
Parallax, Inc. • BASIC Stamp Programming Manual 1.9 • Page 167

BASIC Stamp I Application Notes

1

20: An Accurate Timebase

Introduction. This application note describes an inexpensive and
accurate timebase for Stamp applications.

Background. The Stamp has remarkable timing functions for dealing
with microseconds and milliseconds, but it stumbles a little when it
comes to minutes, hours, and days.

The reason for this is twofold: First, the Stamp’s ceramic resonator
timebase is accurate to about ±1 percent, so the longer the timing
interval, the larger the error. A clock that was off by 1 percent would
gain or lose almost 15 minutes a day.

Second, Stamp instructions take varying amounts of time. For example,
the Pot command reads resistance by measuring the length of time
required to discharge a capacitor. The higher the resistance, the longer
Pot takes. The math operators also take varying amounts of time
depending on the values supplied to them.

The result is that even the most carefully constructed long-term timing
programs end up being less accurate than a cheap clock.

An obvious cure for this might be to interface a real-time clock to the
Stamp. Available units have all kinds of neat features, including calen-
dars with leap-year compensation, alarms, etc. The trouble here is that
once you write a program to handle their synchronous serial interfaces,
acquire the time from the user, set the clock, read the time and convert

Figure 1. Schematic to accompany TIC_TOC.BAS

10M

32,768 Hz
XTAL

4060
counter/
oscillator

11

10

220k128

33pF

33pF

16

+5

3Stamp pin 0
2 Hz

Fast/Slow
adjust

4060
counter/
oscillator

Page 168 • BASIC Stamp Programming Manual 1.9 • Parallax, Inc.

BASIC Stamp I Application Notes 20: An Accurate Timebase

it to a usable form, you have pretty much filled the Stamp’s EEPROM.
A compromise approach is to provide the Stamp with a very accurate
source of timing pulses, and let your program decide how to use them.
The circuit and example program presented here do just that. For this
demonstration, the Stamp counts the passing seconds and displays
them using debug.

How it works. The circuit in figure 1 shows how to construct a crystal-
controlled, 2-pulse-per-second timebase from a common digital part,
the CD4060B. This part costs less than $1 from mail-order companies
like the one listed at the end of this note. The 32,768-Hz crystal is also
inexpensive, at just over 50 cents.

The 4060 is a 14-stage binary counter with an onboard oscillator.
Although the oscillator can be used with a resistor/capacitor timing
circuit, we’re going for accuracy; hence the crystal. Why 32,768 Hz and
not some other value, like 1 MHz? It just happens that 32,768 = 215, so it’s
easy to use a binary counter like the 4060 to divide it down to easy
fractions of one second. Since the 4060 is a 14-stage counter, the best it
can do is divide by 214. The program further divides the resulting twice-
a-second pulses to produce one count per second.

Take a look at the program listing. It consists of a main loop and a
routine to increment the clock. In an actual application, the main loop
would contain most of the program instructions. For accurate timing,
the instructions within the main loop must take less than 250 millisec-
onds total. Even with the timing problems we’ve discussed, that’s
pretty easy to do.

Let’s walk through the program’s logic. In the main loop, the program
compares the state of pin0 to bit0. If they’re equal (both 0 or both 1) it
jumps to the tick routine.

In tick, the program toggles bit0 by adding 1 to the byte it belongs to, b0.
This makes sure that bit0 is no longer equal to the state of pin0, so the
program won’t return to tick until pin0 changes again.

B0 also serves as a counter. If it is less than 4, the program returns to the
main loop. When b0 reaches 4, tick clears it, adds 1 to the running total

Parallax, Inc. • BASIC Stamp Programming Manual 1.9 • Page 169

BASIC Stamp I Application Notes

1

20: An Accurate Timebase

of seconds, displays the number of seconds on the screen, and jumps
back to the main loop.

This is pretty elementary programming, but there’s one detail that may
be bothering you: If we’re using a 2-Hz timebase, why count to 4 before
incrementing the seconds? The reason is that we’re counting transi-
tions—changes in the state of
pin0—not cycles. Figure 2
shows the difference.

This stems from our use of bit0
to track changes in the timing
pulses. As soon as pin0 = bit0,
we drop into tick and toggle the state of bit0. This keeps us from visiting
tick more than once during the same pulse. The next time pin0 changes—
the next transition—pin0 = bit0, and tick executes again. A side effect of
this approach is that we increment the counter twice per cycle.

Construction notes. The circuit in figure 1 draws only about 0.5 mA,
so you can power it from the Stamp’s +5V supply without any problem.
The resistor and capacitor values shown are a starting point, but you
may have to adjust them somewhat for most reliable oscillator startup
and best frequency stability. You may substitute a fixed capacitor for
the adjustable one shown, but you’ll have to determine the best value
for accurate timing. The prototype was right on the money with a 19-pF
capacitor, but your mileage may vary due to stray capacitance and parts
tolerances.

Parts source. The CD4060B and crystal are available from Digi-Key
(800-344-4539) as part numbers CD4060BE-ND and SE3201,
respectively.

Program listing. This program may be downloaded from our Internet
ftp site at ftp.parallaxinc.com. The ftp site may be reached directly or
through our web site at http://www.parallaxinc.com.

Transitions: T T T T

C CCycles:

Figure 2.

Page 170 • BASIC Stamp Programming Manual 1.9 • Parallax, Inc.

BASIC Stamp I Application Notes

' Program: TIC_TOC.BAS (Increment a counter in response to a
' precision 2-Hz external clock.)

' The 2-Hz input is connected to pin0. Bit0 is the lowest bit of b0,
' so each time b0 is incremented (in tick), bit0 gets toggled. This
' ensures that tick gets executed only once per transition of pin0.

Main:
if pin0 = bit0 then tick
 ' Other program activities--
 ' up to 250 ms worth--
 ' go here.
goto Main

' Tick maintains a 16-bit counter to accumulate the number of seconds.
' The maximum time interval w1 can hold is 65535 seconds--a bit over
' 18 hours. If you want a minute count instead, change the second
' line of tick to read: "if b0 < 240 then Main". There are 1440 minutes
' in a day, so w1 can hold up to 65535/1440 = 45.5 days worth of to-the-
' minute timing information.

tick:
let b0 = b0 + 1 ' Increment b0 counter.
if b0 < 4 then Main ' If b0 hasn't reached 4, back to Main.
let b0 = 0 ' Else clear b0,
let w1 = w1 + 1 ' increment the seconds count,
debug cls,#w1," sec." ' and display the seconds.
goto Main ' Do it again.

20: An Accurate Timebase

	bs1Appnotes.pdf

