$C1 := 1000 \cdot 10^{-12}$ $C2 := 2200 \cdot 10^{-12}$ $C3 := 1000 \cdot 10^{-12}$ $C4 := 1500 \cdot 10^{-12}$

Vdd := 3.3 Supply Voltage Vss := 0Ground

R1 := 1000000R2 := 100000R3 := 100000R4 := 1800000

N := 24

$$a := \frac{114 + 2}{2}$$

h := 5

b := 2

Resistance := 3

$$L := \frac{0.31 \cdot (a \cdot N)^2}{6 \cdot a + 9 \cdot h + 10 \cdot b}$$

$$f_0 := \frac{1}{2 \cdot \pi \cdot \sqrt{L \cdot C1}} \cdot 1000$$

 $peaktopeak := \frac{1}{f_0} \cdot 1000000$

 $Q := \frac{2 \cdot \pi \cdot f_0 \cdot L}{Resistance}$

Minimalist proof-of-concept RFID Reader.

Schematic:

C1,C3 1000 pF C2 2200 pF C4 1500 pF R1 1 ΜΩ R2, R4 100 kΩ R3 Some garden variety sigal diode from my junk drawer. About 30 turns of magnet wire on a 5.5x7 inch wooden block. D1 L1 (Tune for 125 kHz resonance with C1.)

Micah Dowty <micah@navi.cx>

L = 1454μΗ

Operating Frequency

peaktopeak = 7.577 µsec

Theoretical Q
$$Q = 4 \times 10^8$$

INDUCTANCE OF N-TURN MULTILAYER CIRCULAR COIL

FIGURE 8: N-TURN MULTILAYER **CIRCULAR COIL**

Figure 8 shows an N-turn inductor of circular coil with multilayer. Its inductance is calculated by:

EQUATION 24:

$$L = \frac{0.31(aN)^2}{6a + 9h + 10b} \qquad (\mu H)$$

where:

a = average radius of the coil in cm

N = number of turns

b = winding thickness in cm

h = winding height in cm