

Web Site: www.parallax.com
Forums: forums.parallax.com
Sales: sales@parallax.com
Technical: support@parallax.com

Office: (916) 624-8333
Fax: (916) 624-8003
Sales: (888) 512-1024
Tech Support: (888) 997-8267

© Parallax, Inc. • AVR Firmware: ENC1 (2007.02.04) Page 1 of 4

AVR Firmware: ENC, Version 1

Quadrature Encoder Tracking (Preliminary)

Introduction

This document describes AVR firmware that is used in conjunction with the BS2pe BASIC Stamp
motherboard (the MoBoStamp-pe). This firmware can be uploaded to either or both of the motherboard’s
two AVR coprocessors as file ENC1.hex. Once loaded, the coprocessor is capable of communicating with
the BASIC Stamp using PBASIC’s OWOUT and OWIN commands. This communication takes place on
the AVR’s OWIO pin (see illustration below) to read data from, and write data to, the AVR. By utilizing
the capabilities of the AVR coprocessor, the encoder’s position can be tracked continuously without
intervention from the BASIC Stamp.

The functions available with this firmware include:

• Keeping track of up/down count (16-bits) from quadrature encoder inputs (up to 37.5KHz) on
ports 0 and 1.

• Starting and stopping the count.

• Zeroing the count.

• Setting the count to an arbitrary value.

The AVR (Atmel ATTiny13) pinout is shown below:

}
{

Pin OWIO connects to the Stamp and has a pull-up resistor to Vdd. Communication is bi-directional via a
protocol using open-collector signaling. Ports 2 and 3 also connect to the Stamp without external pull-
ups, as well as to an attached daughtercard. Ports 0 and 1 connect to an attached daughtercard only and
are the quadrature inputs from the encoder. Ports 2 and 3 are not used by ENC1 and are left floating so
the BASIC Stamp can control them directly.

Important: Make sure that the signal levels from the encoder are no higher than the MoBoStamp’s Vdd
setting. You cannot use 5V encoder signals when Vdd is set to 3.3V!

© Parallax, Inc. • AVR Firmware: ENC1 (2007.02.04) Page 2 of 4

Command Protocol

Communication with the AVR is via one-character, case-insensitive commands sent using the Stamp’s
OWOUT statement, possibly followed by additional data bytes or by reads using OWIN. An example
command might be:

 OWOUT Owio, 0, [“G”]

Where Owio is the pin (10 for coprocessor “A”; 6, for coprocessor “B”) used to communicate with the
AVR. The above command (“Go”) will cause ENC1 to start (or resume) counting.

Some commands are used to get data from the AVR. An example would be:

 Count VAR Word

 OWOUT Owio, 0, [“R”]

 OWIN Owio, 2, [Count.LOWBYTE, Count.HIGHBYTE]

This reads the current value of the encoder “position” into variable Count.

Any reset (low pulse lasting longer than 160 microseconds) sent via the OWIO pin will reset the AVR’s
protocol state machine, interrupting any transaction in progress. It will not affect the value of the count
or whether the counting is enabled or stopped. A reset can be incorporated into an OWOUT or OWIN

statement by choosing the second argument appropriately. In the above example, the second argument
for the OWIN statement is 2, which means “reset after the input”. Doing so will reset the
communications protocol, effectively canceling further reads until another read command is issued.

In the following example, a reset is issued before the command to begin counting:

 OWOUT Owio, 1, [“G”]

A reset is usually a good idea in the first transaction of a Stamp program. It should also be considered
when communication with the AVR is infrequent or done in electrically noisy environments. A too-liberal
use of resets, however, can not only slow a program down, but it can also mask program errors
associated with AVR communications.

Finally, the AVR comes out of a hardware reset more slowly than the Stamp does. So don’t start talking
to it right away in your Stamp program. To make sure the AVR is ready for communicating, put a 5ms
PAUSE at the beginning of your Stamp program:

 PAUSE 5

This will prevent out-of-the gate misfires.

Firmware Identification

To identify the firmware currently extant in the AVR (assuming it uses the same protocol), send the
version command (“V”). The AVR will respond with three bytes of data. The first two are characters
representing the name of the firmware. The third is a version number. This information can be used by a
BASIC Stamp program to make sure the correct AVR firmware is loaded. The following program snippet,
where I, J and K are byte variables, prints out this information:

 OWOUT Owio, 0, [“V”]

 OWIN Owio, 0, [I, J, K]

© Parallax, Inc. • AVR Firmware: ENC1 (2007.02.04) Page 3 of 4

 DEBUG " Device: ", I, J, ", Version: ", DEC K

For this firmware, the following line is printed:

 Device: EN, Version: 1

Zero the Counter

To zero the internal 16-bit counter, send the zero (“Z”) command:

 OWOUT Owio, 0, [“Z”]

This will zero the counter immediately, regardless of whether counting is enabled or not.

Set the Counter

To set the counter to any arbitrary value, the write (“W”) command can be used. Following the command
are two arguments: the least significant byte of the new counter value, followed by the most significant
byte. For example, the following will set the counter to $1234:

 OWOUT Owio, 0, [“W”, $34, $12]

The write will take place immediately after the last byte is received, regardless of whether counting is
enabled or not.

Start Counting

When the AVR comes out of hardware reset, the counter is disabled. To enable counting, you must issue
the go (“G”) command:

 OWOUT Owio, 0, [“G”]

This will cause the counter to begin incrementing or decrementing, based on the quadrature encoder
inputs on ports 0 and 1. The count will increase when quadrature input 1 is high, and quadrature input 0
goes from low to high. It will decrease when input 1 is high, and input 0 goes from high to low:

Count up

Count down

Input 0

Input 1

Input 0

Input 1

Counting up from $FFFF (65535) will roll over to 0; counting down from 0 will roll under to $FFFF. ENC1
has been tested with clean encoder inputs at 37.5KHz without error.

© Parallax, Inc. • AVR Firmware: ENC1 (2007.02.04) Page 4 of 4

Stop Counting

To stop the counter, issue the stop (“S”) command:

 OWOUT Owio, 0, [“S”]

This will halt the counter immediately.

Read Current Count

To enter count read mode, issue the read (“R”) command. This will make it possible to get the count
from the AVR using subsequent OWIN commands. The AVR will stay in read mode until a command
protocol reset is issued. Each subsequent read must consist of two bytes: the low byte of the count,
followed by the high byte. Here’s an example:

 Cnt VAR Word

 I VAR Word

 OWOUT Owio, 0, [“GR”]

 FOR I = 1 TO 1000

 OWIN Owio, 0, [Cnt.LOWBYTE, Cnt.HIGHBYTE]

 DEBUG DEC Cnt, CR

 NEXT

 OWOUT Owio, 1, [“S”]

The first OWOUT starts the counter (“G”), then enters read mode (“R”). Subsequent to that, 1000 byte
pairs are read continuously, without having to reissue the read command each time. To get out of read
mode, the last OWOUT issues a reset before sending the stop (“S”) command.

Read Differential Count

The read differential (“D”) command works just like the read current count command, except that it
returns the difference between the current count and the count last read. This is handy when all you
want to know, say, is how much a rotating shaft has moved since the last time you checked – not what
its current position is. Here’s a repeat of the above example, but using the read differential command
instead:

 Cnt VAR Word

 I VAR Word

 OWOUT Owio, 0, [“GD”]

 FOR I = 1 TO 1000

 OWIN Owio, 0, [Cnt.LOWBYTE, Cnt.HIGHBYTE]

 DEBUG DEC Cnt, CR

 NEXT

 OWOUT Owio, 1, [“S”]

