

Application Note

Philip C. Pilgrim

Email: propeller@phipi.com

© Bueno Ssytems, Inc. • Ser2ftp (2007.01.05) Page 1 of 26

Ser2ftp (ver. 0.1alpha)
A Program for Getting BASIC Stamp and Propeller Output onto the Internet

Disclaimer
This document describes a program that writes data not only to local files but also to those hosted on a
remote server. Consequently, the potential for abuse, as well as system disruption and compromise is
extremely high. It is incumbent upon the user to verify that this program meets his/her requirements
before deploying it on a system that might suffer from inadvertent file writes.

This program is distributed free of charge in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A
PARTICULAR PURPOSE.

Introduction
There are numerous ways to interface Parallax’s BASIC Stamp and Propeller microcontroller products to
the Internet. Some involve attaching server devices, such as Parallax’s PINK module, which allows the
micro to serve content directly from an Ethernet port, through the user’s NAT router and firewall, to the
Internet at large. Though this is an appealing solution in many situations, not everyone can (or wants to)
run his own server. Some ISPs prohibit it. But even where it’s allowed, not all users are equipped to set
up such a system securely or have the necessary bandwidth to serve a wide audience. For this reason,
many choose to leave web-serving to the pros and pay to have their sites hosted externally. But this
creates a gap between any dynamic content one might wish to serve and the source of that content,
residing at the user’s location. The program described here, ser2ftp, is designed to bridge that gap.

Ser2ftp.exe runs in the background on a user’s PC, to which is attached the user’s micro via a serial port
(or USB virtual serial port) connection. It can accept commands from the micro to save data either to
local files or to a remote computer via the FTP protocol. The kinds of files it can save or transfer include
text files (.txt, .htm, .html, etc.), binary files (.bin, .dat), and graphic image files (.gif, .jpg, .png). For
creating graphics files, ser2ftp includes a full set of drawing commands, which can be used to produce
graphs, charts, and raster graphic images.

Getting Started
To run ser2ftp, it is necessary to create a directory for it to reside in and to copy the files ser2ftp.exe and
ser2ftp.ini into that directory. Before running ser2ftp.exe, you will have to edit ser2ftp.ini to conform to
your particular needs. Here’s an overview of the settings that need to be made:

maxlevel (default 999)

This parameter determines how much information is logged onto the console from things that transpire
while ser2ftp is running. All logged items with numbers up to and including maxlevel will appear on the
console screen. The log levels are as follows:

1. Errors and critical messages.

5. Running commentary of ser2ftp actions.

8. Interpretation of commands received from the attached micro.

10. Echo of every line received from the attached micro.

© Bueno Systems, Inc. • Ser2ftp (2007.01.05) Page 2 of 26

A typical setting, which logs errors and the running commentary might look like this:

maxlevel = 5 #Set to log errors and commentary.

Note that the pound sign can be used for inserting comments anywhere in the ini file. The pound sign
and everything after it will be ignored by ser2ftp.exe. It can also be used to “comment out” lines that are
not needed. Also, any setting commented out or not included in the ini file will either be assigned a
default value, if appropriate, or left undefined. Default values are shown in the parameter subheadings in
this section.

eol (default LF)

This establishes the end-of-line character used in text files. Lines sent from the micro to ser2ftp must
always end with a carriage return (CR). However, this may not be how you want lines in your generated
files to end. Files sent to Unix/Linux-based servers, for example, should end with a linefeed (LF); those
residing on or sent to Windows-based machines, with a carriage-return/linefeed sequence (CRLF). Valid
values for eol are: LF, CR, CRLF, and LFCR. An example assignment follows:

eol = CRLF

serialport (default COM1)

This parameter determines which serial communications port the micro is connected to. An example:

serialport = COM3

baudrate (default 9600)

This parameter defines the communication baudrate with the attached micro. Valid values are 300, 600,
1200, 2500, 4800, 9600, 19200, 38400, 57600, and 115200. Example:

baudrate = 19200

ftpserver (default 127.0.0.1)

The ftpserver parameter establishes the URL of the server to which files are uploaded by ser2ftp. This
should be the server’s server name or IP address. The default value, 127.0.0.1 is the same as “localhost”,
the machine upon which ser2ftp is running. Here’s an example:

ftpserver = ftp.myserver.com

ftpuserid (default guest)

This parameter is the username which is used to log into the ftp server. Example:

ftpuserid = myuserid

ftppasswd (default guest)

This is the password required for ftp login. Bear in mind that userid and passwd are saved in the ini file
in plaintext and sent over the internet unencrypted. For this reason, it is recommended that you establish
a separate ftp account for ser2ftp that allows access to the barest minimum of your server’s directory
tree necessary for the job at hand. Here’s an example:

ftppasswd = mypassword

ftpdir (default ./)

This is the directory that ser2ftp will switch to when it first logs in. The default value (./) is just the login
directory established when setting up the user’s ftp account. This value should represent the highest
directory in the directory tree to which access will be permitted by ser2ftp. When the connected micro

© Bueno Systems, Inc. • Ser2ftp (2007.01.05) Page 3 of 26

uploads data, it is not permitted to prepend an absolute path to the filename – only a relative path. Also
excluded are relative paths like “../” which traverse up the directory tree. This is done to provide a
measure of security against inadvertent writing to an undesired directory. However, absolute paths are
allowed for ftpdir, so be careful what you specify! Here’s an example:

ftpdir = ./mydirectory

In this example, the root directory, to which all ftp saves are relative, will be “mydirectory”, which resides
one level under the default login directory.

filedir (default current working directory)

This is like ftpdir, except that it pertains to files saved to the local system. The default value is whatever
the current working directory is when ser2ftp is started (i.e. the “Start In” directory listed under
“Properties” for any Windows shortcut to ser2ftp, or the directory from which ser2ftp is launched in a
DOS window). Again, for security reasons, the attached micro cannot specify a file which involves
traversing above the filedir directory. Here’s an example:

filedir = c:\jobs\mysavedfiles

watchdog (default 120)

This parameter helps to keep your attached micro alive in the event of power-downs, intermittent
disconnects, runaway programs, and other faults. It determines the maximum time, in seconds, which
may pass without receiving a line of data from the micro. If this time limit is exceeded, the micro will be
reset, via a pulse on DTR, and sent an “Event 0” notification. (See “EV1 to EV9” later in this document.)
The watchdog setting may be changed by a command from the attached micro. A setting of 0 disables
the watchdog timeout. Example:

watchdog = 1200 #Time out after 20 minutes.

Once the watchdog interval has passed and a connection is determined to be defunct, ser2ftp will
attempt to restore it at one-minute intervals until communication can be reestablished. This is particularly
important when connection is through a USB adapter since, once disconnected, the port has to be closed
and reopened to restore communication.

Once ser2ftp.ini has been edited to your satisfaction, you can run ser2ftp.exe. When started from
Windows, it will open a DOS window in which logged events are recorded.

resetdelay (default 500)

This parameter determines how long, in milliseconds, to delay after resetting the attached micro before
sending the reset event string. For the BASIC Stamp, 500 is a reasonable value. The Propeller will require
a longer delay, which will depend on how soon the serial UART cog gets loaded and operational. You will
have to experiment to find the best value. Example:

resetdelay = 1000 #Delay after reset is one second.

Basic Operations
Ser2ftp responds to commands sent to it over the serial port from the attached micro. Commands are of
the form,

!CMD[:<param>:<param>:…:<param>]C
R, where

CMD is a three-letter command designator. The parameters, if any, are separated by colons (:), and C
R is

the carriage return character (decimal 13). (Brackets [] are used throughout this document to indicate
optional data. Angle brackets <> are used around parameter names. Neither kind of bracket is sent by
the micro to ser2ftp.) Parameters treated as numbers can be decimal (e.g. 123), binary (e.g. %10110),

© Bueno Systems, Inc. • Ser2ftp (2007.01.05) Page 4 of 26

or hexadecimal (e.g. $09FC). Numerical parameters preceded by a minus sign (hyphen) are treated as
negative numbers. For 9600-baud communication under PBASIC, issuing these commands can be as
simple as sending them with a DEBUG statement, viz:

DEBUG “!ECH:\Y”, CR

For baud rates other than 9600 baud, SEROUT to “pin 16” can be used:

SEROUT 16, SerialModeValue, [“!ECH:\Y”, CR]

Every command must end with a carriage return. Ser2ftp waits for complete lines, beginning with ! and
ending with C

R before beginning processing. Throughout this document, DEBUG will be used in the
examples for brevity.

All lines sent to ser2ftp may contain “escape sequences”, i.e. characters which have special meaning or
are otherwise cumbersome to transmit from a BASIC or Spin program due to syntax constraints. After the
line is read, and before it is processed, the following embedded escape sequences are substituted with
their corresponding replacements:

\r Carriage return.
\n Newline (linefeed).
\q Double quote mark (“).
\c Colon (:), processed after colon-separated arguments are split out.
\t Tab character.
\\ Backslash (\).

\m Current month number (1 - 12).
\M Current month abbreviation (Jan – Dec).
\d Current day number (1 – 31).
\D Current day-of-year number (1 – 366).
\y Current year number (00 – 99).
\Y Current year number (1900 - 2038).
\w Current weekday abbreviation (Sun – Sat).
\W Current weekday name (Sunday – Saturday).
\h Hour number (00 – 23) in 24-hour time.
\H Hour number (1 – 12) in 12-hour time.
\u Minutes number (00 – 59). Be careful here! \m is the month!
\s Seconds number (00 – 59).
\S Seconds number since the beginning of the epoch (Unix time).
\p a.m. or p.m., as appropriate.
\P AM or PM, as appropriate.
\Z GMT, GDT, LST, or LDT, as appropriate.

The available commands and their meanings are given in the sections that follow.

UTC (Universal Time Capture)
This command takes no arguments and captures the current UTC, or GMT (Greenwich Mean Time), time.
The captured time value can be used later to include time information in saved or uploaded files. If no
UTC or LTC commands are received, the data returned by the above escape sequences will be the local
time at which ser2ftp.exe was started. Example:

DEBUG “!UTC”, CR

© Bueno Systems, Inc. • Ser2ftp (2007.01.05) Page 5 of 26

LTC (Local Time Capture)
This command takes no arguments and captures the current local standard (or daylight) time. The
captured time value can be used later to include time information in saved or uploaded files. If no UTC or
LTC commands are received, the data returned by the above escape sequences will be the local time at
which ser2ftp.exe was started. Example:

DEBUG “!LTC”, CR

ECH (Echo the arguments back to the micro)
This command will echo everything following it back to the connected micro. This can be used to
resynchronize communication, as well as to obtain time and date info from the PC. Here’s an example
that requests the month, day, and year from the latest requested time capture:

DEBUG “!ECH:??\m,\d,\y\r”, CR
DEBUGIN WAIT(“??”), DEC Month, DEC Day, DEC Year

Ser2ftp inserts a 50-millisecond wait between receiving the request and sending the echo to give a slow
micro time to get ready for it. Also note that a carriage return is not automatically sent after the echoed
data. It has to be inserted into the echoed string, if wanted, as in the above example (\r).

EOL (Set a new end-of-line sequence.)
The end-of-line sequence established by the eol parameter in the ini file can be overridden with this
command. In the following example, the end-of-line sequence is replaced with two carriage returns and a
linefeed, effectively double-spacing any text files that follow:

DEBUG “!EOL:\r\r\n”, CR

This capability makes it possible, for example, to write DOS-style text files on the local machine, and
Unix-style text files on a remote server. You can also use it to eliminate the eol sequence entirely by
providing an empty parameter.

WDT (Set watchdog timeout)
This command is used to override any watchdog setting established in the ini file. It takes one argument:
the number of idle seconds before resetting the micro. Again, a zero argument disables the watchdog
timer. Example:

DEBUG “!WDT:0”, CR

A watchdog timeout triggers an “EV0” event. Such an event resets the micro via a pulse on DTR. Then,
after a 0.5-second delay, transmits the string “EV0” to the micro.

EV1 to EV9 (Schedule an event)
In addition to watchdog timeouts, ser2ftp is also capable of managing a single event schedule, by which
operations in the micro can be synchronized. When an event numbered between EV0 and EV4 occurs
(EV0 being the watchdog timeout, described above), the micro is first reset, then, after a 0.5-second
delay, the event string “EV0”, “EV1”, …, or “EV4” is sent. Higher-numbered events do not reset the
micro: they just send the event string “EV5”, “EV6”, …, or “EV9”. When an event is scheduled, it
completely replaces any other event schedule currently in place (except for the watchdog timeout).

The event schedule is specified in this command’s single argument and follows a very strict syntax. (For
Linux users, this is the same syntax used by crontab.) The argument consists of five or six “fields”,
separated by spaces. These correspond to minute, hour, day of month, month, day of week, and
(optionally) seconds. The following specification for this argument string is quoted from the
documentation for Perl’s Schedule::Cron module, which is used as the basis of ser2ftp’s event system:

© Bueno Systems, Inc. • Ser2ftp (2007.01.05) Page 6 of 26

Field Values
minute 0-59
hour 0-23
day of month 1-31
month 1-12 (or as names)
day of week 0-7 (0 or 7 is Sunday, or as names)
seconds 0-59 (optional)

A field may be an asterisk (*), which always stands for “first-last”. Ranges of numbers are allowed.
Ranges are two numbers separated with a hyphen. The specified range is inclusive. For example, 8-
11 for an “hour” entry specifies execution at hours 8, 9, 10 and 11.

Lists are allowed. A list is a set of numbers (or ranges) separated by commas. Examples: 1,2,5,9
and 0-4,8-12.

Step values can be used in conjunction with ranges. Following a range with “/<number>” specifies
skips of the number’s value through the range. For example, 0-23/2 can be used in the “hour” field
to specify command execution every other hour [and is equivalent to]
0,2,4,6,8,10,12,14,16,18,20,22. Steps are also permitted after an asterisk, so if you want to say
“every two hours”, just use */2.

Names can also be used for the “month” and “day of week” fields. Use the first three letters of the
particular day or month (case doesn't matter).

Note: The day of a command's execution can be specified by two fields: day of month, and day of
week. If both fields are restricted (i.e., aren't *), the command will be run when either field matches
the current time. For example, 30 4 1,15 * Fri would cause a command to be run at 4:30 a.m.
on the 1st and 15th of each month, plus every Friday.

Examples:

8 0 * * * 8 minutes after midnight, every day.
5 11 * * Sat,Sun at 11:05 on each Saturday and Sunday.
*/5 * * * * every five minutes.
42 12 3 Feb Sat at 12:42 on 3rd of February and on each Saturday in February.
32 11 * * * 0-30/2 11:32:00, 11:32:02, ... 11:32:30 every day.

An optional sixth column can be used to specify the seconds within the minute. If not present, it is
implicitly set to 0.

The following example illustrates how an event might be scheduled in PBASIC.

' {$STAMP BS2pe}
' {$PBASIC 2.5}

Event VAR Byte

LOW 4 ‘Used by MoBoStamp to disable serial echo.

DEBUGIN WAIT(“EV”), DEC1 Event
IF (Event = 0) THEN

DEBUG “!WDT:60”, CR ‘Set the watchdog timer for 1 minute.
DEBUG “!EV1:*/15 * * * *”, CR ‘Schedule event 1 for every 15-minutes.

ELSE
‘Do the 15-minute interval task.

© Bueno Systems, Inc. • Ser2ftp (2007.01.05) Page 7 of 26

ENDIF
DO

DEBUG “!NOP”, CR ‘Send a NOP for keep-alive.
SLEEP 30 ‘Sleep for 30 seconds.

LOOP

This will be a typical pattern for implementing events that reset the BASIC Stamp. The “LOW 4” will
disable the serial echo if you’re using the MoBoStamp Board. This can be helpful if EV5 through EV9 are
being employed, because they might inadvertently occur while the BASIC Stamp is sending data. With
the serial echo enabled, this data could get garbled. With BASIC Stamp boards other than the
MoBoStamp, you just have to be careful not to transmit data when data from ser2ftp is being anticipated.

NOP (No Operation)
Just what it says: it doesn’t do anything – except keep the watchdog timer happy, and that’s the only
reason to use it.

FIL and FTP (Save data to a local file or transfer to a server.)
The syntax for these two commands is identical:

!FIL:<filename>[:<option>:…:<option>]:<end-sequence> C
R

!FTP:<filename>[:<option>:…:<option>]:<end-sequence> C
R

The <filename> contains the relative path and filename info for the file being saved. The type of the file
is determined by the three-letter extension in the file name. Special treatment is given to binary files
(extensions .bin and .dat) and graphic image files (extensions .gif, .jpg, .png). All other extensions are
assumed to refer to text files. The <option> parameters are used by image files and are described below.
The <end-sequence> can be any sequence of printable characters and determines what you will use as
an end-of-file. Anything sent to ser2ftp after one of these two commands will get added to the file being
saved until the <end-sequence> is received by itself on a single line, terminated with a carriage return.

Text Files

Text files are the simplest to generate and are always line-oriented. Each line sent should end with a
carriage return. Each line written to the file, however, is terminated with the character specified by eol in
the ini file, or as overridden by the EOL command. Here’s an example:

DEBUG "!LTC", CR 'Capture local time and date.
DEBUG "!FTP:index.html:end", CR 'FTP file to index.html.
DEBUG "<html><body bgcolor=\q#FFFFC\q)><h2>"
DEBUG "Today is \W.", CR 'Print full name of weekday.
DEBUG "</h2></body></html>", CR 'End of html stuff.
DEBUG "end", CR 'End of file, as defined in FTP command.

In a browser window, the resulting file will look like this:

© Bueno Systems, Inc. • Ser2ftp (2007.01.05) Page 8 of 26

Binary Files

Binary files are sent as sequences of hexadecimal digit pairs, two digits for each byte. Only lines
consisting of nothing but an even number of hex digits are saved. All other lines are ignored. Neither the
required carriage returns nor the eol characters are saved to the file – only the data. Here’s an example:

DEBUG “!FIL:mydata.bin:EOF”, CR ‘Save mydata.bin on local PC.
FOR I = 1 to 16 ‘Write 16 bytes to file.

DEBUG HEX2 I ‘Write one byte of data.
NEXT
DEBUG CR, “EOF”, CR ‘Terminate the line, then the file.

This will send one “line” of data to ser2ftp: 0102030405060708090A0B0C0D0E0FC
R. Ser2ftp

interprets each pair of hex digits as one byte, so it creates a binary file 16 bytes long.

Image Files

And image file can be either a GIF, JPG, or PNG bitmap. The type is specified by the three-letter
extension in the filename. Also specified must be the size of the image and the color space being used.
The parameters are the “options” referred to above. The image size is given by two options, X followed
by a number, and Y followed by a number: e.g. X640:Y480. The color space is given by one of the
following:

BW Black and white. Each pixel consists of one bit: 0 = black, 1 = white.
G16 16 gray levels. Each pixel consists of four bits, ranging from 0 (black) to 15 (white).
G256 256 gray levels. Each pixel consists of eight bits, ranging from 0 (black) to 255 (white).

C16 The 16 DOS VGA colors: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
RGB Any of the 16 million 24-bit colors.

All color spaces but RGB are paletted and can be used with any graphics file. The RGB color space can
be used only with JPG and PNG files.

© Bueno Systems, Inc. • Ser2ftp (2007.01.05) Page 9 of 26

A typical beginning to a graphics file might look like this:

DEBUG “!FTP:images/wind.gif:X200:Y200:C16:end”, CR

This file will be a GIF image, 200 x 200 pixels, with 16 colors, and will be written to the “images”
subdirectory on the server.

Images are created by executing drawing commands, similar to the HPGL commands used by pen
plotters. Each command consists of two letters, possibly followed by a list of arguments. The syntax is
fairly loose and is designed to be as compact or as readable as the user wishes. (For BASIC Stamp
programs, compact is probably best, since long strings chew up program memory pretty fast.) One line
can contain any number of drawing command, terminated with a carriage return:

<cmd>[<data>,…,<data>][;]<cmd>[<data>,…,<data>]…C
R

Note that drawing commands do not begin with an exclamation point (!), but that lines must still end
with a carriage return to be processed. A typical line might look like this:

DEBUG “SP2MV100,100LI200,200”, CR

This selects color 2, then moves to position (100,100) and draws a line from there to (200,200).

Effects produced by drawing commands are not remembered between image files. When a new image
file is begun, all settings revert to their default values:

Current X: 0
Current Y: 0
Pen: 0 for paletted color spaces, black for RGB.
Background: 0 for paletted color spaces, black for RGB.
Palette: Default for the color space chosen.

Image coordinates are always given as an (X,Y) pair of numbers and originate with (0,0) in the upper
lefthand corner, increasing to the right and down. Coordinates may either be absolute or relative to the
last point plotted or moved to. An absolute coordinate is always a positive number, so is indicated
without a leading sign. A relative coordinate is preceded with either a plus (+) or minus (-) sign, as in the
following example:

DEBUG “MV100,100LI-100,+0”, CR

This moves to point (100,100), then draws a horizontal line from there to (0, 100).

Numerical arguments immediately preceding a subsequent command don’t need any punctuation after
them unless they’re given in hexadecimal. In this case, a semicolon (;) should be inserted to
disambiguate in case the next command starts with one of the letters “A” through “F”. Here’s an
example:

DEBUG “SP$FF0088;CI100”, CR

All the drawing commands are described in the sections to follow. To test the example code snippets
yourself, embed them in the following PBASIC code template (changing the $STAMP directive as
needed):

© Bueno Systems, Inc. • Ser2ftp (2007.01.05) Page 10 of 26

' {$STAMP BS2pe}
' {$PBASIC 2.5}

Pen VAR Byte
Type VAR Byte
Size VAR Byte
Dir VAR Byte
x VAR Byte
y VAR Byte

LOW 4

DEBUGIN WAIT("EV0")
DEBUG "!WDT:0", CR
DEBUG "!FIL:example.gif:X250:Y150:C16:end", CR
DEBUG "BG15ER249,149", CR

'===========Example code goes between these lines.===========

'==

DEBUG "end", CR
END

In the example images, unless specified otherwise, the image size is 250x150, the palette is C16, and
the background color has been changed to white. Also a black border has been drawn around the image
to delineate its boundaries.

Pen Color

 PC<pen number>,<rgb color>

Just because you’ve selected a color palette doesn’t mean you can’t change the colors. The Pen Color
command allows you to do just that and should be used before any actual drawing takes place. It takes
two arguments: the pen number and the color assigned to that pen. The color is a 24-bit RGB value and
is almost always given in hexadecimal: two digits for Red, followed by two digits for Green, then two
digits for Blue. For example, $FF00FF would yield magenta. The pen number has to lie within the limits
for the palette you’ve chosen. For example, here’s a command that changes pen 5 to yellow:

DEBUG “PC5,$FFFF00”, CR

The Pen Color command is for paletted color spaces only, so should not be used with the RGB color
space.

Select Pen

 SP<pen number> or SP<rgb color>

This command selects the pen to be used for all subsequent drawing commands, until another Select Pen
is encountered. It takes one argument: the pen number for paletted color spaces, or an RGB value (e.g.
$808080) for the RGB color space. (See the explanation of RGB colors above.) Here’s an example that
draws a triangle in three colors:

DEBUG “SP1MV10,10LI50,50SP2LI100,10SP4LI10,10”, CR

© Bueno Systems, Inc. • Ser2ftp (2007.01.05) Page 11 of 26

Here’s what the image looks like:

Background Color

 BG<pen number> or BG<rgb color>

When a graphics file is first created, it is filled with a background corresponding to color zero – usually
black. You can change this easily with the Image Background command, which takes one argument:
either a pen number or an RGB color value, depending on the color space. Here’s an example that
changes the background color to white when using the RGB color space:

DEBUG “BG$FFFFFF”, CR

The image background should be applied only once before doing any other drawing. Otherwise you’ll
erase anything else you’ve already drawn.

Line Thickness

 LT<thickness>

This command sets the thickness of any lines drawn with the current pen. It takes one argument: the
thickness, in pixels, of any subsequent lines drawn. Extremely heavy lines drawn with a large value for
Line Thickness will likely not look the way you expect them to, due to the primitive way they’re capped at
the ends. But for thicknesses of 2 or 3, it’s a convenient way to add emphasis to outlines.

Move To

 MV<x>,<y>

This command moves the “pen” to another location without drawing anything. It takes two arguments:
the new X and Y location. Examples of the MoVe command can be seen above.

Line To

 LI<x1>,<y1>,<x2>,<y2>,…,<xn>,<yn>

This command draws a straight line from the current position to the position given by its X and Y
arguments, using the current pen. You can also chain arguments using the Line command, as shown in
the example below:

DEBUG “MV10,10LI10,100,100,100,100,10,10,10”, CR

© Bueno Systems, Inc. • Ser2ftp (2007.01.05) Page 12 of 26

This will draw a square, 90 units on a side, with diagonals at (10,10) and (100,100). Here’s what it looks
like:

If the Line command is given without any arguments, it will draw a single pixel at the current position.

Edge Rectangle

 ER<x>,<y>

This is the command to use for drawing a box. It takes two arguments: the X and Y values of the point
diagonally opposite the current point. Here’s an example:

DEBUG “SP12MV10,10ER50,20”, CR

This will draw a red rectangle, 40 pixels wide and 10 pixels high, with its upper left corner at position (10,
10). After ER is executed, the current pen position remains unchanged. Here’s what it looks like:

Fill Rectangle

 FR<x>,<y>

This is the same as Edge Rectangle except that, instead of drawing the outline, it fills the box with the
current pen color. Here’s the same example as above, but filling the rectangle:

DEBUG “SP12MV10,10FR50,20”, CR

Edge Circle

 EC<radius>

This command will draw the outline of a circle with center at the current pen position and radius in pixels
given by its single argument. See the next command for an example.

© Bueno Systems, Inc. • Ser2ftp (2007.01.05) Page 13 of 26

Fill Circle

 FC<radius>

This is the same as Edge Circle, except that it fills the circle using the current pen. In the following
example a circle with radius 40 is drawn with a center at location (100, 75). It is first filled with pen 14
then outlined with pen 2:

DEBUG “MV100,75SP14FC40SP2EC40”, CR

Here’s what it looks like:

Edge Wedge

 EW<radius>,<start angle>,<arc length>

A wedge is like a slice of pie, and – not surprisingly – wedges are used to draw pie charts. Wedges begin
and end at the pointy end, i.e. the center of the arc. The Edge Wedge command takes three arguments:
the radius, the beginning angle, and the angular extent of the wedge. In wedge coordinates, East is
angle 0; North, 90; West 180; and South 270. See the next section for an example.

Fill Wedge

 FW<radius>,<start angle>,<arc length>

This is like the Edge Wedge command, except that the wedge is filled with the current color. In the
following example, two wedges are produced to form a pie chart. One is filled; the other, outlined and
pulled out from the pie by 10 pixels:

DEBUG “MV100,75SP9FW50,45,270MV+10,+0SP12EW50,-45,90”, CR

Here’s what it looks like:

© Bueno Systems, Inc. • Ser2ftp (2007.01.05) Page 14 of 26

Tick Type

 TT<type>

A tick mark is a small shape placed in an image without actually having to draw it. It can be used to draw
short line segments on graph axes to label the coordinates or to indicate the positions and types of points
in scatter plots. The Tick Type command takes one numerical parameter, which selects a tick mark from
among the following types:

0 Horizontal line
1 Vertical line
2 Outlined square
3 Filled square
4 Outlined circle
5 Filled circle

Tick Size

 TS<radius>

This command selects the size of subsequent tick marks placed into the image. It takes a single
parameter, the “radius” in pixels of the tick mark. For circles, “radius” means half the diameter (as
usual); for lines, half the line’s length; for squares, half the length of one side. If the tick size is zero, a
single point will be plotted.

Tick

 TI<x1>,<y1>,<x2>,<y2>,…,<xn>,<yn>

This command draws the selected tick (TT) at the selected size (TS) using the current pen, at locations
determined by a list of coordinate pairs following the command. (It works like the LI command in this
regard.) If no coordinates are given, a tick is plotted at the current point. The tick mark is always
centered at each selected location, and each location becomes the current location after the tick mark is
drawn. The following example draws several types of tick marks of size 5 in different colors.

DEBUG "TS5", CR
FOR Pen = 0 TO 8

DEBUG "SP", DEC Pen, "MV", DEC Pen * 25 + 20, ",0", CR
FOR Type = 0 TO 5

DEBUG "TT", DEC Type, "TI+0,+20", CR
NEXT

NEXT

© Bueno Systems, Inc. • Ser2ftp (2007.01.05) Page 15 of 26

Here’s what the resulting image looks like:

Draw Pixels

 PX$<hex pixel digits> or PX%<binary pixel digits>

This command allows mapping a row of pixels to the image, starting at the current point, and moving to
the right one pixel at a time. The current point also moves right with each pixel plotted. This command
takes one long argument, which is a sequence of hex or binary digits (preceded by either $ or %)
representing either the pen number for paletted images, or the RGB color for RGB images. The following
table shows which sequences are permitted for each color space:

Color Space Digits Allowed Digits per Pixel Example
BW 0 - 1 1 (0 to 1) %111011011110

G16, C16 0 – F 1 (0 to F) $073F5
G256 0 – F 2 (00 to FF) $073F54
RGB 0 – F 6 (000000 to FFFFFF) $FF000080C0CC

In the following example, the file is defined using the G16 color space, instead of the C16 space used in
the other examples. The program draws a shaded, diagonally-running “wire”.

FOR y = 1 TO 148
DEBUG "MV", DEC 100 + y / 2, ",", DEC y, "PX$0123456789ABCDEFDB97531", CR

NEXT

Here’s what it looks like:

© Bueno Systems, Inc. • Ser2ftp (2007.01.05) Page 16 of 26

Label Direction

 LD0 or LD90

Ser2ftp can place horizontal and vertical text labels into the image. The Label Direction takes one
argument, specifying the direction of subsequent labels. The valid values are 0 (horizontal) and 90
(vertical, i.e. rotated 90 degrees counter-clockwise).

Label Size

 LS<size>

Ser2ftp’s labels can be any of five monospaced font sizes, ranging from 0 (tiny) to 4 (extra large), with
sizes 2 and 4 being boldface fonts. The Label Size command takes a single argument: the size of the
font. See the example in the next section for samples of the various fonts. The font metrics are
summarized in the following table:

Font Size Font Weight Character Size (W x H)
0 Normal 5 x 8
1 Normal 6 x 12
2 Bold 7 x 13
3 Normal 8 x 16
4 Bold 9 x 15

Label

 LB<text> C
R

This is the command that draws the text labels. Because a label can consist of any printable characters,
the Label command will “gobble up” the entire rest of the command line as its single parameter.
Therefore, LB has to be the last command on any given line. To draw multi-line labels, embed a newline
(\n) in the text to move to the next line. When the LB command has finished executing, the current
position is located after the last character plotted (or at the beginning of the next line if the last character
was a newline). The following example prints labels in various sizes and orientations:

FOR Size = 0 TO 4
DEBUG "LS", DEC Size, CR
FOR Dir = 0 TO 1

IF (Dir) THEN
DEBUG "MV", DEC 145 + (Size * 20), ",120"

ELSE
DEBUG "MV10,", DEC 45 + (Size * 20)

ENDIF
DEBUG "SP", DEC Dir * 4 + Size, CR
DEBUG "LD", DEC Dir * 90, "LBLabel Size ", DEC Size, CR

NEXT
NEXT

© Bueno Systems, Inc. • Ser2ftp (2007.01.05) Page 17 of 26

Here’s what the output looks like:

You will note that all lower-case letters have been converted to upper-case. Ser2ftp only does upper-case
labels.

Label Justify

 LJ<x percent>,<y percent>,<leading percent>

Unless otherwise specified, a label begins with its lower-left corner at the current point, thereby left- and
bottom-justifying it. Also, the spacing between lines of multi-line labels will be the natural spacing,
without any additional “leading” (a printer’s term, referring to the lead slugs placed between lines of type
to spread them out vertically). But the justification and leading can be changed with the Label Justify
command. It takes three parameters: horizontal justfication, vertical justification, and leading. Each is a
percentage. Horizontal justification tells where in a line of characters the starting point lies. At 0, it begins
at the far left (left-justified); 50 in the middle (centered); and 100, at the right (right-justified). Vertical
justification determines the same thing on the vertical axis: 0 is bottom-aligned, 50 is middle aligned, and
100 is top aligned. A leading value of 0 means normal spacing; 100, double spacing; 200, triple spacing;
and so on. In the following example, the starting point of each label is shown with a gray cross-hatch:

DEBUG "TS20LS1", CR
FOR x = 0 TO 100 STEP 50

FOR y = 0 TO 100 STEP 50
DEBUG "MV", DEC x * 2 + 25, ",", DEC y * 3 / 4 + 38, CR
DEBUG "SP7TT0TI+0,+0TT1TI+0,+0SP12"
DEBUG "LJ", DEC x, ",", DEC y, ",0", CR
DEBUG "LBLJ", DEC x, ",", DEC y, ",0\nNext Line", CR

NEXT
NEXT

© Bueno Systems, Inc. • Ser2ftp (2007.01.05) Page 18 of 26

And here’s the output:

Scale Image

 SC<old extent>,<new extent>

The Scale Image command magnifies the contents of the image by the scale factor given by the ratio of
its two arguments: <new extent> / <old extent>. If this ratio is less than 1, a value of 1 is used. (i.e.
you can’t shrink the contents of an image with this command.) The overall dimensions of the image don’t
change when you scale it – only the size of the graphics within it. So, for an image size of 250 x 150 and
a scale ratio of 2.5 (e.g. SC100,250), only graphic elements drawn in the upper-left rectangle sized 100
x 60 will be shown. And these will be blown up to fill the entire 250 x 150 image area. The actual
zooming is done just before the image file is written or transferred, but SC can be executed anytime
during the drawing of the file. Only the last ratio issued is used for the actual zoom.

In the following program, a few things are drawn in the upper left corner of the image:

DEBUG "SP14MV25,25FC15SP12ER50,50SP0LBSample\nText", CR

Here’s the image produced:

Now, here’s the same program, but this time using the SC command:

DEBUG "SC100,250SP14MV25,25FC15SP12ER50,50SP0LBSample\nText", CR

© Bueno Systems, Inc. • Ser2ftp (2007.01.05) Page 19 of 26

And here’s the blown-up result:

Note that the outline drawn in the template code got truncated on the bottom and right-hand sides. Also
note that everything gets magnified: text, line thicknesses, even individual pixels.

An Actual Application
This section attempts to pull all of the foregoing together into an actual application that can be viewed on
the web (www.phipi.com/ser2ftp). This site consists of two pages: index.html, and images/temps.gif.
Both are produced by a MoBoStamp-pe (http://www.parallax.com/detail.asp?product_id=28300) to which
is interfaced a DS1620 temperature snesor (http://www.parallax.com/detail.asp?product_id=604-00002),
and which is connected to a PC running ser2ftp. The main page, index.html, displays the latest date,
time, and temperature. It also includes an link to images/temps.gif. That file shows a graph of
temperatures. A typical source for index.html would look like this (with extra newlines and tabs thrown in
for readability):

<html>
<body bgcolor="#ffffc0">

<center><h2>Shop Temperature: 62°F</h2>
(as of Tuesday, Jan 9, 2007 at 2:15 PM)
<h4>Graph of past temperatures:</h4>

</body>
</html>

© Bueno Systems, Inc. • Ser2ftp (2007.01.05) Page 20 of 26

And this would display a page that looks like this in a web browser:

The PBASIC code that produces all this is as follows:

' {$STAMP BS2pe}

' {$PBASIC 2.5}

' Program to read a temperature from the DS1620 temperature sensor,

' write it to a circular buffer in EEPROM, then draw a graph from

' the recorded data for upload to the internet using the

' PC program ser2ftp.exe.

' The DS1620 interface portion of this program was lifted wholesale

' from the Parallax DS1620 appnote "AppKit DS1620 Digital Thermometer"

' available from the Parallax website.

' ===================== Define Pins and Variables ================

DQ CON 8 ' Pin 8 <=> DQ.

CLK CON 9 ' Pin 9 => CLK.

RST CON 12 ' Pin 12 => RST (high = active).

DSdata VAR Word ' Word variable to hold 9-bit data.

© Bueno Systems, Inc. • Ser2ftp (2007.01.05) Page 21 of 26

Sign VAR DSdata.BIT8 ' Sign bit of raw temperature data.

T_sign VAR Bit ' Saved sign bit for converted temperature.

TempPtr VAR Byte ' Pointer to next temperature in EEPROM

Temp VAR Byte

i VAR Word

' ===================== Define DS1620 Constants ===================

' >>> Constants for configuring the DS1620

Rconfig CON $AC ' Protocol for 'Read Configuration.'

Wconfig CON $0C ' Protocol for 'Write Configuration.'

CPU CON %10 ' Config bit: serial thermometer mode.

NoCPU CON %00 ' Config bit: standalone thermostat mode.

OneShot CON %01 ' Config bit: one conversion per start request.

Cont CON %00 ' Config bit: continuous conversions after start.

' >>> Constants for serial thermometer applications.

StartC CON $EE ' Protocol for 'Start Conversion.'

StopC CON $22 ' Protocol for 'Stop Conversion.'

Rtemp CON $AA ' Protocol for 'Read Temperature.'

' ===================== Begin Program ============================

LOW 4 ' Turn off serial echo.

DEBUGIN WAIT("EV"), DEC1 i ' Get the event number.

IF (i = 0) THEN ' Event 0 (reset)?

DEBUG "!WDT:60", CR ' Yes: Set watchdog timer to 60 seconds.

DEBUG "!EV1:*/15 * * * *", CR ' Schedule event 1.

GOTO KeepAlive

ENDIF

DEBUG "!LTC", CR ' Event 1 (read temperature): Capture local time.

LOW RST ' Deactivate '1620 for now.

HIGH CLK ' Put clock in starting state.

PAUSE 100 ' Let things settle down a moment.

HIGH RST ' Activate the '1620 and set it for continuous..

SHIFTOUT DQ,CLK,LSBFIRST,[Wconfig,CPU+Cont] ' ..temp conversions.

LOW RST ' Done--deactivate.

PAUSE 50 ' Wait for the EEPROM to self-program.

HIGH RST ' Now activate it again.

SHIFTOUT DQ,CLK,LSBFIRST,[StartC] ' Send start-conversion protocol.

LOW RST ' Done--deactivate.

PAUSE 500

HIGH RST ' Activate the '1620.

SHIFTOUT DQ,CLK,LSBFIRST,[Rtemp] ' Request to read temperature.

SHIFTIN DQ,CLK,LSBPRE,[DSdata\9] ' Get the temperature reading.

LOW RST

© Bueno Systems, Inc. • Ser2ftp (2007.01.05) Page 22 of 26

T_sign = Sign ' Save the sign bit of the reading.

DSdata = (DSdata */ $e6) ' Multiply by 0.9.

IF T_sign THEN DSdata = DSdata | $FF00

DSdata = DSdata + 32 ' Complete the conversion.

READ 0, TempPtr ' Get the pointer to the next available EEPROM slot.

WRITE TempPtr, DSdata.LOWBYTE ' Write the temp to EEPROM.

TempPtr = TempPtr // 96 + 1 ' Increment the pointer, wrapping around to slot #1.

WRITE 0, TempPtr ' Write the new pointer value.

' >>> Transfer data to the internet, beginning with temperature graph:

DEBUG "!FTP:images/temps.gif:C16:X358:Y270:end", CR 'Begin capture of images/temps.gif.

'It's 358 x 270 pixels, with a 16-color palette.

DEBUG "BG15SP0LJ50,100,0LD90MV5,110,LBTemperature (Deg. F)", CR 'Label the Y-axis.

DEBUG "LJ50,0,0LD0,MV210,265LBTime (Hours Ago)", CR 'Label the X-Axis.

DEBUG "LJ100,50,0TT0TS5" 'Put tick marks and values on Y-axis.

FOR i = 30 TO 100 STEP 10

DEBUG "TI55,", DEC 310 - (i * 3), "MV-10,+0LB", DEC i, CR

NEXT

DEBUG "LJ50,100,0TT1" 'Put tick marks and values on X-axis.

FOR i = 0 TO 24 STEP 2

DEBUG "TI", DEC 348 - (12 * i), ",225MV+0,+10LB", DEC i, CR

NEXT

DEBUG "SP12LT3", CR

FOR i = 0 TO 95 'Plot up to 96 temperature values.

TempPtr = TempPtr - 1

IF (TempPtr = 0) THEN TempPtr = 96

READ TempPtr,Temp 'Read next previous temperature.

IF (Temp = 255) THEN EXIT '255 = undefined, so we're done.

Temp = 310 - (Temp * 3) 'Compute Y-axis position.

IF (i = 0) THEN

DEBUG "MV348,", DEC Temp, "LI" 'If first point, need to move there.

ENDIF

DEBUG DEC 348 - (i * 3), ",", DEC Temp, "," 'Draw a line from prev point to current one.

NEXT

DEBUG CR, "SP0MV60,10,LI+0,+210,+288,+0", CR, "end", CR 'Draw the axes, then upload the file.

' >>> Continue with updated html file that shows current temp and date/time.

DEBUG "!FTP:index.html:end", CR 'Begin capture of index.html.

DEBUG "<html><body bgcolor=\q#ffffc0\q><center><h2>Shop Temperature: ", DEC Dsdata

DEBUG "°F</h2>" '\q means insert "

DEBUG "(as of \W, \M \d, \Y at \H:\u \P)", CR '\? means, "Insert last-read date and time values."

DEBUG "<h4>Graph of past temperatures:</h4>", CR

'Include the graph.

DEBUG "</body></html>", CR, "end", CR 'Upload the updated file.

KeepAlive:

© Bueno Systems, Inc. • Ser2ftp (2007.01.05) Page 23 of 26

DO

DEBUG "!NOP", CR 'Keep the watchdog timer happy.

SLEEP 30 'Sleep for 30 seconds.

LOOP 'Lather, rinse, repeat...

InitEEPROM:

WRITE 0, 1

FOR TempPtr = 1 TO 96

WRITE TempPtr, 255

NEXT

RETURN

We’ll go through the ser2ftp-specific stuff step-by-step to see how it works. First comes the reset code.
This is what gets executed when the program starts up or is interrupted by ser2ftp:

LOW 4 ' Turn off serial echo.

This command is specific to the MoBoStamp-pe and turns off the serial echo.

DEBUGIN WAIT("EV"), DEC1 i ' Get the event number.

After ser2ftp resets the Stamp, it waits 0.5 seconds (as programmed in the ini file by the resetdelay
setting), then sends a character string starting with EV, followed by a single digit, 0 through 4. The digits
are event numbers. Event 0 is a watchdog or startup reset; events 1 through 4 can be scheduled from
the Stamp itself. The DEBUGIN statement just waits for the event message, then records the event
number in the variable i.

IF (i = 0) THEN ' Event 0 (reset)?

DEBUG "!WDT:60", CR ' Yes: Set watchdog timer to 60 seconds.

DEBUG "!EV1:*/15 * * * *", CR ' Schedule event 1.

GOTO KeepAlive

ENDIF

If the event is 0, we can assume we’re starting from scratch, so we need to set up a few things:

1. First, we need to set the watchdog timer so if we get disconnected, ser2ftp will start us up again.
We’ll set it to 60 seconds.

2. Next, we want to schedule an event that will be used to read the temperature and upload the
updated files to the web server. We’ll use event 1 for this, and schedule it every 15 minutes, on
the 15-minute mark.

3. Finally, we’ll jump to a keep-alive section of code that just sends NOPs to ser2ftp to keep the
watchdog timer from expiring and triggering another event 0.

DEBUG "!LTC", CR ' Event 1 (read temperature): Capture local time.

If the event is not 0, we can assume it’s our scheduled event 1. The first thing to do is record the local
time with the LTC command. Then we can read the temperature. The portion of code that does this is
documented elsewhere by Parallax, so we’ll skip over that part, and assume we’ve obtained a successful
reading in the variable Dsdata.

DEBUG "!FTP:images/temps.gif:C16:X358:Y270:end", CR 'Begin capture of images/temps.gif.

Once the time and temperature have been acquired, we can build and send the two files. The first is the
image file, named temps.gif in the images subdirectory. This image has a size of 358 x 270 pixels and
uses the C16 (DOS) color space. The file will be sent by ser2ftp after we send it a line containing the
single string, end, as specified in the FTP command.

© Bueno Systems, Inc. • Ser2ftp (2007.01.05) Page 24 of 26

DEBUG "BG15SP0LJ50,100,0LD90MV5,110,LBTemperature (Deg. F)", CR 'Label the Y-axis.

The first order of business is to label the X- and Y-axes, Y-axis first. Here are the commands and their
arguments used to do that:

1. BG15 – This changes the background color from 0 (black) to 15 (white).

2. SP0 – Select pen 0 (black)

3. LJ50,100,0 – Set X justification to 50 (centered), Y justification to 100 (top), and leading to 0
(no leading).

4. LD90 – Set the label direction to 90 degrees (vertical).

5. MV5,110 – Move the pen to location (5, 110). This is where the center-top (as specified by LJ)
of the label will be.

6. LBTemperature (Deg. F) – Draw the label.

DEBUG "LJ50,0,0LD0,MV210,265LBTime (Hours Ago)", CR 'Label the X-Axis.

1. LJ50,0,0 – Set X justification to 50 (centered), Y justification to 0 (bottom), and leading to 0
(no leading).

2. LD0 – Set the label direction to 0 degrees (horizontal).

7. MV210,265 – Move the pen to location (210, 265). This is where the center-bottom (as
specified by LJ) of the label will be.

3. LBTime (Hours Ago) – Draw the label.

DEBUG "LJ100,50,0TT0TS5" 'Put tick marks and values on Y-axis.

1. LJ100,50,0 – Set X justification to 100 (right justify), Y justification to 50 (centered), and
leading to 0.

2. TT0 – Set the tick type to 0 (horizontal line).

3. TS5 – Set the tick size to 5.

FOR i = 30 TO 100 STEP 10

DEBUG "TI55,", DEC 310 - (i * 3), "MV-10,+0LB", DEC i, CR

NEXT

We’re going to put marks and labels on the Y-axis every 10 degrees Fahrenheit from 30 to 100. The
variable i will hold that number.

1. TI55, 310 - (i * 3) – Put a horizontal tick at location (55, 310 – (i * 3)). The Y-axis will lie
along the X = 60 line. The tick mark is size 5, which means its center needs to be 5 pixels to the
left of that for the ticks to end on the axis. The vertical tick spacing is 30 pixels. That’s the reason
for the i * 3, since i increases in increments of 10.

2. MV-10+0 – Move 10 pixels to the left of the current position. (The + and – signs indicate
relative movement.)

3. LB i – Print the number i as a label, right justified, as specified by the LJ instruction.

DEBUG "LJ50,100,0TT1" 'Put tick marks and values on X-axis.

1. LJ50,100,0 – Set X justification to 50 (center), Y justification to 100 (top), and leading to 0.

2. TT1 – Set the tick type to 1 (vertical line).

FOR i = 0 TO 24 STEP 2

DEBUG "TI", DEC 348 - (12 * i), ",225MV+0,+10LB", DEC i, CR

© Bueno Systems, Inc. • Ser2ftp (2007.01.05) Page 25 of 26

NEXT

We’re going to put marks and labels on the X-axis every 2 hours from 0 on the right to 24 on the left.
The variable i will hold that number.

1. TI 348 - (12 * i),225 – Put a vertical tick at location (348 – (12 * i), 225). The X-axis will lie
along the Y = 220 line. The tick mark is size 5, which means its center needs to be 5 pixels lower
than that for the ticks to top out on the axis. The horizontal tick spacing is 24 pixels. That’s the
reason for the 12 * i, since i increases in increments of 2.

2. MV+0+10 – Move 10 pixels down from the current position. (The + and – signs indicate
relative movement.)

3. LB i – Print the number i as a label, centered, as specified by the LJ instruction.

DEBUG "SP12LT3", CR

1. SP12 – Select pen 12 (red in the C16 colorpsace).

2. LT3 – Set the line thickness to 3 pixels.

FOR i = 0 TO 95 'Plot up to 96 temperature values.

TempPtr = TempPtr - 1

IF (TempPtr = 0) THEN TempPtr = 96

READ TempPtr,Temp 'Read next previous temperature.

IF (Temp = 255) THEN EXIT '255 = undefined, so we're done.

Variable i is just a counter here. The variable TempPtr points to the next available position in EEPROM
after the latest temperature reading. We’re going to read back through these readings in reverse
chronological order. So we subtract 1 from TempPtr each time through the loop. When TempPtr = 0,
we’ve gone too far, so cycle back to position 96.

Then we read the temperature value at that point. A value of 255 means that no value was recorded
there, so we’re done.

Temp = 310 - (Temp * 3) 'Compute Y-axis position.

IF (i = 0) THEN

DEBUG "MV348,", DEC Temp, "LI" 'If first point, need to move there.

ENDIF

DEBUG DEC 348 - (i * 3), ",", DEC Temp, "," 'Draw a line from prev point to current one.

NEXT

Next we compute the Y-axis position in the image that corresponds to the temperature we just read and
assign it back to Temp. Then, if this is the first point plotted, we have to move to that point. That’s what
the MV348, Temp does. Then we can issue the LI command and provide its arguments in each iteration
through the loop. That’s what the last DEBUG statement does: feed pairs of numbers as parameters to
the already-issued LI.

DEBUG CR, "SP0MV60,10,LI+0,+210,+288,+0", CR, "end", CR 'Draw the axes, then upload the file.

After the last coordinate pair is sent, we issue a carriage return to terminate the line so the MV
instruction and LI instruction with all those coordinate pairs can execute. We haven’t drawn the X- and
Y-axes yet, so we’ll do that last:

1. SP0 – Select pen 0 (black).

2. MV60,10 – Move to location (60, 10). This is the top of the Y-axis.

3. LI+0,+210,+288,+0 – Draw a 210-pixel line down to the origin (Y-axis), then continue with
another line 288 pixels to the right (X-axis).

© Bueno Systems, Inc. • Ser2ftp (2007.01.05) Page 26 of 26

After the terminating carriage return, we send the end established in the FTP command as our end-of-
file, followed by another carriage return. At this point, ser2ftp will send the image file to the server.

DEBUG "!FTP:index.html:end", CR 'Begin capture of index.html.

Next, we need to update index.html with the current date, time, and temperature data. We’ll use the
same end-of-file string as we used before.

DEBUG "<html><body bgcolor=\q#ffffc0\q><center><h2>Shop Temperature: ", DEC Dsdata

DEBUG "°F</h2>" '\q means insert "

Now comes the actual HTML stuff. Notice that where quote marks are required in the HTML tags, we use
the escape sequence \q. This is easier than interrupting a quoted string, e.g.: “string1”, 34, “string2”,
which would be the only other way to do it in PBASIC. Also note that the temperature is inserted directly
into the HTML file using the variable Dsdata. And finally, the HTML literal, °, is the way to
produce a degree symbol.

DEBUG "(as of \W, \M \d, \Y at \H:\u \P)", CR '\? means, "Insert last-read date and time values."

Here’s where the time and date that we acquired just before reading the temperature comes into play.
Remember all those fancy escape sequences that were described pages ago? Here’s how they get used.
Ser2ftp replaces each of them with their corresponding time and date strings before inserting into the
file.

DEBUG "<h4>Graph of past temperatures:</h4>",CR ‘Include the graph.

This is the line that displays the graph with the HTML file.

DEBUG "</body></html>", CR, "end", CR 'Upload the updated file.

And, finally, we close out the HTML tags and close out the file with the end-of-file string.

KeepAlive:

DO

DEBUG "!NOP", CR 'Keep the watchdog timer happy.

SLEEP 30 'Sleep for 30 seconds.

LOOP

After everything is done, all we have to do is burp once in awhile to let ser2ftp know we’re still alive. This
loop is adequate to keep the watchdog timer from interrupting things. Plus, with a timeout of only 60
seconds, if we get disconnected, ser2ftp will know about quickly.

InitEEPROM:
WRITE 0, 1
FOR TempPtr = 1 TO 96

WRITE TempPtr, 255
NEXT
RETURN

This section of code isn’t reachable by the program as it stands. It is used to initialize the EEPROM to all
undefined readings. It can be reached with a GOSUB and should be called once, before running the
program with ser2ftp.

