
 RETURN

' Show current speed in "big digits" format
' -- code right justifies

Show_Speed:
 SEROUT LCD, N9600, [CrsrHm] ' move to line 1, col 1 (Home)
 IF (speed < 10) THEN ' if 1 digit
 FOR idx = 0 TO 4 ' -- erase previous 10's

Column #103: Stamping on Down the Road

The Nuts & Volts of BASIC Stamps (Volume 4) • Page 193

 SEROUT LCD, N9600, [ClrCol]
 NEXT
 ' print 1's
 SEROUT LCD, N9600, [BigOn, DEC1 speed, BigOff]
 ELSE
 ' print 2-digit speed
 SEROUT LCD, N9600, [BigOn, DEC2 speed, BigOff]
 ENDIF
 PAUSE 20
 RETURN

' Show current direction in degrees
' -- 0º to 359º
' -- vector is converted to Brads, then Degrees
' -- value is rotated to match compass orientation
'
' Note that this routine counts on velEW and velNS being
' scaled to < 127 (done in Calc_Speed)

Show_Vector:
 IF (speed > 0) THEN
 ' get EW direction
 GET 39, char
 IF (char = "W") THEN velEW = -velEW ' if W, change quadrant
 ' get NW direction
 GET 44, char
 IF (char = "S") THEN velNS = -velNS ' if S, change quadrant
 vector = velEW ATN velNS ' in Brads
 vector = vector */ 360 ' convert to degrees
 vector = 360 - vector + 90 // 360 ' orient to compass

 SEROUT LCD, N9600, [PosCmd, 35 + 64, RtAlign,
 "3", DEC vector,
 PosCmd, 35 + 64, DegSym]
 ELSE
 SEROUT LCD, N9600, [PosCmd, 32 + 64, "---"]
 ENDIF
 RETURN

' Show current direction as compass point
' -- 0º = "N"

Show_Compass:
 SEROUT LCD, N9600, [PosCmd, 52 + 64] ' move to line 3, column 13
 IF (speed > 0) THEN
 eePntr = vector * 100 + 1125 / 2250 // 16 ' calc hextant (22.5°)
 eePntr = eePntr * 3 ' point to start of string
 FOR idx = 0 TO 2 ' print compass string
 READ eePntr + idx, char

Column #103: Stamping on Down the Road

Page 194 • The Nuts & Volts of BASIC Stamps (Volume 4)

 SEROUT LCD, N9600, [char]
 NEXT
 ELSE
 ' not moving
 SEROUT LCD, N9600, ["---"]
 ENDIF
 RETURN

' Show leg mileage accumulator
' -- 0.0 to 999.9
' -- input on P0 will reset acc if low

Show_Miles_Acc:
 IF (FuncBtn = Pressed) THEN ' reset on button press
 mtr10 = 0
 mi10 = 0
 ENDIF

 IF (mtr10 >= 1609) THEN ' gone 1/10 mile?
 mi10 = mi10 + 1 // 10000
 mtr10 = mtr10 - 1609
 ENDIF

 SEROUT LCD, N9600, [PosCmd, 75 + 64,
 RtAlign, "3",
 DEC (mi10 / 10),
 PosCmd, 75 + 64, ".",
 DEC1 mi10, " mi"]
 RETURN

