
1/20/2003 Abhishek Chaturvedi 1

Using MEMSIC MXD2020GL in Man Down Application
What is Man down?
Man down is a term used when an operator in the field is disabled/dead. This applies to
firemen, policemen, soldiers, miners, nuclear reactor operators and others who are
involved with hazardous materials/situations. In all instances, these operators are
connected with each other and the central unit by means of radio. But in a situation where
an individual is incapacitated, and unable to use the radio to call for help, would be
deemed fully functional, where as in reality he/she might be dead/dying/trapped.
In all of these instances, there will be a need in radios and communication units to be able
to measure movement and be able to present lack of it, by means of an alert signal.
Thus the man-down functionality in radios enables it to signal the central unit of
debilitated operators.

General Operation theory
The purpose of this note is to demonstrate use of a Memsic device in a Man down
application in its simplest form. Attributes like number of accelerometers; type of
microcontroller, alarm conditions can be modified to be more suitable to a certain type
application than others.
In essence, the operation revolves around lack of motion, which asserts the alarm state.
The microcontroller samples the accelerometer at regular intervals and compares
consecutive samples in an endless loop. If at any point two consecutive values are
equal(after filtering for jitter and device min/max margins) the device will assert the
mandown state suggesting that a lack of motion has been observed in that sampling
period. The sampling frequency, filtering of the jitter can be easily changed in software to
make the unit more or less sensitive to movement.

1/20/2003 Abhishek Chaturvedi 2

How can it be implemented?

Schematic

SOUT
SIN
ATN
VSS

P0
P1
P2
P3
P4
P5
P6
P7

VIN
VSS
RES
VDD
P15
P14
P13
P12
P11
P10
P9
P8

BS2-IC
MEMSIC MXD2125GL

Accelerometer

Vdd

Xout

Yout

GND

VssVssVssVss

Reset LED Alarm LED

470 Ω 470 Ω 470 Ω

Reset

Vss

Rx

Tx

DTR

GND

1

2

3

4

6

5

7

9

8

DSR

RTS

PC Serial Port

0.1 µF

Vdd

0.1 µF

Vdd

0.1 µF

Vss

Fig1. Schematic of Demo Mandown circuit showing serial port
Major Components

MXD2020GL.
Memsic is a leading supplier in thermal accelerometers, provides different kinds
of outputs, such as pulse width modulated and analog. As the author will discuss
later in this note, the microcontroller used in this application is the Basic stamp
(BS2 processor) from Parallax. This is a digital only device and therefore the
choice of accelerometer inputs were narrowed down to digital as using and A/D
could be avoided. The MXD2020GL is a consumer grade accelerometer
(operational temperature 0C-70C) which digital outputs. The outputs are Pulse
Width Modulated to 50% duty cycle, at 0 g(i.e. no acceleration applied)
conditions. At application of +1g on the sensitive axis, the output is shifts to 70%
duty cycle and to 30% duty cycle at application of –1g. This true with both its
axis. (Please refer to the data sheet for more details about this product)

1/20/2003 Abhishek Chaturvedi 3

Internal
Oscillator

Sck
(optional)

CLK

Heater
Control

X axis

Y axis

Factory Adjust
Offset & Gain

Low Pass
Filter

Low Pass
Filter

Temperature
Sensor

Voltage
Reference VREF

AOUTX

VDD VDAGnd

2-AXIS
SENSOR

AOUTY

TOUT

Continous
Self Test

fig2. Functional block diagram of the Memsic Product

Basic Stamp BS2 processor
BASIC Stamps are microcontrollers that are designed for use in a wide array of
applications. Many projects that require an embedded system with some level of
intelligence can use a BASIC Stamp module as the controller.
Each BASIC Stamp comes with a BASIC Interpreter chip, internal memory
(RAM and EEPROM), a 5-volt regulator, a number of general-purpose I/O
pins (TTL-level, 0-5 volts), and a set of built-in commands for math and
I/O pin operations. BASIC Stamps are capable of running a few thousand
instructions per second and are programmed with a customized form of the
BASIC programming language, called PBASIC.

1/20/2003 Abhishek Chaturvedi 4

Operational Flow chart

START

GET PULSE WIDTH
INFORMATION ON

USING A 16 BIT TIMER
BOTH AXIS X AND Y

PAUSE FOR 0.5
SECONDS (Variable

sampling rate dependant
desired sensitivity to

movement)

GET NEW PULSE
WIDTH INFORMATION

PAD PULSE WIDTH
WITH SPEC LIMITS

IS NEW PULSE
WIDTH EQUAL TO
OLD PULSE WIDTH

COMPARE WITH
OLD PULSE

WIDTH

NO

YES

TURN ON MAN-
DOWN ALARM

IS RESET KEY
DEPRESSED?

NO
YES

Fig. Flowchart describing general series of steps in a Man down application

1/20/2003 Abhishek Chaturvedi 5

SOURCE CODE FOR MAN-DOWN APPLICATION

' ===
'
' File...... Man-Down Detector.BS2
' Purpose...
' Author.... A. Chaturvedi (Memsic), modified by J. Williams (Parallax)
' E-mail....
' Started...
' Updated... 08 JAN 2003
'
' {$STAMP BS2}
' {$PBASIC 2.5}
'
' ===

' -----[Program Description]---
'
' Monitors X and Y inputs from Memsic 2125 and will trigger alarm if no
' movement is detected. Sample rate, movement thresholds and "down"
' time threshold are configurable.

' -----[Revision History]--

' 08 JAN 2003 : Converted to PBASIC 2.5 by Jon Williams, Parallax

' -----[I/O Definitions]---

Xpin PIN 1 ' X pulse input
Ypin PIN 2 ' Y pulse input
ResetLED PIN 3 ' reset LED
AlarmLED PIN 4 ' alarm LED

' -----[Constants]---

SampleDelay CON 500 ' 0.5 seconds
DownThreshold CON 5 ' 5 x SampleDelay x 2

XLimit CON 5 ' x movement minimum
YLimit CON 5 ' y movement minimum

' -----[Variables]---

xTimer1 VAR Word ' first X sample
yTimer1 VAR Word ' first Y sample
xTimer2 VAR Word ' second X sample
yTimer2 VAR Word ' second Y sample
xMove VAR Word ' x axis movement
yMove VAR Word ' y axis movement

dnTimer VAR Word ' "down" timer
idx VAR Nib ' loop counter

' -----[EEPROM Data]---

' -----[Initialization]--

Initialize:
 LOW AlarmLED ' alarm off
 dnTimer = 0 ' clear "down" timer

 FOR idx = 1 to 3 ' show reset
 HIGH ResetLED ' - blink green LED 3x
 PAUSE 500
 LOW ResetLED
 PAUSE 500
 NEXT

' -----[Program Code]--

Main:

1/20/2003 Abhishek Chaturvedi 6

 DO
 GOSUB Get_Data ' read inputs
 GOSUB Check_Data ' check for movement
 LOOP

 END

' -----[Subroutines]---

' Sample and filter inputs

Get_Data:
 PULSIN Xpin, 1, xTimer1 ' take first reading
 PULSIN Ypin, 1, yTimer1
 xTimer1 = xTimer1 / 10 ' filter for noise & temp
 yTimer1 = yTimer1 / 10
 PAUSE SampleDelay
 PULSIN Xpin, 1, xTimer2 ' take second reading
 PULSIN Ypin, 1, yTimer2
 xTimer2 = xTimer2 / 10 ' filter for noise & temp
 yTimer2 = yTimer2 / 10
 PAUSE SampleDelay
 RETURN

' Check last sample
' -- update "down" counter if no movement
' -- trigger alarm if threshold exceeded

Check_Data:
 xMove = ABS (xTimer1 - xTimer2) ' get movement
 yMove = ABS (yTimer1 - yTimer2)

 IF (xMove < XLimit) AND (yMove < YLimit) THEN ' if both...
 dnTimer = dnTimer + 1 ' update "down" timer
 IF (dnTimer > DownThreshold) THEN Man_Down
 ELSE
 dnTimer = 0 ' clear "down" timer
 ENDIF
 RETURN

' Blink Alarm LED
' -- can also be modified to send alarm condition via RF link

Man_Down:
 DO
 TOGGLE AlarmLED ' blink alarm LED
 PAUSE 500
 LOOP ' loop until reset

Contributions
Jon Williams, Parallax
Rich Allred, Parallax

