

Web Site: www.parallax.com
Forums: forums.parallax.com
Sales: sales@parallax.com
Technical: support@parallax.com

Office: (916) 624-8333
Fax: (916) 624-8003
Sales: (888) 512-1024
Tech Support: (888) 997-8267

© Parallax, Inc. • AVR Firmware: GPIO-5 (2008.03.05) Page 1 of 12

AVR Firmware: GPIO, Version 5 (Beta)

Introduction

This document describes the use of AVR firmware that is used in conjunction with the BS2p/BS2pe BASIC
Stamp motherboard. This firmware can be uploaded to either or both of the motherboard’s two AVR
coprocessors as file GPIO5B.hex. Once loaded, the coprocessor is capable of communicating with the
Stamp using PBASIC’s OWOUT and OWIN commands. This communication takes place on the AVR’s
OWIO pin (see illustration below) to read data from, and write data to, the other four I/O pins. These
four pins, two of which are shared with the Stamp, also connect to an attached daughterboard. By
utilizing the capabilities of the AVR coprocessor, interaction is afforded with the daughterboard in ways
that augment the Stamp’s capabilities and offload from it the more mundane and processor-intensive
tasks.

The functions available with this firmware include:

• Digital input on all four ports, with optional internal pullups.

• Digital output on all four ports.

• 1 MHz frequency counter on all four ports, with optional internal pullups.

• Up to 37.5 KHz PWM output on two ports.

• Modulated outputs under BASIC Stamp control, including PWM for IR remote applications.

• 10-bit analog-to-digital input on two ports.

• Analog comparator input on three ports, comparing with either the fourth port or a 1.1- volt
reference.

• 32 bytes of RAM, which can be written and read.

In addition, the type and frequency of the PWM outputs can be configured on the fly.
The AVR (Atmel ATTiny13) pinout is shown below:

}
{

OWIO connects to the Stamp and has a pull-up resistor to Vdd. Communication is bi-directional via a
protocol using open-collector signaling. Ports 2 and 3 also connect to the Stamp without external pull-
ups, as well as to an attached daughtercard. Ports 0 and 1 connect to an attached daughtercard only.
Ports 0 and 1 are capable of analog input. Ports 2 and 3 are capable of unattended PWM output. Ports 0,
1, and 2 can be used as positive comparator inputs, comparing with either Port 3 or an internal 1.1-volt
bandgap reference. All ports can be used for digital I/O and frequency counting.

© Parallax, Inc. • AVR Firmware: GPIO-5 (2008.03.05)) Page 2 of 12

Command Protocol

Communication with the AVR is via one-byte commands sent using the Stamp’s OWOUT statement,
possibly followed by additional data bytes or by reads using OWIN. An example command might be:

 OWOUT Owio, 0, [$25]

This statement will write a digital “1” to port 2, causing it to go high. Some commands are used to read
from the AVR. An example would be:

 B VAR Bit

 OWOUT Owio, 0, [$10]

 OWIN Owio, 4, [B]

This reads a one-bit value (high or low) from Port 1 into variable B.

Any reset (low pulse lasting longer than 160 microseconds) sent via the OWIO pin will reset the AVR’s
protocol state machine, interrupting any transaction in progress (with one exception, described under
“Counter Input” below). It will not affect the states of any of the pins, however. A reset can be
incorporated into an OWOUT statement by choosing the second argument appropriately. For example:

 OWOUT Owio, 1, [$14]

resets the protocol engine before writing a zero to Port 1. A reset is usually a good idea in the first
transaction of a Stamp program. It should also be considered when communication with the AVR is
infrequent or done in electrically noisy environments. A too-liberal use of resets, however, can not only
slow a program down, but it can also mask program errors associated with AVR communications.

Finally, the AVR comes out of a hardware reset more slowly than the Stamp does. So don’t start talking
to it right away in your Stamp program. To make sure the AVR is ready for communicating, put a 5ms
PAUSE at the beginning of your Stamp program:

 PAUSE 5

This will prevent out-of-the gate misfires.

Firmware Identification

To identify the firmware currently extant in the AVR (assuming it uses the same protocol), send the
following command ($DD):

1 1 0 1 1 1 0 1

The AVR will respond with three bytes of data. The first two are characters representing the name of the
firmware. The third is a version number. This information can be used by a Stamp program to make sure
the correct AVR firmware is loaded. The following program snippet, where I, J and K are byte variables,
prints out this information:

 OWOUT Owio, 0, [$DD]

 OWIN Owio, 0, [I, J, K]

 DEBUG " Device: ", I, J, ", Version: ", HEX2 K

© Parallax, Inc. • AVR Firmware: GPIO-5 (2008.03.05)) Page 3 of 12

For this beta firmware, the following line is printed:

 Device: GP, Version: 5B

Outputs

Outputting signals from the AVR is a one-step process. It involves sending the AVR a command telling it
what’s to be done. Some commands require an additional data byte after the command byte. If either or
both of Ports 2 and 3 are used as outputs, their corresponding shared Stamp pins must be set to inputs
to avoid bus conflicts.

By setting the “modulate” flag (m in the commands below) to a 1, the AVR’s output driver for the chosen
pin can be modulated by the Owio pin after the command has been issued. See Modulated Output
below.

Digital Output

The command for causing a port to drive high or low is as follows:

0 m Addr 0 1 0 N

Addr is the two-bit address (00 = 0, 01 = 1, 10 = 2, 11 = 3) of the destination port. N is the bit value (0
or 1) to write. A zero drives the pin low; a one drives it high.
The following program segment, sets all four pins low:

 FOR I = 0 TO 3

 OWOUT Owio, 0, [I << 4 + $04]

 NEXT

PWM Output

Ports 2 and 3 can be configured as pulse-width modulated outputs having 256 possible duty cycles from
0% to 99.6% (or 100%: see below). A PWM output can be low-pass filtered and used to form a
rudimentary digital-to-analog converter (DAC). Or, it can be used with an appropriate driver to modulate
inductive loads directly, without filtering. The maximum PWM frequency attainable with the AVR is 37.5
KHz, which can be filtered with fairly small-valued components. The PWM output command has the
following format:

0 m Addr 0 1 1 Inv

Data byte: $00 - $FF (0 – 255)

Addr is the two-bit address (10 = 2, 11 = 3) of the destination port. Writes to Ports 0 and 1 are ignored,
since they do not support PWM output. The Inv bit selects the sense of the PWM: A zero here selects
positive-going pulses; a one selects negative-going pulses. The data byte selects the desired relative
pulse width. Example commands and the pulse trains they produce are shown below:

© Parallax, Inc. • AVR Firmware: GPIO-5 (2008.03.05)) Page 4 of 12

 OWOUT Owio, 0, [$26, 64]

 OWOUT Owio, 0, [$27, 64]

 OWOUT Owio, 0, [$37, 32]

 OWOUT Owio, 0, [$36, 224]

The first two lines write to Port 2; the second two, to Port 3. Lines 1 and 4 create positive pulses; lines 2
and 3, negative pulses. Notice that a positive pulse with a duty cycle of 224/256 = 87.5% looks a lot like
a negative pulse with a duty cycle of 32/256 = 12.5%.
It is also possible to select from several fixed overall frequencies, using the frequency command:

1 1 1 1 Freq

Freq is a four-bit number ranging from 0 through 9 that specifies the actual PWM frequency. The
selected frequency applies to both Ports 2 and 3 equally. It is not possible to specify a different frequency
for each port. The Freq values and their associated nominal frequencies are:

Freq Frequency PBASIC Code

0 37,500.00 Hz OWOUT Owio, 0, [$F0]

1 18,823.53 Hz OWOUT Owio, 0, [$F1]

2 4,687.50 Hz OWOUT Owio, 0, [$F2]

3 2352.94 Hz OWOUT Owio, 0, [$F3]

4 585.94 Hz OWOUT Owio, 0, [$F4]

5 294.12 Hz OWOUT Owio, 0, [$F5]

6 146.48 Hz OWOUT Owio, 0, [$F6]

7 73.52 Hz OWOUT Owio, 0, [$F7]

8 36.62 Hz OWOUT Owio, 0, [$F8]

9 18.38 Hz OWOUT Owio, 0, [$F9]

Remember, these are nominal frequency values. They are derived from the AVR’s internal RC clock, so

they can vary as much as ±10%. Frequency values larger than 9 are ignored, and no changes are made if
a larger value is attempted.

© Parallax, Inc. • AVR Firmware: GPIO-5 (2008.03.05)) Page 5 of 12

Finally, the odd-numbered frequency values cause the PWM to behave somewhat differently than the
even-numbered ones do. The odd-numbered values designate “phase correct” pulses. This is to say that
when the duty cycle changes, the change is made symmetrically about the center of the pulse, like this:

This type of PWM is often used for DC motor speed controllers or other inductive load drivers, where
phase shifts may be undesirable.

In the even-numbered frequencies, the leading edges of the pulses line up, regardless of any changes
made to the duty cycle, thus:

This type of PWM is completely adequate for low-pass filtering to obtain a voltage output.

The other difference between the two PWM modes is the base length of each pulse. In the even-
numbered modes, the base length is 256 units. So duty cycles can range from 0/256 to 255/256, positive
or negative. The odd numbered modes have a base length of 255 units. So duty cycles can range from
0/255 to 255/255, positive or negative.

Modulated Output

When the m bit in the Digital Output and PWM Output commands is set to a 1, the command
executes as specified, except that the AVR pin is left in the input state. Thereafter, whenever the Owio
pin is brought low, the chosen output pin is driven to its specified state (i.e. high, low, or PWM). When
the Owio pin is brought high, the chosen output pin floats again. This continues until a negative-going
pulse shorter than 3µs is detected on Owio, at which point the chosen pin remains floating, and the AVR
resumes accepting commands on Owio.

Note: While the AVR is modulating the chosen output pin, it is insensitive to long reset pulses on
Owio. The only way to terminate modulation is to send a short pulse, less than 3µs, as described
above. Because of this protocol, the modulation of the chosen output pin will experience a 4µs delay
on both rising and falling edges from Owio. Therefore, it is not possible to modulate at a rate faster
than 125KHz.

Modulated output has two main applications:

1. Transferring pulses on Owio to any of the AVR’s four I/O pins, rather like a digital multiplexer.
This makes it possible, for example, to send serial data to pins A0, A1, B0, or B1, which do not

© Parallax, Inc. • AVR Firmware: GPIO-5 (2008.03.05)) Page 6 of 12

have connections in common with the BASIC Stamp chip. It also enables all the AVR pins (which
have no series protection resistors) to drive loads that the more protected Stamp pins cannot,
such as the input to the Parallax Servo Controller.

2. Modulating IR LEDs for communication with an infrared detector. Since the nominal 37.5KHz
PWM output of the AVRs is close to the 38KHz detection frequency of these detectors, it is
possible to send serial data to them by modulating a 50% duty cycle PWM output with the
SEROUT command. this makes wireless communication between two motherboards, or from a
motherboard to a remote-controlled device easy.

Following is an example program that communicates with a Parallax Servo Controller to read its version
number. It demonstrates not only the ability to modulate an AVR output pin, but also the fact that a
shared pin (i.e. A2, A3, B2, or B3) can also be used as an input pin to the Stamp while the AVR is in the
modulated output state:

' {$STAMP BS2pe}

' {$PBASIC 2.5}

Owio PIN 10 ' AVR's (socket A) GPIO5 command pin.

Sinp PIN 11 ' Serial input pin (same as A2).

Baud CON 396 ' Constant for 2400 baud.

buff VAR Byte(3) ' Temporary variable.

PAUSE 10 ' Wait for AVR to reset

OWOUT Owio, 1, [$64] ' Set A2 (P11) to a modulated "low" output.

FindPSC: ' Get the version number of the PSC.

 DEBUG "Finding PSC", CR

 SEROUT Owio, Baud+$8000, ["!SCVER?", CR] ' Send the PSC "Version"

 ' command via Owio.

 SERIN Sinp, Baud, 500, FindPSC, [STR buff\3] ' Get the response

directly

 ' from Sinp.

 DEBUG "PSC ver: ", buff(0), buff(1), buff(2), CR ' Display the result.

 HIGH Owio ' Send a short pulse to

 ' Owio to terminate

 PULSOUT Owio, 1 ' modulated output.

 INPUT Owio ' Restore Owio to an

input.

 STOP

The next example shows how to drive an infrared LED with a carrier frequency of 37.5Khz, modulated by
serial data for wireless communication with another BASIC Stamp. For this example, we need one
MoBoStamp-pe and another BASIC Stamp board, wired as shown below:

© Parallax, Inc. • AVR Firmware: GPIO-5 (2008.03.05)) Page 7 of 12

220R

A2 (P11)
IR DetectorIR LED

Second BASIC Stamp

+5V

P15

MoBoStamp-pe

Here’s the code that drives the LED:

' {$STAMP BS2pe}

' {$PBASIC 2.5}

Owio PIN 10 'Use 10 for socket "A"; 6 for socket "B".

PAUSE 10

OWOUT Owio, 1, [$66, $80] 'Set up A2 for modulated, 50% PWM output.

DO

 SEROUT Owio, 396 + $8000, ["Test: ", DEC B0, CR] 'Output to LED.

 B0 = B0 + 1

 PAUSE 100

LOOP

This is the code used by the receiving BASIC Stamp to capture and display the IR serial data:

' {$STAMP BS2}

' {$PBASIC 2.5}

DO

 SERIN 15, 396, [WAIT("Test: "), DEC W0] 'Receive serial data from detector.

 DEBUG DEC W0, CR 'Display the numerical portion.

LOOP

For serial I/O using modulated IR, be sure to use a baud rate of 2400 or less. This will give the IR
detector about 15 cycles of the 37.5KHz carrier per bit. Higher baud rates would leave fewer carrier
cycles per bit and could affect reception reliability.

Inputs

Reading signals from the AVR’s pins is a two-step process. First the appropriate command is sent via
OWOUT. Then OWIN is used to get the actual data. If you are reading signals from a daughterboard on
Ports 2 and/or 3, be the corresponding shared Stamp pin(s) are configured as input(s) to avoid bus
conflicts.

Digital Input

The following command format is used for reading digital pin values:

0 u Addr 0 0 0 0

© Parallax, Inc. • AVR Firmware: GPIO-5 (2008.03.05)) Page 8 of 12

Addr is the two-bit address (00 = 0, 01 = 1, 10 = 2, 11 = 3) of the source port. u is a flag indicating
whether to enable the internal pullup on this pin. If set to a 1, the pullup is enabled; if reset to a 0, it is
disabled. Once issued, OWIN must be used in bit mode to read the state of the chosen port pin.

The following program segment reads the state of pin 3:

 State VAR Bit

 OWOUT Owio, 0, [$30]

 OWIN Owio, 4, [State]

In some cases it may be desired just to tri-state the port pin or to enable the pullup without reading it.
This can be accomplished by sending a reset after the command byte, as follows:

 OWOUT Owio, 2, [$20]

All this does is to make Port 2 float as an input pin. $60 would have done the same, while enabling the
pin’s pullup.

Counter Input

By invoking the counter input command, pulses arriving on any selected AVR port pin may be counted
over a programmed time interval. The AVR can count pulses arriving at up to a 1MHz rate. Minimum high
and low times for these pulses are 500ns each. The counter input command has the following format:

0 u Addr 0 0 H L

Addr is the two-bit address (00 = 0, 01 = 1, 10 = 2, 11 = 3) of the source port. u is a flag indicating
whether to enable the internal pullup on this pin. If set to a 1, the pullup is enabled; if reset to a 0, it is
disabled. H and L determine which bytes (high-order and/or low-order) of the final count to return. At
least one of these bits must be a one. If only the low-order byte is selected and if the actual count is
greater than 255, 255 is returned. If only the high byte is selected, and the actual count is greater than
65535, 255 is returned. If both bytes are selected, and the actual count is greater than 65535, 65535 is
returned.

This command starts the counting process immediately. Counting continues until the next falling edge
from the Stamp on OWIO. This will typically be a reset pulse. But unlike all other resets, this one does
not reset the protocol engine: it merely stops counting and sets up to send the count byte(s) back to the
Stamp via its OWIN command. It’s most convenient just to use an OWIN prefaced by a reset pulse (i.e.
OWIN Owio, 1, …).

The following example counts pulses on Port 2 for a duration of 50ms and computes the actual
frequency, which then gets printed out:

 Result VAR Word

 OWOUT Owio, 0, [$23]

 PAUSE 50

 OWIN Owio, 1, [Result.HIGHBYTE, Result.LOWBYTE]

 DEBUG "Frequency: ", DEC Result / 50

 DEBUG ".", DEC2 Result // 50 * 2, " KHz", CR

Remember that the actual number of bytes read by OWIN must agree with the number requested by the
H and L parameters.

© Parallax, Inc. • AVR Firmware: GPIO-5 (2008.03.05)) Page 9 of 12

Comparator Input

An analog voltage on any of Ports 0, 1 or 2, may be compared with either an internal 1.1-volt reference,
or with an analog voltage on Port 3. The following command performs the comparison:

0 0 Addr 1 Ref 0 0

Addr is the two-bit address (00 = 0, 01 = 1, 10 = 2) of the input port. (If Port 3 is chosen, the result of
the comparison will always be zero.) Ref determines what to compare the pin to. A zero selects Port 3; a
one, the internal 1.1-volt reference.

After this command is issued, a 1-bit OWIN should be used to read the result of the comparison. A “one”
means the Addressed port pin was higher than the reference; a “zero”, equal or lower. In the following
example, Port 1 is compared with Port 3. The result is read into the Bit variable C:

 C VAR Bit

 OWOUT Owio, 0, [$18]

 OWIN Owio, 4, [C]

Analog Input

An analog voltage on either Port 0 or Port 1 may be converted to a digital value by the AVR’s 10-bit A-to-
D converter and read by the Stamp. The command for doing so is as follows:

0 0 Addr 1 Ref H L

Addr is the two-bit address (00 = 0, 01 = 1) of the analog input port. Ref determines the voltage
reference source (highest voltage) for the A-to-D conversion. A zero selects Vdd; a one, the internal 1.1-
volt reference. H and L determine how to return the digitized value. At least one of these bits must be a
one. The following table defines how H and L are interpreted:

H L Actual 10-bit value (ADC) Returned Bytes(s)

0 – 255 ADC[7..0]
0 1

256 - 1023 255

1 0 0 - 1023 ADC[9..2] (i.e. ADC / 4)

1 1 0 - 1023 ADC[9..8], ADC[7..0]

As soon as the command is issued, the desired A-to-D conversion begins. Because this conversion may
not be finished before the next read, it is necessary to poll the AVR by reading a single bit before the
conversion result can be read. If this bit is a “one”, the AVR is still busy. If it’s a “zero”, the conversion is
complete, and the result byte(s) may be read.

The following example reads the voltage on Port 0, using Vdd as a reference, and returns the entire 10-
bit value:

 Voltage VAR Word

 Busy VAR Bit

 OWOUT Owio, 0, [%00001011]

 DO : OWIN Owio, 4, [Busy] : LOOP WHILE Busy

 OWIN Owio, 0, [Voltage.HIGHGYTE, Voltage.LOWBYTE]

© Parallax, Inc. • AVR Firmware: GPIO-5 (2008.03.05)) Page 10 of 12

If you use Vdd as the voltage reference, be sure you have a reliable voltage source. If the motherboard is
jumpered to use the USB’s 5-volt source as Vdd, this voltage could be as low as 4.2 volts. Under these
circumstances, it would be better either to use 3.3V for Vdd or to lower the analog input voltage with a
resistor divider and use the internal 1.1-volt reference. An alternative would be to add a 2.5V bandgap
reference to the other analog input and read both the unknown voltage and the 2.5-volt reference
voltage, as compared to Vdd. Then you can compute the unknown voltage in such a way that the Vdd
terms cancel.

Important Note: No voltage input on an AVR analog input pin may exceed Vdd by more than 0.5 volts,
regardless of which reference you use. Use a resistor divider, if necessary, to keep such voltages in
range.

RAM Writes and Reads

The AVR has 32 spare bytes of RAM available. The values stored here are zeroed on a hardware reset,
but persist across multiple protocol resets. This section describes how to access the RAM from PBASIC.

RAM Writes

To write a single byte to RAM, use the Enter command ($En):

1 1 1 0 0 Addr

The number Addr can range from 0 to 7 and represents a shorthand notation for writing a single byte to
the address represented by Addr. The command should be followed immediately by the single byte value
to be written.

The following example writes the value 77 at address 2:

 OWOUT Owio, 0, [$E2, 77]

To write multiple bytes or to write to addresses beyond 7, use the Enter Address command ($EA),
followed by the beginning address to write to:

1 1 1 0 1 0 1 0

0 0 0 Addr

The address value, Addr, can range from 0 through 31 ($1F). This address byte should be followed by
one or more bytes of data, which are stored sequentially, beginning with the chosen address. This
continues until a reset is received. Data received for addresses beyond $1F are ignored.

The following example writes the values 123 and 64, beginning at address $13. Notice the use of the
“reset after data”, which is used to terminate data reception:

 OWOUT Owio, 2, [$EA, $13, 123, 64]

RAM Reads

To read a single byte from RAM, use the Dump command ($Dn):

1 1 0 1 0 Addr

© Parallax, Inc. • AVR Firmware: GPIO-5 (2008.03.05)) Page 11 of 12

The number Addr can range from 0 to 7 and represents a shorthand notation for reading a single byte
from the address represented by Addr. The command should be followed immediately by a read of a
single byte.

The following example reads the value stored in location 5 and saves it in the variable Dat:

 OWOUT Owio, 0, [$D5]

 OWIN Owio, 0, [Dat]

To read multiple bytes or to read from addresses beyond 7, use the Dump Address command ($DA):

1 1 0 1 1 0 1 0

0 0 0 Addr

The address value, Addr, can range from 0 through 31 ($1F). This address byte should be followed by
a read of one or more bytes of data, which are retrieved sequentially, beginning with the chosen address.
This continues until a reset is received. Data read from addresses beyond $1F are assigned the value
zero.

The following example reads three values beginning at location 15, and assigns them to the variables I,
J, and K. Notice the use of the “reset after data” in the OWIN statement to terminate the read
operation.

 OWOUT Owio, 0, [$DA, 15]

 OWIN Owio, 2, [I, J, K]

© Parallax, Inc. • AVR Firmware: GPIO-5 (2008.03.05)) Page 12 of 12

Summary

The following table summarizes the GPIO commands:

Allowed
Port No.

3 2 1 0

Command
p = port no.
u = pullup
m = modulate

Description Followup

�� � � � 0upp0000 = $p0 Digital Input Read bit

�� � � � 0upp0001 = $p1 Counter input, LSB Read byte (reset before data)

�� � � � 0upp0010 = $p2 Counter input, MSB Read byte (reset before data)

�� � � � 0upp0011 = $p3 Counter input, Word Read 2 bytes (reset before data)

�� � � � 0mpp0100 = $p4 Digital output 0

�� � � � 0mpp0101 = $p5 Digital output 1

�� � 0mpp0110 = $p6 PWM output positive Output PWM value (one byte)

�� � 0mpp0111 = $p7 PWM output negative Output PWM value (one byte)

 � �� � 00pp1000 = $p8 Compare to Port 3 Read bit

 �� � 00pp1001 = $p9 ADC[7..0], Vdd ref Read bit until 0, then read byte

 �� � 00pp1010 = $pA ADC[9..2], Vdd ref Read bit until 0, then read byte

 �� � 00pp1011 = $pB ADC[9..0], Vdd ref Read bit until 0, then read 2 bytes

 � �� � 00pp1100 = $pC Compare to 1.1V ref Read bit

 �� � 00pp1101 = $pD ADC[7..0], 1.1V ref Read bit until 0, then read byte

 �� � 00pp1110 = $pE ADC[9..2], 1.1V ref Read bit until 0, then read byte

 �� � 00pp1111 = $pF ADC[9..0], 1.1V ref Read bit until 0, then read 2 bytes

 $F0 - $F9 Set PWM frequency

 $En, n = 0-7. Save 1 byte to RAM. Output byte value to save.

 $EA Save data to RAM Output address, data byte(s), reset

 $Dn, n = 0-7 Read 1 byte from RAM Read byte

 $DA Read data from RAM Output address, read byte(s), reset

 $DD Read firmware ID Read three bytes

